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Blind Calibration and Random Linear Models
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additive noise
what if unknown gains? 

yi ' hai,xi = a

T
i x
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additive noise
what if unknown gains? 

Blind Calibration Problem:
Recover x (signal) and d (gains) in

Recent related works:  
■ Blind calibration: [Friedlander, Strohmer, 14] [Li, Ling, Strohmer, 16] 
■ Blind deconvolution: [Ali, Rech, Romberg, 14], [Bilen, 14] [Li, Ling, Strohmer, 16]

unknown

with di ⇡ 1
y = diag(d)Ax+ ⌘

noise

yi ' hai,xi = a

T
i x
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additive noise
what if unknown gains? 

Multiple “snapshots”

Blind Calibration Problem:
Recover x (signal) and d (gains) in

our approach

yl = diag(d)Alx+ ⌘, 1 6 l 6 p

yi ' hai,xi = a

T
i x

Al ⇠iid A 2 Rm⇥n
,

with Aij sub-Gaussian, zero mean & unit variance.

with random sensing model: 
 
 
(e.g., Gaussian, Bernoulli, Bounded)
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additive noise
what if unknown gains? 

Blind Calibration Problem:
Recover x (signal) and d (gains) in

our approach

Inspirations: 
Programmable 
Compressive 
Imagers

yl = diag(d)Alx+ ⌘, 1 6 l 6 p

yi ' hai,xi = a

T
i x

Rice single pixel camera 
(Baraniuk, Kelly et al)

Coded aperture CS imagers 
(CASSI, Brady et al)
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additive noise
what if unknown gains? 

Blind Calibration Problem:
Recover x (signal) and d (gains) in

our approach

yl = diag(d)Alx+ ⌘, 1 6 l 6 p

Central questions:
■ Efficient algorithm? 
■ Minimal sample complexity: mp ? 
■ Minimal snapshot number: p ? 
■ Robustness vs η?

(for sub-Gaussian Al)

yi ' hai,xi = a

T
i x



Intrinsic ambiguity (in noiseless case)

‣   
‣ Scaling ambiguity: 

8

Let S := {(x0,d0) : diag(d0)Alx
0 = diag(d)Alx = yl, 1 6 l 6 p}

(x⇤,d⇤) 2 S $ 8↵ 6= 0, ( 1
↵ x

⇤,↵d⇤) 2 S !



Intrinsic ambiguity (in noiseless case)

‣   
‣ Scaling ambiguity:  

Our context: 
‣ Gain calibration: 
‣ Let’s assume (wlog):  
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0 6 di ⇡ 1, 1 6 i 6 m

P
i di = m,

or d 2 ⇧

+
m = {w 2 Rm

+ : 1>
mw =

P
i wi = m}

(Scaled) probability simplex
⇧+

m

Let S := {(x0,d0) : diag(d0)Alx
0 = diag(d)Alx = yl, 1 6 l 6 p}

(x⇤,d⇤) 2 S $ 8↵ 6= 0, ( 1
↵ x

⇤,↵d⇤) 2 S !



Intrinsic ambiguity (in noiseless case)

‣   
‣ Scaling ambiguity:  

Our context: 
‣ Gain calibration: 
‣ Let’s assume (wlog): 

       + perturbation analysis:  
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P
i di = m,

or d 2 ⇧

+
m = {w 2 Rm

+ : 1>
mw =

P
i wi = m}

|di � 1| 6 ⇢ < 1

) d 2 1+ ⇢Bm
1

(for some 0 6 ⇢ < 1)

⇧+
m

1 + ⇢Bm
1

C⇢

We define C⇢ := ⇧+
m \ (1+ ⇢Bm

1))
our optimization space!

Let S := {(x0,d0) : diag(d0)Alx
0 = diag(d)Alx = yl, 1 6 l 6 p}

(x⇤,d⇤) 2 S $ 8↵ 6= 0, ( 1
↵ x

⇤,↵d⇤) 2 S !

0 6 di ⇡ 1, 1 6 i 6 m



A Non-Convex Optimisation Problem
‣ Blind Calibration Problem: 

‣ Non-convex (bi-convex) but maybe locally convex? 
‣ Idea: initialize + (projected) gradient descent 

     (as in Phase-Retrival via Wirtinger flow,  
        e.g., [Candès, Li, 2015] [White et al., 2015]  
              [Ling, Strohmer, Wei, 2016])

11

(x̂, d̂) = argmin
⇠2Rn,�2C⇢

1
2mp

Pp
l=1 k diag(d)Alx| {z }

yl

� diag(�)Al⇠k22



Geometric Analysis
‣ Low-dimensional intuitive example: 
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�, ⇠ 2 R2, i.e., n = m = 2,

k⇠k = 1, � = (1 + r, 1� r) 2 ⇧+
2 , r 2 R

! Optimization space: (⇠1, ⇠2, r) on a cylinder.

increasing p p = 1

“ellipsoid”

We study the variations of f(⇠,�) := 1
2mp

Pp
l=1 kyl � diag(�)Al⇠k2

around (x1, x2, ⇢) = (

1p
2
,� 1p

2
, 0.08)

r r r r
log f(⇠,�), p = 1 log f(⇠,�), p = 2 log f(⇠,�), p = 3 logEf(⇠,�)

⇠1 ⇠2 ⇠1 ⇠2 ⇠1 ⇠2 ⇠1 ⇠2



Geometric Analysis
‣ Conclusion:  
‣ Hope for local convexity 

in a neighborhood (an “ellipsoid” of radius   ) 

13

D,⇢ :=
�
(⇠,�) 2 Rn ⇥ C⇢ : �(⇠,�) 6 2kx?k22

 

with distance �(⇠,�) := k⇠ � x

?k2 + kx?k2

m k� � d

?k2

⇡⇢ 2Ef(⇠,�) if � 2 C⇢.






Solution by Projected Gradient Descent
‣ Algorithm:
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1: Initialize ⇠0 :=
1
mp

Pp
l=1 (Al)

> y l , �0 := 111m, k := 0.
2: while stop criteria not met do

3:

(
µ⇠ := argmin�2R f (⇠k � �r⇠f (⇠k , �k), �k)
µ� := argmin�2R f (⇠k , �k � �r?� f (⇠k , �k))

{Line search in ⇠, �}

4: ⇠k+1 := ⇠k � µ⇠r⇠f (⇠k , �k) {Signal Update}
5: �

k+1
:= �k � µ� r?� f (⇠k , �k) {Gain Update}

6: �k+1 := PC⇢�k+1 {Projection on C⇢}
7: k := k + 1
8: end while

f(⇠,�)

(⇠0,�0)

(x⇤,d⇤)

f(⇠,�) := 1
2mp

Pp
l=1 kyl � diag(�)Al⇠k2

(almost dumb …



Solution by Projected Gradient Descent
‣ Algorithm:
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1: Initialize ⇠0 :=
1
mp

Pp
l=1 (Al)

> y l , �0 := 111m, k := 0.
2: while stop criteria not met do

3:

(
µ⇠ := argmin�2R f (⇠k � �r⇠f (⇠k , �k), �k)
µ� := argmin�2R f (⇠k , �k � �r?� f (⇠k , �k))

{Line search in ⇠, �}

4: ⇠k+1 := ⇠k � µ⇠r⇠f (⇠k , �k) {Signal Update}
5: �

k+1
:= �k � µ� r?� f (⇠k , �k) {Gain Update}

6: �k+1 := PC⇢�k+1 {Projection on C⇢}
7: k := k + 1
8: end while

f(⇠,�)

(⇠0,�0)

(x⇤,d⇤)

D,⇢

Prop. Let 0 < � < 1, t > 0, and define 2
:= �2 + ⇢2.

If

mp & ��2
(m+ n) log(n/�) and n & t log(mp),

then

(⇠0,�0) 2 D,⇢,

with prob. failure . e�c�2mp
+ (mp)�t

(c > 0).

… but not so bad 
  initialization!)

) k⇠0 � x

?k2 + kx?k2

m k�0 � d

?k2 6 2kx⇤k2

f(⇠,�) := 1
2mp

Pp
l=1 kyl � diag(�)Al⇠k2

(almost dumb …



Solution by Projected Gradient Descent
‣ Algorithm:
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1: Initialize ⇠0 :=
1
mp

Pp
l=1 (Al)

> y l , �0 := 111m, k := 0.
2: while stop criteria not met do

3:

(
µ⇠ := argmin�2R f (⇠k � �r⇠f (⇠k , �k), �k)
µ� := argmin�2R f (⇠k , �k � �r?� f (⇠k , �k))

{Line search in ⇠, �}

4: ⇠k+1 := ⇠k � µ⇠r⇠f (⇠k , �k) {Signal Update}
5: �

k+1
:= �k � µ� r?� f (⇠k , �k) {Gain Update}

6: �k+1 := PC⇢�k+1 {Projection on C⇢}
7: k := k + 1
8: end while

r?� f (⇠, �) := P111?mr�f (⇠, �)

technical requirement for proofs  
(not required in experiments)

f(⇠,�)

(⇠0,�0)

(x⇤,d⇤)

D,⇢

1: Initialise ⇠0 :=
1
mp

Pp
l=1 (Al)

> y l , �0 := 111m, k := 0.
2: while stop criteria not met do

3:

(
µ⇠ := argmin�2R f (⇠k � �r⇠f (⇠k , �k), �k)
µ� := argmin�2R f (⇠k , �k � �r?� f (⇠k , �k))

{Line search in ⇠, �}

4: ⇠k+1 := ⇠k � µ⇠r⇠f (⇠k , �k) {Signal Update}
5: �

k+1
:= �k � µ� r?� f (⇠k , �k) {Gain Update}

6: �k+1 := PC⇢�k+1 {Projection on C⇢}
7: k := k + 1
8: end while

f(⇠,�) := 1
2mp

Pp
l=1 kyl � diag(�)Al⇠k2

(for some step sizes µ⇠, µ� > 0)



Solution by Projected Gradient Descent
‣ Algorithm:
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r?� f (⇠, �) := P111?mr�f (⇠, �)

Convergence to        ?(x⇤,d⇤)

with �(⇠,�) := k⇠ � x

?k2 + kx?k2

m k� � d

?k2

�(⇠k+1,�k+1
) =�(⇠k,�k)� 2

Gradient Angle Partz }| {�
µ
⇠

hr
⇠

f(⇠k,�k), ⇠k � x

?i+ µ
�

kx?k2
2

m hr?
�

f(⇠k,�k),�k � g

?i
�

+ µ2
⇠

kr
⇠

f(⇠k,�k)k22 + µ2
�

kx?k2
2

m kr?
�

f(⇠k,�k)k22| {z }
Gradient Magnitude Part

<
?

�(⇠k,�k)

… we need to prove regularity on angles and magnitudes! 

f(⇠,�) := 1
2mp

Pp
l=1 kyl � diag(�)Al⇠k2

(must be > 0)

(must bounded)

1

2

1: Initialize ⇠0 :=
1
mp

Pp
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1: Initialise ⇠0 :=
1
mp

Pp
l=1 (Al)

> y l , �0 := 111m, k := 0.
2: while stop criteria not met do

3:

(
µ⇠ := argmin�2R f (⇠k � �r⇠f (⇠k , �k), �k)
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4: ⇠k+1 := ⇠k � µ⇠r⇠f (⇠k , �k) {Signal Update}
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k+1
:= �k � µ� r?� f (⇠k , �k) {Gain Update}

6: �k+1 := PC⇢�k+1 {Projection on C⇢}
7: k := k + 1
8: end while

(for some step sizes µ⇠, µ� > 0)



‣ Regularity condition in 

Convergence to          ?

18

(x⇤,d⇤)

D,⇢

Prop. Let 0 < � < 1, t > 0, and define 2
:= �2 + ⇢2. If n & t log(mp),

mp & ��2
(m+ n) log(n/�) and p & ��2

logm,

and if

⇢ < 1
9 (1� 2�),

then, 9 ⌘, L > 0 (only depending on � and ⇢) such that, 8 (⇠,�) 2 D,⇢,

D
r?f(⇠,�),

h
⇠�x

?

��d

?

iE
� 1

2⌘�(⇠,�) (Bounded angle)

kr?f(⇠,�)k2  L2
�(⇠,�) (Lipschitz gradient)

with prob. failure . e�c�2mp
+ e�c0�2p

+ (mp)�t
(for some c, c0 > 0).

