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Compressed Sensing & Random Linear Models

M questions Sensing method  Signal

low-complexity

signal (e.g., sparse,

compressible,

low-rank)

Generalized Linear Sensing!



Blind Calibration and Random Linear Models

Y; == <a7;,:c> — CLELTCU

\ additive noise \/

\ what if unknown gains?



Blind Calibration and Random Linear Models

Y; == <a7;,:c> — CLELTCU

\ additive noise \/
\ what if unknown gains?
Blind Calibration Problem:

Recover x (signal) and d (gains) in

y = diag(d)Ax +n with d; = 1
N e

unknown noise

Recent related works:

Blind calibration: |Friedlander, Strohmer, 14| |Li, Ling, Strohmer, 16]
Blind deconvolution: |Ali, Rech, Romberg, 14|, |Bilen, 14| |Li, Ling, Strohmer, 16|



Blind Calibration and Random Linear Models

yi ~ (a;, ) = asz

\ additive noise \/

\ what if unknown gains?

Blind Calibration Problem:

Recover x (signal) and d (gains) in

y, = diag(d) Az +n, 1 <I<p
N e

Multiple “snapshots”

with random sensing model:
A; ~iig A e R,
with A;; sub-Gaussian, zero mean & unit variance.

(e.g., Gaussian, Bernoulli, Bounded)



Blind Calibration and Random Linear Models

yi ~ (a;, ) = az'TCL‘

\ additive noise \/

\ what if unknown gains?

Blind Calibration Problem:

Recover x (signal) and d (gains) in

y, = diag(d) Az +n, 1 <I<p

Inspirations:

Programmable

Compressive

Imagers = |
Rice single pixel camera Coded aperture CS imagers

(Baraniuk, Kelly et al) (CASSI, Brady et al)



Blind Calibration and Random Linear Models

yi ~ (a;, ) = az'TCL‘

\ additive noise \/

\ what if unknown gains?

Blind Calibration Problem:

Recover x (signal) and d (gains) in

y, = diag(d) Ayjz+n, 1 <I<p

Central questions: (for sub-Gaussian A;)

= Efficient algorithm?

= Minimal sample complexity: mp 7
= Minimal snapshot number: p 7

= Robustness vs N7




Intrinsic ambiguity (in noiseless case)

Let S := {(z',d') : diag(d' ) A;x’ = diag(d)A;x = y,,1 <1 < p}
Scaling ambiguity:
(x*,d") €S + Va#0, (+z*,ad*) € S!
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Intrinsic ambiguity (in noiseless case)

Let S := {(z',d') : diag(d' ) A;x’ = diag(d)A;x = y,,1 <1 < p}
Scaling ambiguity:
(z*,d") €S <+ VYa#0, (=z*,ad") € S!

Our context:

Gain calibration: 0

A\

di~1 1<i1<m

Let's assume (wlog):

Zi dz — m,

ordelll, ={weR?: 1, w=> w =m}

(Scaled) probability simplex




Intrinsic ambiguity (in noiseless case)

Let S := {(z/,d') : diag(d')A;x’ = diag(d)A;jx = y;,1 <1 < p}
Scaling ambiguity:
(z*,d") €S <+ VYa#0, (=z*,ad") € S!

Our context:

Gain calibration: 0

A\

di~1 1<i1<m

Let's assume (wlog):

> idi=m

ordelll, ={weR?: 1, w=> w =m}

+ perturbation analysis: |d; — 1| < p < 1 4
1+ pBZ}:\\/

(for some 0 < p < 1) ﬁdél—l—me
= We define C, :=IIF N (1 + pB2)

our optimization space! 10



A Non-Convex Optimisation Problem

Blind Calibration Problem:

(@,d) = argmin 5 >7 | diag(d) A,z — diag(v) A&|3
EcR™ ,veC, ————

Y,

Non-convex (bi-convex) but maybe locally convex?

Idea: initialize 4+ (projected) gradient descent

(as in Phase-Retrival via Wirtinger flow,

e.g., [Candés, Li, 2015] [White et al., 2015]
[Ling, Strohmer, Wei, 2016])
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Geometric Analysis

Low-dimensional intuitive example:
~,EER? e, n=m=2,

€l=1,v=Q1+rl1-r)ellj,r€R
— Optimization space: (&1,&2,7) on a cylinder.