Proof ingredients:

Measure concentration on sub-Gaussian r.v., Matrix Bernstein inequality,

non-uniformity wrt x

⇤
and d

⇤
.

1
2



‣ Regularity condition in 

Convergence to          ?
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(x⇤,d⇤)

D,⇢

Prop. Let 0 < � < 1, t > 0, and define 2
:= �2 + ⇢2. If n & t log(mp),

mp & ��2
(m+ n) log(n/�) and p & ��2

logm,

and if

⇢ < 1
9 (1� 2�),

then, 9 ⌘, L > 0 (only depending on � and ⇢) such that, 8 (⇠,�) 2 D,⇢,

D
r?f(⇠,�),

h
⇠�x

?

��d

?

iE
� 1

2⌘�(⇠,�) (Bounded angle)

kr?f(⇠,�)k2  L2
�(⇠,�) (Lipschitz gradient)

with prob. failure . e�c�2mp
+ e�c0�2p

+ (mp)�t
(for some c, c0 > 0).

) kr?f(⇠,�)k 6= 0 but on the solution in D,⇢!

) allows convergence for µ� = µ⇠
m

kx⇤k .

(no spurious minima)



Convergence to          ?

20

(x⇤,d⇤)

Theorem. Let 0 < � < 1, t > 0, and define 2 := �2 + ⇢2. If

n & t log(mp), mp & ��2(m+ n) log(n/�) and p & ��2 logm,

and if
⇢ < 1

9 (1� 2�),

then, 9 ⌘, L > 0 (only depending on � and ⇢) such that, with probability exceeding

1� C
⇥
e�c�2p + e�c�2mp + (mp)�t⇤

for some C, c > 0, our descent algorithm initialized on (⇠0,�0) with µ
⇠

= µ and µ
�

= µ m
kx?k22

gives jointly, at each iteration k,

(⇠k,�k) 2 D,⇢ and �(⇠k,�k) 
�
1� ⌘µ+ L2

⌧ µ2�k2 kx?k22,

provided µ 2
�
0, ⌘kx?k2

mL2+kx?k2L2

�
. Hence, �(⇠k,�k) �!

k!1
0.

Combining previous propositions gives then …

Roughly speaking, for ⇢ small enough,

we need n and p > 1 large enough,

and mp & (m+ n) log(n/�) observations.

< 1z }| {



Empirical Phase Transition
‣ To test the problem’s phase transition we measure the probability of successful recovery                                         

 
 
for 256 randomly generated problem instances (per point). 
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P⇣ :

= P
h

max

n

kd̂�d

?k2

kd?k2
, kx̂�x

?k2

kx?k2

o

< ⇣
i

, (x?,d?
) 2 Bn ⇥ C⇢, n = 2

8

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

0.25

0.5

0.75

0.9
0.95

0.99

log2m

l
o
g

2
p

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

0.25

0.5

0.75

0.9

0.95

0.99

log2m

l
o
g

2
p

⇢ increases (10�3 ! 10�1/2)



Empirical Phase Transition
‣ To test the problem’s phase transition we measure the probability of successful recovery                                         

 
 
for 256 randomly generated problem instances (per point). 
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l

o
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2 m
p
=

l

o

g

2
(n
+

m
)

l

o

g

2 m
p
=

l

o

g

2
(n
+
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)

P⇣ :

= P
h

max

n

kd̂�d

?k2

kd?k2
, kx̂�x

?k2

kx?k2

o

< ⇣
i

, (x?,d?
) 2 Bn ⇥ C⇢, n = 2

8



(Randomized) Computational Imaging
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Imaging you must recalibrate an imager 
that is far far away?
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Université catholique de Louvain, Belgium

Problem Setup and Motivation

x

yi,l
i-th sensor

l-th snapshot

dihai,l, ·i

Problem Setup:

x 2 Rn
Fixed unstructured signal

d 2 Rm
+

Fixed positive and bounded gains

ai,l 2 Rn Random i.i.d. sensing vectors
(isotropic, sub-Gaussian)

We tackle the noiseless uncalibrated sensing model:

yi,l = dia
⇤
i,lx 8i 2 [m], l 2 [p]

or in matrix form

yl = diag(d)Al x 8l 2 [p]

with dimensions:

n Ambient space of sensed signal

m Uncalibrated sensors/pixels

p Snapshots under random sensing model

Examples: Pixel non-uniformity, vignetting, fixed
pattern noise in (compressive) imaging systems,. . .

How many random measurements do we need to perform blind calibration? Which sample complexity?
Do mp & n log(mp) su�ce for an exact recovery of (x,d) up to global scaling?

Prior Works: lifting approach with sparsity [1], convex optimisation with multiple sparse xl [2], total least-
squares with multiple xl [3]. Our approach is inspired by [5].

A Non-Convex Formulation of Blind Calibration

We solve the blind calibration problem by (NC-BCP) around (x,d):

(

ˆ

x, ˆd) = argmin

⇠2Rn,�2⇧m
+

1

2mp

p
X

l=1

kdiag(�)Al⇠ � ylk2
2

with ⇧

m
+

= {� 2 Rm
+

, 1⇤m� = m} (NC-BCP)

Note that:

⌅ f (⇠,�) := 1

2mp
Pp

l=1 kdiag(�)Al⇠ �
yl

z }| {

diag(d)Alx k2
2

is a very natural Euclidean energy function.

⌅ Global minimisers:
n

(⇠ 2 Rn,� 2 Rm
: ⇠ =

1

↵x,� = ↵d,↵ 2 R
o

) ambiguous scaling ↵. Let us fix

↵ :=

m
kdk

1

: unique global minimiser (x?,d?) =
⇣kdk

1

m x, m
kdk

1

d

⌘

, i.e.,�,d? 2 ⇧

m
+

.

⌅ Generally 9(⇠,�) : Hf (⇠,�) ✏ 0. Non-convex in (⇠,�); convex in ⇠ given d, and vv. (biconvex [1]).

⌅ There exists ⇢ > 0 : d = 1m + !,! 2 1

?
m \ ⇢Bm1. Thus ⇢ � kd � 1mk1 2 [0, 1) is the maximum

deviation from unit gain. Problem in � is fully mapped to the variations " 2 1

?
m \ Bm1 : � = 1m + ".

Geometric Intuition in R2 ⌦R2

�
2

�
1

R2 ⌦ · · ·
�

⇧

2

+

1

?
2
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e

o

f

f(⇠
,�)

!

"

r

Local convexity

n = m = 2

d = 1m + ⇢ 1p
2

⇥�1 1

⇤>

� = 1m + r 1p
2

⇥�1 1

⇤>

ai,l⇠i.i.d.N (0n, In)

Main Ingredients

⌅ As p ! 1, problem (NC-BCP) ap-
proaches local convexity in expectation,
i.e.,E

ai,l[Hf (⇠,�)] ⌫ 0 if � 2 ⇧

m
+

(i.e., for
the constrained problem) projected Hessian).

⌅ Concentration inequalities [4, The-
orem 1.4] w.r.t. matrix functions
of ai,l allow for a controlled de-

cay of
�

�

�

rf (⇠,�)� E
ai,l[rf (⇠,�)]

�

�

�

2

,
�

�

�

Hf (⇠,�)� E
ai,l[Hf (⇠,�)]

�

�

�

2

.

p!1

Level curve at k⇠k2 = 1, where the global minimum x =

1p
2

⇥

1 �1⇤> lies. Vertical axis r parametrises 1?2 .

Solution by Projected Gradient Descent

We start from a“smart” initialisation (⇠

0

,�
0

) and solve (NC-BCP) by projected gradient descent with

r
⇠

f (⇠,�) = 1

mp
Pp

l=1 (Al)
⇤
diag(�) (diag(�)Al⇠ � yl) (1)

r?
�

f (⇠,�) = P
1

?
m\Bm1

h

1

mp
Pp

l=1 diag (Al⇠) (diag(�)Al⇠ � yl)

i

(2)

1: Initialise k  0, �
0

 1m, ⇠
0

 1

mp
Pp

l=1 (Al)
⇤
yl {Backprojection}

2: while convergence criteria not met do
3: k  k + 1

4: ⇠k  ⇠k�1 � µr
⇠

f (⇠k�1,�k�1)
5: �k  �k�1 � µr?

�

f (⇠k�1,�k�1)
6: end while

Provable Guarantees: “Initialise & Converge”

Our signal-domain initialisation ⇠

0

lies in a `
2

-ball centred on x w.v.h.p. as p increases. In fact, E
ai,l[⇠0] =

x) ⇠

0

unbiased estimator of the solution.

Proposition 1 (Initialisation Proximity [6]). In the Problem Setup, let ⇠

0

:=

1

mp
Pm

i=1
Pp

l=1 diai,la
⇤
i,lx; if

the sample complexity

mp & (1 + ⇢2)✏�2n logmp (log n + log

1/⌘) and n & 1 + (logmp)�1 log 1/⌘ (3)

then, with probability exceeding 1� 2⌘, ⌘ 2 (0, 1), we have that ⇠
0

� x 2 ✏kxk
2

Bn
2

.

Moreover, by the Problem Setup the gain-domain initialisation �

0

:= 1m : �

0

� d 2 1

?
m \ ⇢Bm1.

Proposition 2 (Convergence of NC-BCP [6]). In the Problem Setup, let ✏ 2
h

0, 1
2

⌘

and ⇢ 2


0, 1�2✏
1+

✏
2

◆

.

Fix (⇠, ") : ⇠ � x 2 ✏kxk
2

Bn
2

, " 2 1

?
m \ ⇢Bm1. If the sample complexity

mp & ✏�2n logmp(log n + log

1/⌘) and n & 1 + (logmp)�1 log 1/⌘ (4)

then, with probability exceeding 1� 9⌘, ⌘ 2 (0, 1), we have that
⌧r

⇠

f (⇠,�)

r?
�

f (⇠,�)

�

,



⇠ � x

� � d

��

� �0
⇣

k⇠ � xk2
2

+ k"� !k2
2

⌘

(5)

kr
⇠

f (⇠,�)k2
2

+ kr?
�

f (⇠,�)k2
2

 �00
�k⇠ � xk2

2

+ k"� !k2
2

�

(6)

with �0 := 1� 2✏� ⇢
2

(2 + ✏), �00 := 2

m2

h

�

m(1 + ⇢2) + (1 + ✏)2
�

2

+

1

5

m2✏4
i

.

Furthermore, if µ  2�0
�00 then with probability 1� 9k⌘ at iteration k we have that

k⇠k � xk2
2


⇣

1� 2�0µ + �00µ2
⌘k

✏2kxk2
2

and k�k � dk2
2


⇣

1� 2�0µ + �00µ2
⌘k

m⇢2 (7)
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1 ⌅ The empirical phase transition of (NC-BCP) is
explored for m = n = 2

8, p = {21, . . . , 28} and
⇢ = {10�3, . . . , 1}.

⌅ We generate 200 random instances per configura-
tion by ai,l⇠N (0n, In),x ⇠ N (0n, In), ran-
dom d 2 ⇧

m
+

: k!k1 = ⇢.

⌅
(

ˆ

x, ˆd) is obtained by our descent algorithm with
exact line search instead of fixed step µ to en-
hance convergence.

⌅ In noiseless regime, we set the stop criterion to
achieving f (⇠,�) ' 10

�8.

Application to Uncalibrated (Compressive) Imaging

Fixed signal x

x̂ with LS,

unstructured d

x̂ with

LS,structured d

Unstructured

d, ⇢ = 1/2
x̂ with NC-BCP,

unstructured d

d̂ with NC-BCP,

unstructured d

Structured

d, ⇢ = 9/10
x̂ with NC-BCP,

structured d

d̂ with NC-BCP,

structured d

⌅ “Far, far away”, calibration is a necessarily
blind and unstructured problem!

⌅ Applications where calibration is inevitable,
hard , randomised (e.g., compressive)
sensing systems to leverage diversity.

⌅ Example: x is an image of Pluto with m =

n = 4096 pixel, p = 4 snapshots with i.i.d.
Gaussian ai,l. d is unstructured (pixel non-
uniformity) or structured (vignetting).

⌅ The recovered (

ˆ

x, ˆd) ⌘
(x,d) by (NC-BCP) attains
max{RMSE

x

,RMSE

d

} ⇡ �147.38 dB.
⌅ Admitting a model error, least-squares (LS)

attains RMSE

x

⇡ �5.50 dB.

Conclusion and Open Questions

We observed a sample complexity that is essentially linear in the dimension of the signal being estimated. We
anticipate a very favourable noise sensitivity analysis. Sparsity priors could also be enforced on x to allow blind
calibration of randomised sensing systems operating in a compressive regime. Finally, the sample complexity for
partial random ensembles (Fourier, random convolution, . . . ) is unknown, and practically very relevant.
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Problem Setup and Motivation

x

yi,l
i-th sensor

l-th snapshot

dihai,l, ·i

Problem Setup:

x 2 Rn
Fixed unstructured signal

d 2 Rm
+

Fixed positive and bounded gains

ai,l 2 Rn Random i.i.d. sensing vectors
(isotropic, sub-Gaussian)

We tackle the noiseless uncalibrated sensing model:

yi,l = dia
⇤
i,lx 8i 2 [m], l 2 [p]

or in matrix form

yl = diag(d)Al x 8l 2 [p]

with dimensions:

n Ambient space of sensed signal

m Uncalibrated sensors/pixels

p Snapshots under random sensing model

Examples: Pixel non-uniformity, vignetting, fixed
pattern noise in (compressive) imaging systems,. . .

How many random measurements do we need to perform blind calibration? Which sample complexity?
Do mp & n log(mp) su�ce for an exact recovery of (x,d) up to global scaling?

Prior Works: lifting approach with sparsity [1], convex optimisation with multiple sparse xl [2], total least-
squares with multiple xl [3]. Our approach is inspired by [5].

A Non-Convex Formulation of Blind Calibration

We solve the blind calibration problem by (NC-BCP) around (x,d):

(

ˆ

x, ˆd) = argmin

⇠2Rn,�2⇧m
+

1

2mp

p
X

l=1

kdiag(�)Al⇠ � ylk2
2

with ⇧

m
+

= {� 2 Rm
+

, 1⇤m� = m} (NC-BCP)

Note that:

⌅ f (⇠,�) := 1

2mp
Pp

l=1 kdiag(�)Al⇠ �
yl

z }| {

diag(d)Alx k2
2

is a very natural Euclidean energy function.

⌅ Global minimisers:
n

(⇠ 2 Rn,� 2 Rm
: ⇠ =

1

↵x,� = ↵d,↵ 2 R
o

) ambiguous scaling ↵. Let us fix

↵ :=

m
kdk

1

: unique global minimiser (x?,d?) =
⇣kdk

1

m x, m
kdk

1

d

⌘

, i.e.,�,d? 2 ⇧

m
+

.

⌅ Generally 9(⇠,�) : Hf (⇠,�) ✏ 0. Non-convex in (⇠,�); convex in ⇠ given d, and vv. (biconvex [1]).

⌅ There exists ⇢ > 0 : d = 1m + !,! 2 1

?
m \ ⇢Bm1. Thus ⇢ � kd � 1mk1 2 [0, 1) is the maximum

deviation from unit gain. Problem in � is fully mapped to the variations " 2 1

?
m \ Bm1 : � = 1m + ".

Geometric Intuition in R2 ⌦R2

�
2

�
1

R2 ⌦ · · ·
�

⇧

2

+

1

?
2

\ B21 1

2

d

L

i

n

e

o

f

s

o

l

u

t

i

o

n

s

↵d

P

o

s

s

i

b

l

e

n

e

g

.

c

u

r

v

a

t

u

r

e

o

f

f(⇠
,�)

!

"

r

Local convexity

n = m = 2

d = 1m + ⇢ 1p
2

⇥�1 1

⇤>

� = 1m + r 1p
2

⇥�1 1

⇤>

ai,l⇠i.i.d.N (0n, In)

Main Ingredients

⌅ As p ! 1, problem (NC-BCP) ap-
proaches local convexity in expectation,
i.e.,E

ai,l[Hf (⇠,�)] ⌫ 0 if � 2 ⇧

m
+

(i.e., for
the constrained problem) projected Hessian).

⌅ Concentration inequalities [4, The-
orem 1.4] w.r.t. matrix functions
of ai,l allow for a controlled de-

cay of
�

�

�

rf (⇠,�)� E
ai,l[rf (⇠,�)]

�

�

�

2

,
�

�

�

Hf (⇠,�)� E
ai,l[Hf (⇠,�)]

�

�

�

2

.

p!1

Level curve at k⇠k2 = 1, where the global minimum x =

1p
2

⇥

1 �1⇤> lies. Vertical axis r parametrises 1?2 .

Solution by Projected Gradient Descent

We start from a“smart” initialisation (⇠

0

,�
0

) and solve (NC-BCP) by projected gradient descent with

r
⇠

f (⇠,�) = 1

mp
Pp

l=1 (Al)
⇤
diag(�) (diag(�)Al⇠ � yl) (1)

r?
�

f (⇠,�) = P
1

?
m\Bm1

h

1

mp
Pp

l=1 diag (Al⇠) (diag(�)Al⇠ � yl)

i

(2)

1: Initialise k  0, �
0

 1m, ⇠
0

 1

mp
Pp

l=1 (Al)
⇤
yl {Backprojection}

2: while convergence criteria not met do
3: k  k + 1

4: ⇠k  ⇠k�1 � µr
⇠

f (⇠k�1,�k�1)
5: �k  �k�1 � µr?

�

f (⇠k�1,�k�1)
6: end while

Provable Guarantees: “Initialise & Converge”

Our signal-domain initialisation ⇠

0

lies in a `
2

-ball centred on x w.v.h.p. as p increases. In fact, E
ai,l[⇠0] =

x) ⇠

0

unbiased estimator of the solution.

Proposition 1 (Initialisation Proximity [6]). In the Problem Setup, let ⇠

0

:=

1

mp
Pm

i=1
Pp

l=1 diai,la
⇤
i,lx; if

the sample complexity

mp & (1 + ⇢2)✏�2n logmp (log n + log

1/⌘) and n & 1 + (logmp)�1 log 1/⌘ (3)

then, with probability exceeding 1� 2⌘, ⌘ 2 (0, 1), we have that ⇠
0

� x 2 ✏kxk
2

Bn
2

.

Moreover, by the Problem Setup the gain-domain initialisation �

0

:= 1m : �

0

� d 2 1

?
m \ ⇢Bm1.

Proposition 2 (Convergence of NC-BCP [6]). In the Problem Setup, let ✏ 2
h

0, 1
2

⌘

and ⇢ 2


0, 1�2✏
1+

✏
2

◆

.

Fix (⇠, ") : ⇠ � x 2 ✏kxk
2

Bn
2

, " 2 1

?
m \ ⇢Bm1. If the sample complexity

mp & ✏�2n logmp(log n + log

1/⌘) and n & 1 + (logmp)�1 log 1/⌘ (4)

then, with probability exceeding 1� 9⌘, ⌘ 2 (0, 1), we have that
⌧r

⇠

f (⇠,�)

r?
�

f (⇠,�)

�

,



⇠ � x

� � d

��

� �0
⇣

k⇠ � xk2
2

+ k"� !k2
2

⌘

(5)

kr
⇠

f (⇠,�)k2
2

+ kr?
�

f (⇠,�)k2
2

 �00
�k⇠ � xk2

2

+ k"� !k2
2

�

(6)

with �0 := 1� 2✏� ⇢
2

(2 + ✏), �00 := 2

m2

h

�

m(1 + ⇢2) + (1 + ✏)2
�

2

+

1

5

m2✏4
i

.

Furthermore, if µ  2�0
�00 then with probability 1� 9k⌘ at iteration k we have that

k⇠k � xk2
2


⇣

1� 2�0µ + �00µ2
⌘k

✏2kxk2
2

and k�k � dk2
2


⇣

1� 2�0µ + �00µ2
⌘k

m⇢2 (7)

Numerical Experiments
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1 ⌅ The empirical phase transition of (NC-BCP) is
explored for m = n = 2

8, p = {21, . . . , 28} and
⇢ = {10�3, . . . , 1}.

⌅ We generate 200 random instances per configura-
tion by ai,l⇠N (0n, In),x ⇠ N (0n, In), ran-
dom d 2 ⇧

m
+

: k!k1 = ⇢.

⌅
(

ˆ

x, ˆd) is obtained by our descent algorithm with
exact line search instead of fixed step µ to en-
hance convergence.

⌅ In noiseless regime, we set the stop criterion to
achieving f (⇠,�) ' 10

�8.

Application to Uncalibrated (Compressive) Imaging

Fixed signal x

x̂ with LS,

unstructured d

x̂ with

LS,structured d

Unstructured

d, ⇢ = 1/2
x̂ with NC-BCP,

unstructured d

d̂ with NC-BCP,

unstructured d

Structured

d, ⇢ = 9/10
x̂ with NC-BCP,

structured d

d̂ with NC-BCP,

structured d

⌅ “Far, far away”, calibration is a necessarily
blind and unstructured problem!

⌅ Applications where calibration is inevitable,
hard , randomised (e.g., compressive)
sensing systems to leverage diversity.

⌅ Example: x is an image of Pluto with m =

n = 4096 pixel, p = 4 snapshots with i.i.d.
Gaussian ai,l. d is unstructured (pixel non-
uniformity) or structured (vignetting).

⌅ The recovered (

ˆ

x, ˆd) ⌘
(x,d) by (NC-BCP) attains
max{RMSE

x

,RMSE

d

} ⇡ �147.38 dB.
⌅ Admitting a model error, least-squares (LS)

attains RMSE

x

⇡ �5.50 dB.

Conclusion and Open Questions

We observed a sample complexity that is essentially linear in the dimension of the signal being estimated. We
anticipate a very favourable noise sensitivity analysis. Sparsity priors could also be enforced on x to allow blind
calibration of randomised sensing systems operating in a compressive regime. Finally, the sample complexity for
partial random ensembles (Fourier, random convolution, . . . ) is unknown, and practically very relevant.
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Université catholique de Louvain, Belgium

Problem Setup and Motivation

x

yi,l
i-th sensor

l-th snapshot

dihai,l, ·i

Problem Setup:

x 2 Rn
Fixed unstructured signal

d 2 Rm
+

Fixed positive and bounded gains

ai,l 2 Rn Random i.i.d. sensing vectors
(isotropic, sub-Gaussian)

We tackle the noiseless uncalibrated sensing model:

yi,l = dia
⇤
i,lx 8i 2 [m], l 2 [p]

or in matrix form

yl = diag(d)Al x 8l 2 [p]

with dimensions:

n Ambient space of sensed signal

m Uncalibrated sensors/pixels

p Snapshots under random sensing model

Examples: Pixel non-uniformity, vignetting, fixed
pattern noise in (compressive) imaging systems,. . .

How many random measurements do we need to perform blind calibration? Which sample complexity?
Do mp & n log(mp) su�ce for an exact recovery of (x,d) up to global scaling?

Prior Works: lifting approach with sparsity [1], convex optimisation with multiple sparse xl [2], total least-
squares with multiple xl [3]. Our approach is inspired by [5].

A Non-Convex Formulation of Blind Calibration

We solve the blind calibration problem by (NC-BCP) around (x,d):

(

ˆ

x, ˆd) = argmin

⇠2Rn,�2⇧m
+

1

2mp

p
X

l=1

kdiag(�)Al⇠ � ylk2
2

with ⇧

m
+

= {� 2 Rm
+

, 1⇤m� = m} (NC-BCP)

Note that:

⌅ f (⇠,�) := 1

2mp
Pp

l=1 kdiag(�)Al⇠ �
yl

z }| {

diag(d)Alx k2
2

is a very natural Euclidean energy function.

⌅ Global minimisers:
n

(⇠ 2 Rn,� 2 Rm
: ⇠ =

1

↵x,� = ↵d,↵ 2 R
o

) ambiguous scaling ↵. Let us fix

↵ :=

m
kdk

1

: unique global minimiser (x?,d?) =
⇣kdk

1

m x, m
kdk

1

d

⌘

, i.e.,�,d? 2 ⇧

m
+

.