We study the variations of f(&,~) := % "1y

around (x1, X2, p) = (\%, —\%,0.08)
log f(§,7), p=1 log f(&,7), p=2 log f(&,7), p=

r | r
1 ’
0.5
0
'(-l‘l
~(.5

1 1

61 0.5 1 l—lb_.') 52 0.5 I ]—H 52

3

— diag(y)A€|”

logEf(&,7)
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Geometric Analysis

Conclusion:

Hope for local convexity
in a neighborhood (an “ellipsoid” of radius &)

Dm,p — {(677) c R" x Cp : A(€77) < 112”(13*”3}

=& —a*|? + 20|y — a¥|?
~,2Ef(&, ) 1f’y€C

with distance A(&,~)

13



Solution by Projected Gradient Descent

F(&7) = g i 1y, — diag(v) A€l

Algorithm:

1: Initialize & = - Y7 (A)' ¥, Yo =1m, k =0. (almost dumb ...

14



Solution by Projected Gradient Descent

1: Initialize & = - Y7 (A)' ¥, Yo =1m, k =0. (almost dumb ...

.. but not so bad Prop. Let 0 < § < 1, t > 0, and define k% := §° + p?.
initialization!) [f
mp > 6 %(m +n)log(n/d) and n > tlog(mp),

Y

then
(£0:7Y0) € Dx,p;

with prob. failure < e~ ™P 4 (mp)~t (¢ > 0).

* 12
= [|€g — *]|2 + =2 ||y, — @2 < K2[|2*|?
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Solution by Projected Gradient Descent

Algorithm: F(€,7) = 5= >0 lly; — diag(y) Ag]|?

1: Initialize £ = mip o (A)" v, Y0 =1, k =0.

(for some step sizes pg, pty > 0)
2: while stop criteria not met do

4 Euyr = &k — HeVef (€x,vi) {Signal Update}
5 Yy T Wk T My V#f(ﬁk,'yk) {Gain Update} AN
6:  Yiy1 = Fe, ¥, , {Projection on C,}
7 k=k+1" N _‘
R V(& q) =P .V,f(€,
8. end while 7 F(&7) = A Vaf(&7)

™ technical requirement for proofs

(not required in experiments)
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Solution by Projected Gradient Descent

1: Initialize £ = mip o (A)" v, Y0 =1, k =0.

(for some step sizes pg, piv > 0)
2: while stop criteria not met do

4:  Epi1 =& — eVef(&x,7,) {Signal Update}

5: Yy, =Tk~ Moy V#f(&k,'yk) {Gain Update} *-..
6:  Yiy1 = Fe, ¥, , {Projection on C,}

7 k' =k+1

3

Vif(é,v) =P .V, f(¢E,
end while v H&7) = A Va6 )

Convergence to (z*,d")! st e >0

Gradient Angle Part

7 N\

(€k+177k+1) A(€r,Vr) — (M£<V£f(€k Vi) & —27) + N7%<Vﬂy_f(€k>7k)a7k - g*))

1 Ve G I3 + 15 12502 ) wiy FEvls < Al i)

?

Gradient Magnltude Part o
(must bounded) with A(€,7) = ||€ —x*|* + %H’y —d”||?

.. we need to prove regularity on angles and magnitudes!

17



Convergence to (z*,d") ?

Regularity condition in Dy, ,

Prop. Let 0 < § < 1, t > 0, and define xk? := §% + p°. If n = tlog(mp),
mp 2 6 2(m +n)log(n/d) and p = 6 2logm,

and if
p < 5(1—26),

then, 37, L > 0 (only depending on ¢ and p) such that, V (§,v) € D ,,

1 < “f(&,7), {,y d*}> > ZnA(g,y) (Bounded angle)
@ IV FEI? < L? A7) (Lipschitz gradient)

with prob. failure < e~ M 4 ¢=<'5P 4 (mp)~t (for some c,c’ > 0).

Proof ingredients:

Measure concentration on sub-Gaussian r.v., Matrix Bernstein inequality,
non-uniformity wrt * and d*.