⌅ Generally 9(⇠,�) : Hf (⇠,�) ✏ 0. Non-convex in (⇠,�); convex in ⇠ given d, and vv. (biconvex [1]).

⌅ There exists ⇢ > 0 : d = 1m + !,! 2 1

?
m \ ⇢Bm1. Thus ⇢ � kd � 1mk1 2 [0, 1) is the maximum

deviation from unit gain. Problem in � is fully mapped to the variations " 2 1

?
m \ Bm1 : � = 1m + ".
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Local convexity

n = m = 2

d = 1m + ⇢ 1p
2

⇥�1 1

⇤>

� = 1m + r 1p
2

⇥�1 1

⇤>

ai,l⇠i.i.d.N (0n, In)

Main Ingredients

⌅ As p ! 1, problem (NC-BCP) ap-
proaches local convexity in expectation,
i.e.,E

ai,l[Hf (⇠,�)] ⌫ 0 if � 2 ⇧

m
+

(i.e., for
the constrained problem) projected Hessian).

⌅ Concentration inequalities [4, The-
orem 1.4] w.r.t. matrix functions
of ai,l allow for a controlled de-

cay of
�

�

�

rf (⇠,�)� E
ai,l[rf (⇠,�)]

�

�

�

2

,
�

�

�

Hf (⇠,�)� E
ai,l[Hf (⇠,�)]

�
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�

2

.

p!1

Level curve at k⇠k2 = 1, where the global minimum x =

1p
2

⇥

1 �1⇤> lies. Vertical axis r parametrises 1?2 .

Solution by Projected Gradient Descent

We start from a“smart” initialisation (⇠

0

,�
0

) and solve (NC-BCP) by projected gradient descent with

r
⇠

f (⇠,�) = 1

mp
Pp

l=1 (Al)
⇤
diag(�) (diag(�)Al⇠ � yl) (1)

r?
�

f (⇠,�) = P
1

?
m\Bm1

h

1

mp
Pp

l=1 diag (Al⇠) (diag(�)Al⇠ � yl)

i

(2)

1: Initialise k  0, �
0

 1m, ⇠
0

 1

mp
Pp

l=1 (Al)
⇤
yl {Backprojection}

2: while convergence criteria not met do
3: k  k + 1

4: ⇠k  ⇠k�1 � µr
⇠

f (⇠k�1,�k�1)
5: �k  �k�1 � µr?

�

f (⇠k�1,�k�1)
6: end while

Provable Guarantees: “Initialise & Converge”

Our signal-domain initialisation ⇠

0

lies in a `
2

-ball centred on x w.v.h.p. as p increases. In fact, E
ai,l[⇠0] =

x) ⇠

0

unbiased estimator of the solution.

Proposition 1 (Initialisation Proximity [6]). In the Problem Setup, let ⇠

0

:=

1

mp
Pm

i=1
Pp

l=1 diai,la
⇤
i,lx; if

the sample complexity

mp & (1 + ⇢2)✏�2n logmp (log n + log

1/⌘) and n & 1 + (logmp)�1 log 1/⌘ (3)

then, with probability exceeding 1� 2⌘, ⌘ 2 (0, 1), we have that ⇠
0

� x 2 ✏kxk
2

Bn
2

.

Moreover, by the Problem Setup the gain-domain initialisation �

0

:= 1m : �

0

� d 2 1

?
m \ ⇢Bm1.

Proposition 2 (Convergence of NC-BCP [6]). In the Problem Setup, let ✏ 2
h

0, 1
2

⌘

and ⇢ 2


0, 1�2✏
1+

✏
2

◆

.

Fix (⇠, ") : ⇠ � x 2 ✏kxk
2

Bn
2

, " 2 1

?
m \ ⇢Bm1. If the sample complexity

mp & ✏�2n logmp(log n + log

1/⌘) and n & 1 + (logmp)�1 log 1/⌘ (4)

then, with probability exceeding 1� 9⌘, ⌘ 2 (0, 1), we have that
⌧r

⇠

f (⇠,�)

r?
�

f (⇠,�)

�

,



⇠ � x

� � d

��

� �0
⇣

k⇠ � xk2
2

+ k"� !k2
2

⌘

(5)

kr
⇠

f (⇠,�)k2
2

+ kr?
�

f (⇠,�)k2
2

 �00
�k⇠ � xk2

2

+ k"� !k2
2

�

(6)

with �0 := 1� 2✏� ⇢
2

(2 + ✏), �00 := 2

m2

h

�

m(1 + ⇢2) + (1 + ✏)2
�

2

+

1

5

m2✏4
i

.

Furthermore, if µ  2�0
�00 then with probability 1� 9k⌘ at iteration k we have that

k⇠k � xk2
2


⇣

1� 2�0µ + �00µ2
⌘k

✏2kxk2
2

and k�k � dk2
2


⇣

1� 2�0µ + �00µ2
⌘k

m⇢2 (7)
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1 ⌅ The empirical phase transition of (NC-BCP) is
explored for m = n = 2

8, p = {21, . . . , 28} and
⇢ = {10�3, . . . , 1}.

⌅ We generate 200 random instances per configura-
tion by ai,l⇠N (0n, In),x ⇠ N (0n, In), ran-
dom d 2 ⇧

m
+

: k!k1 = ⇢.

⌅
(

ˆ

x, ˆd) is obtained by our descent algorithm with
exact line search instead of fixed step µ to en-
hance convergence.

⌅ In noiseless regime, we set the stop criterion to
achieving f (⇠,�) ' 10

�8.

Application to Uncalibrated (Compressive) Imaging

Fixed signal x

x̂ with LS,

unstructured d

x̂ with

LS,structured d

Unstructured

d, ⇢ = 1/2
x̂ with NC-BCP,

unstructured d

d̂ with NC-BCP,

unstructured d

Structured

d, ⇢ = 9/10
x̂ with NC-BCP,

structured d

d̂ with NC-BCP,

structured d

⌅ “Far, far away”, calibration is a necessarily
blind and unstructured problem!

⌅ Applications where calibration is inevitable,
hard , randomised (e.g., compressive)
sensing systems to leverage diversity.

⌅ Example: x is an image of Pluto with m =

n = 4096 pixel, p = 4 snapshots with i.i.d.
Gaussian ai,l. d is unstructured (pixel non-
uniformity) or structured (vignetting).

⌅ The recovered (

ˆ

x, ˆd) ⌘
(x,d) by (NC-BCP) attains
max{RMSE

x

,RMSE

d

} ⇡ �147.38 dB.
⌅ Admitting a model error, least-squares (LS)

attains RMSE

x

⇡ �5.50 dB.

Conclusion and Open Questions

We observed a sample complexity that is essentially linear in the dimension of the signal being estimated. We
anticipate a very favourable noise sensitivity analysis. Sparsity priors could also be enforced on x to allow blind
calibration of randomised sensing systems operating in a compressive regime. Finally, the sample complexity for
partial random ensembles (Fourier, random convolution, . . . ) is unknown, and practically very relevant.
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Problem Setup and Motivation

x

yi,l
i-th sensor

l-th snapshot

dihai,l, ·i

Problem Setup:

x 2 Rn
Fixed unstructured signal

d 2 Rm
+

Fixed positive and bounded gains

ai,l 2 Rn Random i.i.d. sensing vectors
(isotropic, sub-Gaussian)

We tackle the noiseless uncalibrated sensing model:

yi,l = dia
⇤
i,lx 8i 2 [m], l 2 [p]

or in matrix form

yl = diag(d)Al x 8l 2 [p]

with dimensions:

n Ambient space of sensed signal

m Uncalibrated sensors/pixels

p Snapshots under random sensing model

Examples: Pixel non-uniformity, vignetting, fixed
pattern noise in (compressive) imaging systems,. . .

How many random measurements do we need to perform blind calibration? Which sample complexity?
Do mp & n log(mp) su�ce for an exact recovery of (x,d) up to global scaling?

Prior Works: lifting approach with sparsity [1], convex optimisation with multiple sparse xl [2], total least-
squares with multiple xl [3]. Our approach is inspired by [5].

A Non-Convex Formulation of Blind Calibration

We solve the blind calibration problem by (NC-BCP) around (x,d):

(

ˆ

x, ˆd) = argmin

⇠2Rn,�2⇧m
+

1

2mp

p
X

l=1

kdiag(�)Al⇠ � ylk2
2

with ⇧

m
+

= {� 2 Rm
+

, 1⇤m� = m} (NC-BCP)

Note that:

⌅ f (⇠,�) := 1

2mp
Pp

l=1 kdiag(�)Al⇠ �
yl

z }| {

diag(d)Alx k2
2

is a very natural Euclidean energy function.

⌅ Global minimisers:
n

(⇠ 2 Rn,� 2 Rm
: ⇠ =

1

↵x,� = ↵d,↵ 2 R
o

) ambiguous scaling ↵. Let us fix

↵ :=

m
kdk

1

: unique global minimiser (x?,d?) =
⇣kdk

1

m x, m
kdk

1

d

⌘

, i.e.,�,d? 2 ⇧

m
+

.

⌅ Generally 9(⇠,�) : Hf (⇠,�) ✏ 0. Non-convex in (⇠,�); convex in ⇠ given d, and vv. (biconvex [1]).

⌅ There exists ⇢ > 0 : d = 1m + !,! 2 1

?
m \ ⇢Bm1. Thus ⇢ � kd � 1mk1 2 [0, 1) is the maximum

deviation from unit gain. Problem in � is fully mapped to the variations " 2 1

?
m \ Bm1 : � = 1m + ".
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Local convexity

n = m = 2

d = 1m + ⇢ 1p
2

⇥�1 1

⇤>

� = 1m + r 1p
2

⇥�1 1

⇤>

ai,l⇠i.i.d.N (0n, In)

Main Ingredients

⌅ As p ! 1, problem (NC-BCP) ap-
proaches local convexity in expectation,
i.e.,E

ai,l[Hf (⇠,�)] ⌫ 0 if � 2 ⇧

m
+

(i.e., for
the constrained problem) projected Hessian).

⌅ Concentration inequalities [4, The-
orem 1.4] w.r.t. matrix functions
of ai,l allow for a controlled de-

cay of
�

�

�

rf (⇠,�)� E
ai,l[rf (⇠,�)]

�

�

�

2

,
�

�

�

Hf (⇠,�)� E
ai,l[Hf (⇠,�)]

�

�

�

2

.

p!1

Level curve at k⇠k2 = 1, where the global minimum x =

1p
2

⇥

1 �1⇤> lies. Vertical axis r parametrises 1?2 .

Solution by Projected Gradient Descent

We start from a“smart” initialisation (⇠

0

,�
0

) and solve (NC-BCP) by projected gradient descent with

r
⇠

f (⇠,�) = 1

mp
Pp

l=1 (Al)
⇤
diag(�) (diag(�)Al⇠ � yl) (1)

r?
�

f (⇠,�) = P
1

?
m\Bm1

h

1

mp
Pp

l=1 diag (Al⇠) (diag(�)Al⇠ � yl)

i

(2)

1: Initialise k  0, �
0

 1m, ⇠
0

 1

mp
Pp

l=1 (Al)
⇤
yl {Backprojection}

2: while convergence criteria not met do
3: k  k + 1

4: ⇠k  ⇠k�1 � µr
⇠

f (⇠k�1,�k�1)
5: �k  �k�1 � µr?

�

f (⇠k�1,�k�1)
6: end while

Provable Guarantees: “Initialise & Converge”

Our signal-domain initialisation ⇠

0

lies in a `
2

-ball centred on x w.v.h.p. as p increases. In fact, E
ai,l[⇠0] =

x) ⇠

0

unbiased estimator of the solution.

Proposition 1 (Initialisation Proximity [6]). In the Problem Setup, let ⇠

0

:=

1

mp
Pm

i=1
Pp

l=1 diai,la
⇤
i,lx; if

the sample complexity

mp & (1 + ⇢2)✏�2n logmp (log n + log

1/⌘) and n & 1 + (logmp)�1 log 1/⌘ (3)

then, with probability exceeding 1� 2⌘, ⌘ 2 (0, 1), we have that ⇠
0

� x 2 ✏kxk
2

Bn
2

.

Moreover, by the Problem Setup the gain-domain initialisation �

0

:= 1m : �

0

� d 2 1

?
m \ ⇢Bm1.

Proposition 2 (Convergence of NC-BCP [6]). In the Problem Setup, let ✏ 2
h

0, 1
2

⌘

and ⇢ 2


0, 1�2✏
1+

✏
2

◆

.

Fix (⇠, ") : ⇠ � x 2 ✏kxk
2

Bn
2

, " 2 1

?
m \ ⇢Bm1. If the sample complexity

mp & ✏�2n logmp(log n + log

1/⌘) and n & 1 + (logmp)�1 log 1/⌘ (4)

then, with probability exceeding 1� 9⌘, ⌘ 2 (0, 1), we have that
⌧r

⇠

f (⇠,�)

r?
�

f (⇠,�)

�

,



⇠ � x

� � d

��

� �0
⇣

k⇠ � xk2
2

+ k"� !k2
2

⌘

(5)

kr
⇠

f (⇠,�)k2
2

+ kr?
�

f (⇠,�)k2
2

 �00
�k⇠ � xk2

2

+ k"� !k2
2

�

(6)

with �0 := 1� 2✏� ⇢
2

(2 + ✏), �00 := 2

m2

h

�

m(1 + ⇢2) + (1 + ✏)2
�

2

+

1

5

m2✏4
i

.

Furthermore, if µ  2�0
�00 then with probability 1� 9k⌘ at iteration k we have that

k⇠k � xk2
2


⇣

1� 2�0µ + �00µ2
⌘k

✏2kxk2
2

and k�k � dk2
2


⇣

1� 2�0µ + �00µ2
⌘k

m⇢2 (7)
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1 ⌅ The empirical phase transition of (NC-BCP) is
explored for m = n = 2

8, p = {21, . . . , 28} and
⇢ = {10�3, . . . , 1}.

⌅ We generate 200 random instances per configura-
tion by ai,l⇠N (0n, In),x ⇠ N (0n, In), ran-
dom d 2 ⇧

m
+

: k!k1 = ⇢.

⌅
(

ˆ

x, ˆd) is obtained by our descent algorithm with
exact line search instead of fixed step µ to en-
hance convergence.

⌅ In noiseless regime, we set the stop criterion to
achieving f (⇠,�) ' 10

�8.

Application to Uncalibrated (Compressive) Imaging

Fixed signal x

x̂ with LS,

unstructured d

x̂ with

LS,structured d

Unstructured

d, ⇢ = 1/2
x̂ with NC-BCP,

unstructured d

d̂ with NC-BCP,

unstructured d

Structured

d, ⇢ = 9/10
x̂ with NC-BCP,

structured d

d̂ with NC-BCP,

structured d

⌅ “Far, far away”, calibration is a necessarily
blind and unstructured problem!

⌅ Applications where calibration is inevitable,
hard , randomised (e.g., compressive)
sensing systems to leverage diversity.

⌅ Example: x is an image of Pluto with m =

n = 4096 pixel, p = 4 snapshots with i.i.d.
Gaussian ai,l. d is unstructured (pixel non-
uniformity) or structured (vignetting).

⌅ The recovered (

ˆ

x, ˆd) ⌘
(x,d) by (NC-BCP) attains
max{RMSE

x

,RMSE

d

} ⇡ �147.38 dB.
⌅ Admitting a model error, least-squares (LS)

attains RMSE

x

⇡ �5.50 dB.

Conclusion and Open Questions

We observed a sample complexity that is essentially linear in the dimension of the signal being estimated. We
anticipate a very favourable noise sensitivity analysis. Sparsity priors could also be enforced on x to allow blind
calibration of randomised sensing systems operating in a compressive regime. Finally, the sample complexity for
partial random ensembles (Fourier, random convolution, . . . ) is unknown, and practically very relevant.
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Université catholique de Louvain, Belgium

Problem Setup and Motivation

x

yi,l
i-th sensor

l-th snapshot

dihai,l, ·i

Problem Setup:

x 2 Rn
Fixed unstructured signal

d 2 Rm
+

Fixed positive and bounded gains

ai,l 2 Rn Random i.i.d. sensing vectors
(isotropic, sub-Gaussian)

We tackle the noiseless uncalibrated sensing model:

yi,l = dia
⇤
i,lx 8i 2 [m], l 2 [p]

or in matrix form

yl = diag(d)Al x 8l 2 [p]

with dimensions:

n Ambient space of sensed signal

m Uncalibrated sensors/pixels

p Snapshots under random sensing model

Examples: Pixel non-uniformity, vignetting, fixed
pattern noise in (compressive) imaging systems,. . .

How many random measurements do we need to perform blind calibration? Which sample complexity?
Do mp & n log(mp) su�ce for an exact recovery of (x,d) up to global scaling?

Prior Works: lifting approach with sparsity [1], convex optimisation with multiple sparse xl [2], total least-
squares with multiple xl [3]. Our approach is inspired by [5].

A Non-Convex Formulation of Blind Calibration

We solve the blind calibration problem by (NC-BCP) around (x,d):

(

ˆ

x, ˆd) = argmin

⇠2Rn,�2⇧m
+

1

2mp

p
X

l=1

kdiag(�)Al⇠ � ylk2
2

with ⇧

m
+

= {� 2 Rm
+

, 1⇤m� = m} (NC-BCP)

Note that:

⌅ f (⇠,�) := 1

2mp
Pp

l=1 kdiag(�)Al⇠ �
yl

z }| {

diag(d)Alx k2
2

is a very natural Euclidean energy function.

⌅ Global minimisers:
n

(⇠ 2 Rn,� 2 Rm
: ⇠ =

1

↵x,� = ↵d,↵ 2 R
o

) ambiguous scaling ↵. Let us fix

↵ :=

m
kdk

1

: unique global minimiser (x?,d?) =
⇣kdk

1

m x, m
kdk

1

d

⌘

, i.e.,�,d? 2 ⇧

m
+

.

⌅ Generally 9(⇠,�) : Hf (⇠,�) ✏ 0. Non-convex in (⇠,�); convex in ⇠ given d, and vv. (biconvex [1]).

⌅ There exists ⇢ > 0 : d = 1m + !,! 2 1

?
m \ ⇢Bm1. Thus ⇢ � kd � 1mk1 2 [0, 1) is the maximum

deviation from unit gain. Problem in � is fully mapped to the variations " 2 1

?
m \ Bm1 : � = 1m + ".
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Local convexity

n = m = 2

d = 1m + ⇢ 1p
2

⇥�1 1

⇤>

� = 1m + r 1p
2

⇥�1 1

⇤>

ai,l⇠i.i.d.N (0n, In)

Main Ingredients

⌅ As p ! 1, problem (NC-BCP) ap-
proaches local convexity in expectation,
i.e.,E

ai,l[Hf (⇠,�)] ⌫ 0 if � 2 ⇧

m
+

(i.e., for
the constrained problem) projected Hessian).

⌅ Concentration inequalities [4, The-
orem 1.4] w.r.t. matrix functions
of ai,l allow for a controlled de-

cay of
�

�

�

rf (⇠,�)� E
ai,l[rf (⇠,�)]

�

�

�

2

,
�

�
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Hf (⇠,�)� E
ai,l[Hf (⇠,�)]

�
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.
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Level curve at k⇠k2 = 1, where the global minimum x =

1p
2

⇥

1 �1⇤> lies. Vertical axis r parametrises 1?2 .

Solution by Projected Gradient Descent

We start from a“smart” initialisation (⇠

0

,�
0

) and solve (NC-BCP) by projected gradient descent with

r
⇠

f (⇠,�) = 1

mp
Pp

l=1 (Al)
⇤
diag(�) (diag(�)Al⇠ � yl) (1)

r?
�

f (⇠,�) = P
1

?
m\Bm1

h

1

mp
Pp

l=1 diag (Al⇠) (diag(�)Al⇠ � yl)

i

(2)

1: Initialise k  0, �
0

 1m, ⇠
0

 1

mp
Pp

l=1 (Al)
⇤
yl {Backprojection}

2: while convergence criteria not met do
3: k  k + 1

4: ⇠k  ⇠k�1 � µr
⇠

f (⇠k�1,�k�1)
5: �k  �k�1 � µr?

�

f (⇠k�1,�k�1)
6: end while

Provable Guarantees: “Initialise & Converge”

Our signal-domain initialisation ⇠

0

lies in a `
2

-ball centred on x w.v.h.p. as p increases. In fact, E
ai,l[⇠0] =

x) ⇠

0

unbiased estimator of the solution.

Proposition 1 (Initialisation Proximity [6]). In the Problem Setup, let ⇠

0

:=

1

mp
Pm

i=1
Pp

l=1 diai,la
⇤
i,lx; if

the sample complexity

mp & (1 + ⇢2)✏�2n logmp (log n + log

1/⌘) and n & 1 + (logmp)�1 log 1/⌘ (3)

then, with probability exceeding 1� 2⌘, ⌘ 2 (0, 1), we have that ⇠
0

� x 2 ✏kxk
2

Bn
2

.

Moreover, by the Problem Setup the gain-domain initialisation �

0

:= 1m : �

0

� d 2 1

?
m \ ⇢Bm1.

Proposition 2 (Convergence of NC-BCP [6]). In the Problem Setup, let ✏ 2
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0, 1
2

⌘

and ⇢ 2


0, 1�2✏
1+

✏
2

◆

.

Fix (⇠, ") : ⇠ � x 2 ✏kxk
2
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2

, " 2 1

?
m \ ⇢Bm1. If the sample complexity

mp & ✏�2n logmp(log n + log

1/⌘) and n & 1 + (logmp)�1 log 1/⌘ (4)

then, with probability exceeding 1� 9⌘, ⌘ 2 (0, 1), we have that
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Furthermore, if µ  2�0
�00 then with probability 1� 9k⌘ at iteration k we have that

k⇠k � xk2
2


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1� 2�0µ + �00µ2
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2
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1 ⌅ The empirical phase transition of (NC-BCP) is
explored for m = n = 2

8, p = {21, . . . , 28} and
⇢ = {10�3, . . . , 1}.

⌅ We generate 200 random instances per configura-
tion by ai,l⇠N (0n, In),x ⇠ N (0n, In), ran-
dom d 2 ⇧

m
+

: k!k1 = ⇢.

⌅
(

ˆ

x, ˆd) is obtained by our descent algorithm with
exact line search instead of fixed step µ to en-
hance convergence.

⌅ In noiseless regime, we set the stop criterion to
achieving f (⇠,�) ' 10

�8.

Application to Uncalibrated (Compressive) Imaging

Fixed signal x

x̂ with LS,

unstructured d

x̂ with

LS,structured d

Unstructured

d, ⇢ = 1/2
x̂ with NC-BCP,

unstructured d

d̂ with NC-BCP,

unstructured d

Structured

d, ⇢ = 9/10
x̂ with NC-BCP,

structured d

d̂ with NC-BCP,

structured d

⌅ “Far, far away”, calibration is a necessarily
blind and unstructured problem!

⌅ Applications where calibration is inevitable,
hard , randomised (e.g., compressive)
sensing systems to leverage diversity.

⌅ Example: x is an image of Pluto with m =

n = 4096 pixel, p = 4 snapshots with i.i.d.
Gaussian ai,l. d is unstructured (pixel non-
uniformity) or structured (vignetting).

⌅ The recovered (

ˆ

x, ˆd) ⌘
(x,d) by (NC-BCP) attains
max{RMSE

x

,RMSE

d

} ⇡ �147.38 dB.
⌅ Admitting a model error, least-squares (LS)

attains RMSE

x

⇡ �5.50 dB.

Conclusion and Open Questions

We observed a sample complexity that is essentially linear in the dimension of the signal being estimated. We
anticipate a very favourable noise sensitivity analysis. Sparsity priors could also be enforced on x to allow blind
calibration of randomised sensing systems operating in a compressive regime. Finally, the sample complexity for
partial random ensembles (Fourier, random convolution, . . . ) is unknown, and practically very relevant.

Related Literature

[1] S. Ling and T. Strohmer,“Self-calibration and biconvex compressive sensing,” Inverse Problems, vol. 31, no. 11, p. 115002, 2015.

[2] C. Bilen, G. Puy, R. Gribonval, and L. Daudet, “Convex Optimization Approaches for Blind Sensor Calibration Using Sparsity,” IEEE Transactions on

Signal Processing, vol. 62, no. 18, pp. 4847–4856, Sep. 2014.