Convergence to (x

*,d*) 7

Regularity condition in Dy, ,

Prop. Let 0 < § < 1, t > 0, and define s

mp 2, 0~*(m + n)log(n/9)

and if
p <

-------

L(1 - 26),
then, 97, L > 0 (only depending on § and p) such that, V(&,~) € D

= 0% + p%. If n > tlog(mp),

and p > 6 2logm,

K,p9

¢¢¢"_ --- ™ < f(€ "Y) |:’7 4 i|> = % (€ ")/) (Bounded aﬂgle)
o
," pammmToE ‘ IVEfE P < L? A(g.) (Lipschitz gradient)
e
",' with prob. failure < e~ ™MP 4 ¢=¢'5°P 4 (mp)~t (for some ¢, > 0).
Y
'-‘ ‘A (no spurious minima)

A = allows convergence for fi

Ly
= ||V~ f(&,7)|| # 0 but on the solution in D, ,!

_ ™m
— M=
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Convergence to (z*,d") ?

Combining previous propositions gives then ...

Theorem. Let 0 < § < 1, t > 0, and define k2 := 62 + p?. If
n > tlog(mp), mp > 6 2(m+n)log(n/d) and p=>5~2logm,

and if
p < %(1 o 25)7

then, 97, L > 0 (only depending on § and p) such that, with probability exceeding

1 — C[e—cézp + e—cézmp + (mp)—t]

for some C, ¢ > 0, our descent algorithm initialized on (&g, ) wWith pg = p and py = p HwTHQ
2
gives jointly, at each iteration k, <1
(€xsYx) € Dw,p and  A(&y,ve) < (1 —nu+ LTMQ) K2 |le* |3,

2
“|

provided u € (0 nlle ) Hence, A(&x,v1) k—> 0.

? mL2+|le* |2 L2 —00

Roughly speaking, for p small enough,
we need n and p > 1 large enough,

and mp 2 (m + n)log(n/d) observations.



Empirical Phase Transition

To test the problem’s phase transition we measure the probability of successful recovery

PC = P [max { ||El_d*||2, |2z |l2 } < C:| ’ (w*y d*) c B™ x Cpa’n — 28

1d* ]2 [l ]2

for 256 randomly generated problem instances (per point).

o increases (1073 — 1077?)

logop
log,p

logo,m logom
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Empirical Phase Transition

To test the problem’s phase transition we measure the probability of successful recovery

) d—d* |2 ||&—x*]2 x g% n
P, .:P[max{”Hd*HQ” ,“ ” }<C},(CB ,d*) e B" x C,,n =28

for 256 randomly generated problem instances (per point).

o increases (1073 — 1077?)

logop
log,p
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(Randomized) Computational Imaging

Imaging you must recalibrate an imager

that is far far away?

Fixed signal

Pluto
(NewHorizon 2015)
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(Randomized) Computational Imaging

_ _ r with LS,
Computational (compressive) Fixed signal x unftxlctured d

imaging under calibration errors
for p = 4 snapshots

when m = n = 4096.

(with Gaussian random matrices)

LS SNR: 5.5 dB on signal Unstructured

Structured
d,p =910

(about 27)
x with
LS,structured d

24



(Randomized) Computational Imaging

Computational (compressive)
imaging under calibration errors
for p = 4 snapshots

when m = n = 4096.

(with Gaussian random matrices)

LS SNR: 5.5 dB on signal

PGD:
min. gain/signal SNR = 147.38 dB

PGD c. time: 2" here

and still ok for large n
(in paper: 40" for n=16384, m=1024, p=32)

Also converges with fast and
structured random matrices A,
(e.g., subsampled random
convolution, spread-spectrum)

(not covered by current theory).

(about 27)

_ _ & with LS,  with
Fixed signal unstructured d LS,structured d

Unstructured & with PGD d with PGD
d,p=1/2 unstructured d unstructured d

Structured x with PGD d with PGD
= 9/10 structured d structured d
(about 107)

25



Conclusion

We have shown that a simple application of gradient descent provably
solves this bilinear inverse problem with sample complexity:

mp é (n+m)logn, p = logm, n = logmp
(*: note: it was “(v/m)p = (n+ m)log(n)” in our CoSeRa’16 paper)

Proved extension of this approach:

Stability analysis w.r.t. additive noise, in fact:
A(&r, ) — Clnoise|®
k— o0
(almost done: known subspaces on signal and gains.)
Connections with other works: e.g., [Li, Ling, Strohmer, 16]

Future developments:

Extension to signal-domain sparsity via hard thresholding:
reduces sample complexity (i.e., blind calibration for compressed
sensing); empirically shown (+ conf paper), not yet proved.

More advanced calibration? (e.g., through matrix probing).

26



Thank you for you attention!
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