[3] J. Lipor and L. Balzano,“Robust blind calibration via total least squares,”in Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International

Conference on. IEEE, 2014, pp. 4244–4248.

[4] J. A. Tropp, “User-Friendly Tail Bounds for Sums of Random Matrices,”Foundations of Computational Mathematics, vol. 12, no. 4, pp. 389–434, Aug.
2011.

[5] E. Candès, X. Li, and M. Soltanolkotabi,“Phase Retrieval via Wirtinger Flow: Theory and Algorithms,”IEEE Transactions on Information Theory, vol. 61,
no. 4, pp. 1985–2007, Apr. 2015.

[6] V. Cambareri and L. Jacques,“A non-convex approach to blind calibration from sub-gaussian random linear measurements,” In preparation.

(about 2’)

■ Computational (compressive) 
imaging under calibration errors 
for p = 4 snapshots  
when m = n = 4096. 
(with Gaussian random matrices) 

■ LS SNR: 5.5 dB on signal
5.5 dB



(Randomized) Computational Imaging
■ Computational (compressive) 

imaging under calibration errors 
for p = 4 snapshots  
when m = n = 4096. 
(with Gaussian random matrices) 

■ LS SNR: 5.5 dB on signal 
■ PGD:  

min. gain/signal SNR = 147.38 dB 

■ PGD c. time: 2’ here  
and still ok for large n  
(in paper: 40’ for n=16384, m=1024, p=32) 

■ Also converges with fast and 
structured random matrices  
(e.g., subsampled random 
convolution, spread-spectrum)    
(not covered by current theory).
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Problem Setup and Motivation

x

yi,l
i-th sensor

l-th snapshot

dihai,l, ·i

Problem Setup:

x 2 Rn
Fixed unstructured signal

d 2 Rm
+

Fixed positive and bounded gains

ai,l 2 Rn Random i.i.d. sensing vectors
(isotropic, sub-Gaussian)

We tackle the noiseless uncalibrated sensing model:

yi,l = dia
⇤
i,lx 8i 2 [m], l 2 [p]

or in matrix form

yl = diag(d)Al x 8l 2 [p]

with dimensions:

n Ambient space of sensed signal

m Uncalibrated sensors/pixels

p Snapshots under random sensing model

Examples: Pixel non-uniformity, vignetting, fixed
pattern noise in (compressive) imaging systems,. . .

How many random measurements do we need to perform blind calibration? Which sample complexity?
Do mp & n log(mp) su�ce for an exact recovery of (x,d) up to global scaling?

Prior Works: lifting approach with sparsity [1], convex optimisation with multiple sparse xl [2], total least-
squares with multiple xl [3]. Our approach is inspired by [5].

A Non-Convex Formulation of Blind Calibration

We solve the blind calibration problem by (NC-BCP) around (x,d):

(

ˆ

x, ˆd) = argmin

⇠2Rn,�2⇧m
+

1

2mp

p
X

l=1

kdiag(�)Al⇠ � ylk2
2

with ⇧

m
+

= {� 2 Rm
+

, 1⇤m� = m} (NC-BCP)

Note that:

⌅ f (⇠,�) := 1

2mp
Pp

l=1 kdiag(�)Al⇠ �
yl

z }| {

diag(d)Alx k2
2

is a very natural Euclidean energy function.

⌅ Global minimisers:
n

(⇠ 2 Rn,� 2 Rm
: ⇠ =

1

↵x,� = ↵d,↵ 2 R
o

) ambiguous scaling ↵. Let us fix

↵ :=

m
kdk

1

: unique global minimiser (x?,d?) =
⇣kdk

1

m x, m
kdk

1

d

⌘

, i.e.,�,d? 2 ⇧

m
+

.

⌅ Generally 9(⇠,�) : Hf (⇠,�) ✏ 0. Non-convex in (⇠,�); convex in ⇠ given d, and vv. (biconvex [1]).

⌅ There exists ⇢ > 0 : d = 1m + !,! 2 1

?
m \ ⇢Bm1. Thus ⇢ � kd � 1mk1 2 [0, 1) is the maximum

deviation from unit gain. Problem in � is fully mapped to the variations " 2 1

?
m \ Bm1 : � = 1m + ".
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Local convexity

n = m = 2

d = 1m + ⇢ 1p
2

⇥�1 1

⇤>

� = 1m + r 1p
2

⇥�1 1

⇤>

ai,l⇠i.i.d.N (0n, In)

Main Ingredients

⌅ As p ! 1, problem (NC-BCP) ap-
proaches local convexity in expectation,
i.e.,E

ai,l[Hf (⇠,�)] ⌫ 0 if � 2 ⇧

m
+

(i.e., for
the constrained problem) projected Hessian).

⌅ Concentration inequalities [4, The-
orem 1.4] w.r.t. matrix functions
of ai,l allow for a controlled de-

cay of
�

�

�

rf (⇠,�)� E
ai,l[rf (⇠,�)]

�

�

�

2

,
�

�

�

Hf (⇠,�)� E
ai,l[Hf (⇠,�)]

�

�

�

2

.

p!1

Level curve at k⇠k2 = 1, where the global minimum x =

1p
2

⇥

1 �1⇤> lies. Vertical axis r parametrises 1?2 .

Solution by Projected Gradient Descent

We start from a“smart” initialisation (⇠

0

,�
0

) and solve (NC-BCP) by projected gradient descent with

r
⇠

f (⇠,�) = 1

mp
Pp

l=1 (Al)
⇤
diag(�) (diag(�)Al⇠ � yl) (1)

r?
�

f (⇠,�) = P
1

?
m\Bm1

h

1

mp
Pp

l=1 diag (Al⇠) (diag(�)Al⇠ � yl)

i

(2)

1: Initialise k  0, �
0

 1m, ⇠
0

 1

mp
Pp

l=1 (Al)
⇤
yl {Backprojection}

2: while convergence criteria not met do
3: k  k + 1

4: ⇠k  ⇠k�1 � µr
⇠

f (⇠k�1,�k�1)
5: �k  �k�1 � µr?

�

f (⇠k�1,�k�1)
6: end while

Provable Guarantees: “Initialise & Converge”

Our signal-domain initialisation ⇠

0

lies in a `
2

-ball centred on x w.v.h.p. as p increases. In fact, E
ai,l[⇠0] =

x) ⇠

0

unbiased estimator of the solution.

Proposition 1 (Initialisation Proximity [6]). In the Problem Setup, let ⇠

0

:=

1

mp
Pm

i=1
Pp

l=1 diai,la
⇤
i,lx; if

the sample complexity

mp & (1 + ⇢2)✏�2n logmp (log n + log

1/⌘) and n & 1 + (logmp)�1 log 1/⌘ (3)

then, with probability exceeding 1� 2⌘, ⌘ 2 (0, 1), we have that ⇠
0

� x 2 ✏kxk
2

Bn
2

.

Moreover, by the Problem Setup the gain-domain initialisation �

0

:= 1m : �

0

� d 2 1

?
m \ ⇢Bm1.

Proposition 2 (Convergence of NC-BCP [6]). In the Problem Setup, let ✏ 2
h

0, 1
2

⌘

and ⇢ 2


0, 1�2✏
1+

✏
2

◆

.

Fix (⇠, ") : ⇠ � x 2 ✏kxk
2

Bn
2

, " 2 1

?
m \ ⇢Bm1. If the sample complexity

mp & ✏�2n logmp(log n + log

1/⌘) and n & 1 + (logmp)�1 log 1/⌘ (4)

then, with probability exceeding 1� 9⌘, ⌘ 2 (0, 1), we have that
⌧r

⇠

f (⇠,�)

r?
�

f (⇠,�)

�

,



⇠ � x

� � d
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⇣
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2

+ k"� !k2
2

⌘

(5)

kr
⇠

f (⇠,�)k2
2

+ kr?
�
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2

 �00
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(6)

with �0 := 1� 2✏� ⇢
2

(2 + ✏), �00 := 2

m2

h

�

m(1 + ⇢2) + (1 + ✏)2
�

2

+
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m2✏4
i

.

Furthermore, if µ  2�0
�00 then with probability 1� 9k⌘ at iteration k we have that

k⇠k � xk2
2


⇣

1� 2�0µ + �00µ2
⌘k

✏2kxk2
2

and k�k � dk2
2


⇣

1� 2�0µ + �00µ2
⌘k

m⇢2 (7)
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1 ⌅ The empirical phase transition of (NC-BCP) is
explored for m = n = 2

8, p = {21, . . . , 28} and
⇢ = {10�3, . . . , 1}.

⌅ We generate 200 random instances per configura-
tion by ai,l⇠N (0n, In),x ⇠ N (0n, In), ran-
dom d 2 ⇧

m
+

: k!k1 = ⇢.

⌅
(

ˆ

x, ˆd) is obtained by our descent algorithm with
exact line search instead of fixed step µ to en-
hance convergence.

⌅ In noiseless regime, we set the stop criterion to
achieving f (⇠,�) ' 10

�8.

Application to Uncalibrated (Compressive) Imaging

Fixed signal x

x̂ with LS,

unstructured d

x̂ with

LS,structured d

Unstructured

d, ⇢ = 1/2
x̂ with NC-BCP,

unstructured d

d̂ with NC-BCP,

unstructured d

Structured

d, ⇢ = 9/10
x̂ with NC-BCP,

structured d

d̂ with NC-BCP,

structured d

⌅ “Far, far away”, calibration is a necessarily
blind and unstructured problem!

⌅ Applications where calibration is inevitable,
hard , randomised (e.g., compressive)
sensing systems to leverage diversity.

⌅ Example: x is an image of Pluto with m =

n = 4096 pixel, p = 4 snapshots with i.i.d.
Gaussian ai,l. d is unstructured (pixel non-
uniformity) or structured (vignetting).

⌅ The recovered (

ˆ

x, ˆd) ⌘
(x,d) by (NC-BCP) attains
max{RMSE

x

,RMSE

d

} ⇡ �147.38 dB.
⌅ Admitting a model error, least-squares (LS)

attains RMSE

x

⇡ �5.50 dB.

Conclusion and Open Questions

We observed a sample complexity that is essentially linear in the dimension of the signal being estimated. We
anticipate a very favourable noise sensitivity analysis. Sparsity priors could also be enforced on x to allow blind
calibration of randomised sensing systems operating in a compressive regime. Finally, the sample complexity for
partial random ensembles (Fourier, random convolution, . . . ) is unknown, and practically very relevant.
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Problem Setup and Motivation

x

yi,l
i-th sensor

l-th snapshot

dihai,l, ·i

Problem Setup:

x 2 Rn
Fixed unstructured signal

d 2 Rm
+

Fixed positive and bounded gains

ai,l 2 Rn Random i.i.d. sensing vectors
(isotropic, sub-Gaussian)

We tackle the noiseless uncalibrated sensing model:

yi,l = dia
⇤
i,lx 8i 2 [m], l 2 [p]

or in matrix form

yl = diag(d)Al x 8l 2 [p]

with dimensions:

n Ambient space of sensed signal

m Uncalibrated sensors/pixels

p Snapshots under random sensing model

Examples: Pixel non-uniformity, vignetting, fixed
pattern noise in (compressive) imaging systems,. . .

How many random measurements do we need to perform blind calibration? Which sample complexity?
Do mp & n log(mp) su�ce for an exact recovery of (x,d) up to global scaling?

Prior Works: lifting approach with sparsity [1], convex optimisation with multiple sparse xl [2], total least-
squares with multiple xl [3]. Our approach is inspired by [5].

A Non-Convex Formulation of Blind Calibration

We solve the blind calibration problem by (NC-BCP) around (x,d):

(

ˆ

x, ˆd) = argmin

⇠2Rn,�2⇧m
+

1

2mp

p
X

l=1

kdiag(�)Al⇠ � ylk2
2

with ⇧

m
+

= {� 2 Rm
+

, 1⇤m� = m} (NC-BCP)

Note that:

⌅ f (⇠,�) := 1

2mp
Pp

l=1 kdiag(�)Al⇠ �
yl

z }| {

diag(d)Alx k2
2

is a very natural Euclidean energy function.

⌅ Global minimisers:
n

(⇠ 2 Rn,� 2 Rm
: ⇠ =

1

↵x,� = ↵d,↵ 2 R
o

) ambiguous scaling ↵. Let us fix

↵ :=

m
kdk

1

: unique global minimiser (x?,d?) =
⇣kdk

1

m x, m
kdk

1

d

⌘

, i.e.,�,d? 2 ⇧

m
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.

⌅ Generally 9(⇠,�) : Hf (⇠,�) ✏ 0. Non-convex in (⇠,�); convex in ⇠ given d, and vv. (biconvex [1]).

⌅ There exists ⇢ > 0 : d = 1m + !,! 2 1

?
m \ ⇢Bm1. Thus ⇢ � kd � 1mk1 2 [0, 1) is the maximum

deviation from unit gain. Problem in � is fully mapped to the variations " 2 1

?
m \ Bm1 : � = 1m + ".
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Local convexity

n = m = 2

d = 1m + ⇢ 1p
2
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⇤>

� = 1m + r 1p
2
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ai,l⇠i.i.d.N (0n, In)

Main Ingredients

⌅ As p ! 1, problem (NC-BCP) ap-
proaches local convexity in expectation,
i.e.,E

ai,l[Hf (⇠,�)] ⌫ 0 if � 2 ⇧

m
+

(i.e., for
the constrained problem) projected Hessian).

⌅ Concentration inequalities [4, The-
orem 1.4] w.r.t. matrix functions
of ai,l allow for a controlled de-

cay of
�

�

�

rf (⇠,�)� E
ai,l[rf (⇠,�)]

�

�

�

2

,
�

�

�

Hf (⇠,�)� E
ai,l[Hf (⇠,�)]

�

�

�
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.
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Level curve at k⇠k2 = 1, where the global minimum x =

1p
2

⇥

1 �1⇤> lies. Vertical axis r parametrises 1?2 .

Solution by Projected Gradient Descent

We start from a“smart” initialisation (⇠

0

,�
0

) and solve (NC-BCP) by projected gradient descent with

r
⇠

f (⇠,�) = 1

mp
Pp

l=1 (Al)
⇤
diag(�) (diag(�)Al⇠ � yl) (1)

r?
�

f (⇠,�) = P
1

?
m\Bm1

h

1

mp
Pp

l=1 diag (Al⇠) (diag(�)Al⇠ � yl)

i

(2)

1: Initialise k  0, �
0

 1m, ⇠
0

 1

mp
Pp

l=1 (Al)
⇤
yl {Backprojection}

2: while convergence criteria not met do
3: k  k + 1

4: ⇠k  ⇠k�1 � µr
⇠

f (⇠k�1,�k�1)
5: �k  �k�1 � µr?

�

f (⇠k�1,�k�1)
6: end while

Provable Guarantees: “Initialise & Converge”

Our signal-domain initialisation ⇠

0

lies in a `
2

-ball centred on x w.v.h.p. as p increases. In fact, E
ai,l[⇠0] =

x) ⇠

0

unbiased estimator of the solution.

Proposition 1 (Initialisation Proximity [6]). In the Problem Setup, let ⇠

0

:=

1

mp
Pm

i=1
Pp

l=1 diai,la
⇤
i,lx; if

the sample complexity

mp & (1 + ⇢2)✏�2n logmp (log n + log

1/⌘) and n & 1 + (logmp)�1 log 1/⌘ (3)

then, with probability exceeding 1� 2⌘, ⌘ 2 (0, 1), we have that ⇠
0

� x 2 ✏kxk
2

Bn
2

.

Moreover, by the Problem Setup the gain-domain initialisation �

0

:= 1m : �

0

� d 2 1

?
m \ ⇢Bm1.

Proposition 2 (Convergence of NC-BCP [6]). In the Problem Setup, let ✏ 2
h

0, 1
2

⌘

and ⇢ 2


0, 1�2✏
1+

✏
2

◆

.

Fix (⇠, ") : ⇠ � x 2 ✏kxk
2

Bn
2

, " 2 1

?
m \ ⇢Bm1. If the sample complexity

mp & ✏�2n logmp(log n + log

1/⌘) and n & 1 + (logmp)�1 log 1/⌘ (4)

then, with probability exceeding 1� 9⌘, ⌘ 2 (0, 1), we have that
⌧r

⇠

f (⇠,�)

r?
�

f (⇠,�)

�

,



⇠ � x

� � d

��

� �0
⇣

k⇠ � xk2
2

+ k"� !k2
2

⌘

(5)

kr
⇠

f (⇠,�)k2
2

+ kr?
�

f (⇠,�)k2
2

 �00
�k⇠ � xk2

2

+ k"� !k2
2

�

(6)

with �0 := 1� 2✏� ⇢
2

(2 + ✏), �00 := 2

m2

h

�

m(1 + ⇢2) + (1 + ✏)2
�

2

+

1

5

m2✏4
i

.

Furthermore, if µ  2�0
�00 then with probability 1� 9k⌘ at iteration k we have that

k⇠k � xk2
2


⇣

1� 2�0µ + �00µ2
⌘k

✏2kxk2
2

and k�k � dk2
2


⇣

1� 2�0µ + �00µ2
⌘k

m⇢2 (7)

Numerical Experiments

0

.9
5

9 10 11 12 13 14 15

�3

�2

�1

0

log2mp

l
o
g

10
⇢

P
h

max{kˆx� xk2, k ˆd� dk2} < �50 dB
i

0

0.25

0.5

0.75

1 ⌅ The empirical phase transition of (NC-BCP) is
explored for m = n = 2

8, p = {21, . . . , 28} and
⇢ = {10�3, . . . , 1}.

⌅ We generate 200 random instances per configura-
tion by ai,l⇠N (0n, In),x ⇠ N (0n, In), ran-
dom d 2 ⇧

m
+

: k!k1 = ⇢.

⌅
(

ˆ

x, ˆd) is obtained by our descent algorithm with
exact line search instead of fixed step µ to en-
hance convergence.

⌅ In noiseless regime, we set the stop criterion to
achieving f (⇠,�) ' 10

�8.

Application to Uncalibrated (Compressive) Imaging

Fixed signal x

x̂ with LS,

unstructured d

x̂ with

LS,structured d

Unstructured

d, ⇢ = 1/2
x̂ with NC-BCP,

unstructured d

d̂ with NC-BCP,

unstructured d

Structured

d, ⇢ = 9/10
x̂ with NC-BCP,

structured d

d̂ with NC-BCP,

structured d

⌅ “Far, far away”, calibration is a necessarily
blind and unstructured problem!

⌅ Applications where calibration is inevitable,
hard , randomised (e.g., compressive)
sensing systems to leverage diversity.

⌅ Example: x is an image of Pluto with m =

n = 4096 pixel, p = 4 snapshots with i.i.d.
Gaussian ai,l. d is unstructured (pixel non-
uniformity) or structured (vignetting).

⌅ The recovered (

ˆ

x, ˆd) ⌘
(x,d) by (NC-BCP) attains
max{RMSE

x

,RMSE

d

} ⇡ �147.38 dB.
⌅ Admitting a model error, least-squares (LS)

attains RMSE

x

⇡ �5.50 dB.

Conclusion and Open Questions

We observed a sample complexity that is essentially linear in the dimension of the signal being estimated. We
anticipate a very favourable noise sensitivity analysis. Sparsity priors could also be enforced on x to allow blind
calibration of randomised sensing systems operating in a compressive regime. Finally, the sample complexity for
partial random ensembles (Fourier, random convolution, . . . ) is unknown, and practically very relevant.
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Problem Setup and Motivation

x

yi,l
i-th sensor

l-th snapshot

dihai,l, ·i

Problem Setup:

x 2 Rn
Fixed unstructured signal

d 2 Rm
+

Fixed positive and bounded gains

ai,l 2 Rn Random i.i.d. sensing vectors
(isotropic, sub-Gaussian)

We tackle the noiseless uncalibrated sensing model:

yi,l = dia
⇤
i,lx 8i 2 [m], l 2 [p]

or in matrix form

yl = diag(d)Al x 8l 2 [p]

with dimensions:

n Ambient space of sensed signal

m Uncalibrated sensors/pixels

p Snapshots under random sensing model

Examples: Pixel non-uniformity, vignetting, fixed
pattern noise in (compressive) imaging systems,. . .

How many random measurements do we need to perform blind calibration? Which sample complexity?
Do mp & n log(mp) su�ce for an exact recovery of (x,d) up to global scaling?

Prior Works: lifting approach with sparsity [1], convex optimisation with multiple sparse xl [2], total least-
squares with multiple xl [3]. Our approach is inspired by [5].

A Non-Convex Formulation of Blind Calibration

We solve the blind calibration problem by (NC-BCP) around (x,d):

(

ˆ

x, ˆd) = argmin

⇠2Rn,�2⇧m
+

1

2mp

p
X

l=1

kdiag(�)Al⇠ � ylk2
2

with ⇧

m
+

= {� 2 Rm
+

, 1⇤m� = m} (NC-BCP)

Note that:

⌅ f (⇠,�) := 1

2mp
Pp

l=1 kdiag(�)Al⇠ �
yl

z }| {

diag(d)Alx k2
2

is a very natural Euclidean energy function.

⌅ Global minimisers:
n

(⇠ 2 Rn,� 2 Rm
: ⇠ =

1

↵x,� = ↵d,↵ 2 R
o

) ambiguous scaling ↵. Let us fix

↵ :=

m
kdk

1

: unique global minimiser (x?,d?) =
⇣kdk

1

m x, m
kdk

1

d

⌘

, i.e.,�,d? 2 ⇧

m
+

.

⌅ Generally 9(⇠,�) : Hf (⇠,�) ✏ 0. Non-convex in (⇠,�); convex in ⇠ given d, and vv. (biconvex [1]).

⌅ There exists ⇢ > 0 : d = 1m + !,! 2 1

?
m \ ⇢Bm1. Thus ⇢ � kd � 1mk1 2 [0, 1) is the maximum

deviation from unit gain. Problem in � is fully mapped to the variations " 2 1

?
m \ Bm1 : � = 1m + ".
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Local convexity

n = m = 2

d = 1m + ⇢ 1p
2

⇥�1 1

⇤>

� = 1m + r 1p
2

⇥�1 1

⇤>

ai,l⇠i.i.d.N (0n, In)

Main Ingredients

⌅ As p ! 1, problem (NC-BCP) ap-
proaches local convexity in expectation,
i.e.,E

ai,l[Hf (⇠,�)] ⌫ 0 if � 2 ⇧

m
+

(i.e., for
the constrained problem) projected Hessian).

⌅ Concentration inequalities [4, The-
orem 1.4] w.r.t. matrix functions
of ai,l allow for a controlled de-

cay of
�

�

�

rf (⇠,�)� E
ai,l[rf (⇠,�)]

�

�

�

2

,
�

�

�

Hf (⇠,�)� E
ai,l[Hf (⇠,�)]

�

�

�

2

.

p!1

Level curve at k⇠k2 = 1, where the global minimum x =

1p
2

⇥

1 �1⇤> lies. Vertical axis r parametrises 1?2 .

Solution by Projected Gradient Descent

We start from a“smart” initialisation (⇠

0

,�
0

) and solve (NC-BCP) by projected gradient descent with

r
⇠

f (⇠,�) = 1

mp
Pp

l=1 (Al)
⇤
diag(�) (diag(�)Al⇠ � yl) (1)

r?
�

f (⇠,�) = P
1

?
m\Bm1

h

1

mp
Pp

l=1 diag (Al⇠) (diag(�)Al⇠ � yl)

i

(2)

1: Initialise k  0, �
0

 1m, ⇠
0

 1

mp
Pp

l=1 (Al)
⇤
yl {Backprojection}

2: while convergence criteria not met do
3: k  k + 1

4: ⇠k  ⇠k�1 � µr
⇠

f (⇠k�1,�k�1)
5: �k  �k�1 � µr?

�

f (⇠k�1,�k�1)
6: end while

Provable Guarantees: “Initialise & Converge”

Our signal-domain initialisation ⇠

0

lies in a `
2

-ball centred on x w.v.h.p. as p increases. In fact, E
ai,l[⇠0] =

x) ⇠

0

unbiased estimator of the solution.

Proposition 1 (Initialisation Proximity [6]). In the Problem Setup, let ⇠

0

:=

1

mp
Pm

i=1
Pp

l=1 diai,la
⇤
i,lx; if

the sample complexity

mp & (1 + ⇢2)✏�2n logmp (log n + log

1/⌘) and n & 1 + (logmp)�1 log 1/⌘ (3)

then, with probability exceeding 1� 2⌘, ⌘ 2 (0, 1), we have that ⇠
0

� x 2 ✏kxk
2

Bn
2

.

Moreover, by the Problem Setup the gain-domain initialisation �

0

:= 1m : �

0

� d 2 1

?
m \ ⇢Bm1.

Proposition 2 (Convergence of NC-BCP [6]). In the Problem Setup, let ✏ 2
h

0, 1
2

⌘

and ⇢ 2


0, 1�2✏
1+

✏
2

◆

.

Fix (⇠, ") : ⇠ � x 2 ✏kxk
2

Bn
2

, " 2 1

?
m \ ⇢Bm1. If the sample complexity

mp & ✏�2n logmp(log n + log

1/⌘) and n & 1 + (logmp)�1 log 1/⌘ (4)

then, with probability exceeding 1� 9⌘, ⌘ 2 (0, 1), we have that
⌧r

⇠

f (⇠,�)

r?
�

f (⇠,�)

�

,



⇠ � x

� � d

��

� �0
⇣

k⇠ � xk2
2

+ k"� !k2
2

⌘

(5)

kr
⇠

f (⇠,�)k2
2

+ kr?
�

f (⇠,�)k2
2

 �00
�k⇠ � xk2

2

+ k"� !k2
2

�

(6)

with �0 := 1� 2✏� ⇢
2

(2 + ✏), �00 := 2

m2

h

�

m(1 + ⇢2) + (1 + ✏)2
�

2

+

1

5

m2✏4
i

.

Furthermore, if µ  2�0
�00 then with probability 1� 9k⌘ at iteration k we have that

k⇠k � xk2
2


⇣

1� 2�0µ + �00µ2
⌘k

✏2kxk2
2

and k�k � dk2
2


⇣

1� 2�0µ + �00µ2
⌘k

m⇢2 (7)
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1 ⌅ The empirical phase transition of (NC-BCP) is
explored for m = n = 2

8, p = {21, . . . , 28} and
⇢ = {10�3, . . . , 1}.

⌅ We generate 200 random instances per configura-
tion by ai,l⇠N (0n, In),x ⇠ N (0n, In), ran-
dom d 2 ⇧

m
+

: k!k1 = ⇢.

⌅
(

ˆ

x, ˆd) is obtained by our descent algorithm with
exact line search instead of fixed step µ to en-
hance convergence.

⌅ In noiseless regime, we set the stop criterion to
achieving f (⇠,�) ' 10

�8.

Application to Uncalibrated (Compressive) Imaging

Fixed signal x

x̂ with LS,

unstructured d

x̂ with

LS,structured d

Unstructured

d, ⇢ = 1/2
x̂ with NC-BCP,

unstructured d

d̂ with NC-BCP,

unstructured d

Structured

d, ⇢ = 9/10
x̂ with NC-BCP,

structured d

d̂ with NC-BCP,

structured d

⌅ “Far, far away”, calibration is a necessarily
blind and unstructured problem!

⌅ Applications where calibration is inevitable,
hard , randomised (e.g., compressive)
sensing systems to leverage diversity.

⌅ Example: x is an image of Pluto with m =

n = 4096 pixel, p = 4 snapshots with i.i.d.
Gaussian ai,l. d is unstructured (pixel non-
uniformity) or structured (vignetting).

⌅ The recovered (

ˆ

x, ˆd) ⌘
(x,d) by (NC-BCP) attains
max{RMSE

x

,RMSE

d

} ⇡ �147.38 dB.
⌅ Admitting a model error, least-squares (LS)

attains RMSE

x

⇡ �5.50 dB.

Conclusion and Open Questions

We observed a sample complexity that is essentially linear in the dimension of the signal being estimated. We
anticipate a very favourable noise sensitivity analysis. Sparsity priors could also be enforced on x to allow blind
calibration of randomised sensing systems operating in a compressive regime. Finally, the sample complexity for
partial random ensembles (Fourier, random convolution, . . . ) is unknown, and practically very relevant.
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Problem Setup and Motivation

x

yi,l
i-th sensor

l-th snapshot

dihai,l, ·i

Problem Setup:

x 2 Rn
Fixed unstructured signal

d 2 Rm
+

Fixed positive and bounded gains

ai,l 2 Rn Random i.i.d. sensing vectors
(isotropic, sub-Gaussian)

We tackle the noiseless uncalibrated sensing model:

yi,l = dia
⇤
i,lx 8i 2 [m], l 2 [p]

or in matrix form

yl = diag(d)Al x 8l 2 [p]

with dimensions:

n Ambient space of sensed signal

m Uncalibrated sensors/pixels

p Snapshots under random sensing model

Examples: Pixel non-uniformity, vignetting, fixed
pattern noise in (compressive) imaging systems,. . .

How many random measurements do we need to perform blind calibration? Which sample complexity?
Do mp & n log(mp) su�ce for an exact recovery of (x,d) up to global scaling?

Prior Works: lifting approach with sparsity [1], convex optimisation with multiple sparse xl [2], total least-
squares with multiple xl [3]. Our approach is inspired by [5].

A Non-Convex Formulation of Blind Calibration

We solve the blind calibration problem by (NC-BCP) around (x,d):

(

ˆ

x, ˆd) = argmin

⇠2Rn,�2⇧m
+

1

2mp

p
X

l=1

kdiag(�)Al⇠ � ylk2
2

with ⇧

m
+

= {� 2 Rm
+

, 1⇤m� = m} (NC-BCP)

Note that:

⌅ f (⇠,�) := 1

2mp
Pp

l=1 kdiag(�)Al⇠ �
yl

z }| {

diag(d)Alx k2
2

is a very natural Euclidean energy function.

⌅ Global minimisers:
n

(⇠ 2 Rn,� 2 Rm
: ⇠ =

1

↵x,� = ↵d,↵ 2 R
o

) ambiguous scaling ↵. Let us fix

↵ :=

m
kdk

1

: unique global minimiser (x?,d?) =
⇣kdk

1

m x, m
kdk

1

d

⌘

, i.e.,�,d? 2 ⇧

m
+

.

⌅ Generally 9(⇠,�) : Hf (⇠,�) ✏ 0. Non-convex in (⇠,�); convex in ⇠ given d, and vv. (biconvex [1]).

⌅ There exists ⇢ > 0 : d = 1m + !,! 2 1

?
m \ ⇢Bm1. Thus ⇢ � kd � 1mk1 2 [0, 1) is the maximum

deviation from unit gain. Problem in � is fully mapped to the variations " 2 1

?
m \ Bm1 : � = 1m + ".
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Local convexity

n = m = 2

d = 1m + ⇢ 1p
2

⇥�1 1

⇤>

� = 1m + r 1p
2

⇥�1 1

⇤>

ai,l⇠i.i.d.N (0n, In)

Main Ingredients

⌅ As p ! 1, problem (NC-BCP) ap-
proaches local convexity in expectation,
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ai,l[Hf (⇠,�)] ⌫ 0 if � 2 ⇧
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(i.e., for
the constrained problem) projected Hessian).

⌅ Concentration inequalities [4, The-
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Solution by Projected Gradient Descent

We start from a“smart” initialisation (⇠

0

,�
0

) and solve (NC-BCP) by projected gradient descent with

r
⇠

f (⇠,�) = 1

mp
Pp

l=1 (Al)
⇤
diag(�) (diag(�)Al⇠ � yl) (1)

r?
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f (⇠,�) = P
1

?
m\Bm1

h

1

mp
Pp

l=1 diag (Al⇠) (diag(�)Al⇠ � yl)

i

(2)

1: Initialise k  0, �
0

 1m, ⇠
0

 1

mp
Pp

l=1 (Al)
⇤
yl {Backprojection}

2: while convergence criteria not met do
3: k  k + 1

4: ⇠k  ⇠k�1 � µr
⇠

f (⇠k�1,�k�1)
5: �k  �k�1 � µr?

�

f (⇠k�1,�k�1)
6: end while

Provable Guarantees: “Initialise & Converge”

Our signal-domain initialisation ⇠

0

lies in a `
2

-ball centred on x w.v.h.p. as p increases. In fact, E
ai,l[⇠0] =

x) ⇠

0

unbiased estimator of the solution.

Proposition 1 (Initialisation Proximity [6]). In the Problem Setup, let ⇠

0

:=

1

mp
Pm

i=1
Pp

l=1 diai,la
⇤
i,lx; if

the sample complexity

mp & (1 + ⇢2)✏�2n logmp (log n + log

1/⌘) and n & 1 + (logmp)�1 log 1/⌘ (3)
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.

Moreover, by the Problem Setup the gain-domain initialisation �

0

:= 1m : �

0

� d 2 1

?
m \ ⇢Bm1.

Proposition 2 (Convergence of NC-BCP [6]). In the Problem Setup, let ✏ 2
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m \ ⇢Bm1. If the sample complexity
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Furthermore, if µ  2�0
�00 then with probability 1� 9k⌘ at iteration k we have that

k⇠k � xk2
2


⇣

1� 2�0µ + �00µ2
⌘k

✏2kxk2
2
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Numerical Experiments
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1 ⌅ The empirical phase transition of (NC-BCP) is
explored for m = n = 2

8, p = {21, . . . , 28} and
⇢ = {10�3, . . . , 1}.

⌅ We generate 200 random instances per configura-
tion by ai,l⇠N (0n, In),x ⇠ N (0n, In), ran-
dom d 2 ⇧

m
+

: k!k1 = ⇢.

⌅
(

ˆ

x, ˆd) is obtained by our descent algorithm with
exact line search instead of fixed step µ to en-
hance convergence.

⌅ In noiseless regime, we set the stop criterion to
achieving f (⇠,�) ' 10

�8.

Application to Uncalibrated (Compressive) Imaging

Fixed signal x

x̂ with LS,

unstructured d

x̂ with

LS,structured d

Unstructured

d, ⇢ = 1/2
x̂ with NC-BCP,

unstructured d

d̂ with NC-BCP,

unstructured d

Structured

d, ⇢ = 9/10
x̂ with NC-BCP,

structured d

d̂ with NC-BCP,

structured d

⌅ “Far, far away”, calibration is a necessarily
blind and unstructured problem!

⌅ Applications where calibration is inevitable,
hard , randomised (e.g., compressive)
sensing systems to leverage diversity.

⌅ Example: x is an image of Pluto with m =

n = 4096 pixel, p = 4 snapshots with i.i.d.
Gaussian ai,l. d is unstructured (pixel non-
uniformity) or structured (vignetting).

⌅ The recovered (

ˆ

x, ˆd) ⌘
(x,d) by (NC-BCP) attains
max{RMSE

x

,RMSE

d

} ⇡ �147.38 dB.
⌅ Admitting a model error, least-squares (LS)

attains RMSE

x

⇡ �5.50 dB.

Conclusion and Open Questions

We observed a sample complexity that is essentially linear in the dimension of the signal being estimated. We
anticipate a very favourable noise sensitivity analysis. Sparsity priors could also be enforced on x to allow blind
calibration of randomised sensing systems operating in a compressive regime. Finally, the sample complexity for
partial random ensembles (Fourier, random convolution, . . . ) is unknown, and practically very relevant.
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Conclusion
■ We have shown that a simple application of gradient descent provably 

solves this bilinear inverse problem with sample complexity: 

■ Proved extension of this approach: 
■ Stability analysis w.r.t. additive noise, in fact: 

■ (almost done: known subspaces on signal and gains.) 
■ Connections with other works: e.g., [Li, Ling, Strohmer, 16] 
■ Future developments:  

■ Extension to signal-domain sparsity via hard thresholding:  
reduces sample complexity (i.e., blind calibration for compressed 
sensing); empirically shown (+ conf paper), not yet proved. 

■ More advanced calibration? (e.g., through matrix probing).
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�(⇠k,�k) �!
k!1

Cknoisek2

mp & (n+m) log n, p & logm, n & logmp
(*: note: it was “(

p
m)p & (n+m) log(n)” in our CoSeRa’16 paper)
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