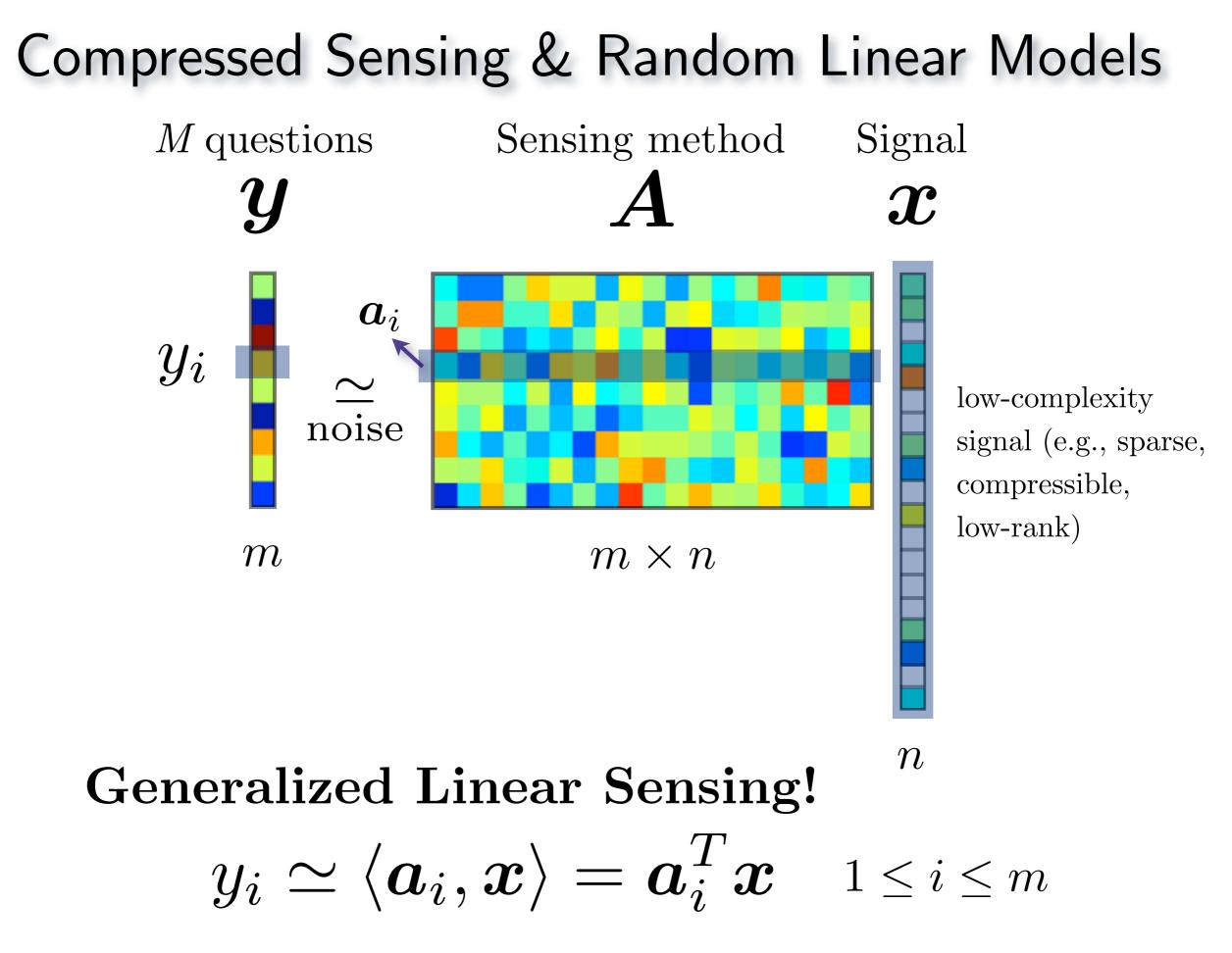
A Non-Convex Blind Calibration Method for Randomized Sensing Strategies

Valerio Cambareri and Laurent Jacques



$$y_i \simeq \langle \boldsymbol{a}_i, \boldsymbol{x} \rangle = \boldsymbol{a}_i^T \boldsymbol{x}$$

additive noise \checkmark
what if unknown gains?

$$y_i \simeq \langle \boldsymbol{a}_i, \boldsymbol{x} \rangle = \boldsymbol{a}_i^T \boldsymbol{x}$$

additive noise \checkmark
what if unknown gains?

Blind Calibration Problem:

Recover
$$\boldsymbol{x}$$
 (signal) and \boldsymbol{d} (gains) in
 $\boldsymbol{y} = \operatorname{diag}(\boldsymbol{d})\boldsymbol{A}\boldsymbol{x} + \boldsymbol{\eta}$ with $d_i \approx 1$

Recent related works:

- Blind calibration: [Friedlander, Strohmer, 14] [Li, Ling, Strohmer, 16]
- Blind deconvolution: [Ali, Rech, Romberg, 14], [Bilen, 14] [Li, Ling, Strohmer, 16]

$$y_i \simeq \langle \boldsymbol{a}_i, \boldsymbol{x} \rangle = \boldsymbol{a}_i^T \boldsymbol{x}$$

additive noise \checkmark
what if unknown gains?
Calibration Problem: our approach
Recover \boldsymbol{x} (signal) and \boldsymbol{d} (gains) in
 $\boldsymbol{y}_l = \operatorname{diag}(\boldsymbol{d}) \boldsymbol{A}_l \boldsymbol{x} + \boldsymbol{\eta}, \ 1 \leqslant l \leqslant$

with random sensing model:

Blind

Multiple "snapshots"

 $A_l \sim_{iid} A \in \mathbb{R}^{m \times n}$, with A_{ij} sub-Gaussian, zero mean & unit variance. (e.g., Gaussian, Bernoulli, Bounded)

$$y_i \simeq \langle \boldsymbol{a}_i, \boldsymbol{x} \rangle = \boldsymbol{a}_i^T \boldsymbol{x}$$

additive noise \checkmark
what if unknown gains?
Blind Calibration Problem: our approach
Recover \boldsymbol{x} (signal) and \boldsymbol{d} (gains) in
$$\boldsymbol{y}_l = \operatorname{diag}(\boldsymbol{d}) \boldsymbol{A}_l \boldsymbol{x} + \boldsymbol{\eta}, \ 1 \leqslant l \leqslant p$$

Inspirations:
Programmable
Compressive
Imagers
Rice single pixel camera
(Baraniuk, Kelly et al)

(CASSI, Brady et al)

$$y_i \simeq \langle \boldsymbol{a}_i, \boldsymbol{x} \rangle = \boldsymbol{a}_i^T \boldsymbol{x}$$

additive noise \checkmark
what if unknown gains?

Blind Calibration Problem:

our approach

Recover \boldsymbol{x} (signal) and \boldsymbol{d} (gains) in

$$\boldsymbol{y}_l = \operatorname{diag}(\boldsymbol{d}) \boldsymbol{A}_l \boldsymbol{x} + \boldsymbol{\eta}, \ 1 \leqslant l \leqslant p$$

Central questions:

(for sub-Gaussian A_l)

- Efficient algorithm?
- Minimal sample complexity: *mp* ?
- Minimal snapshot number: p ?
- Robustness vs *\eta* ?

Intrinsic ambiguity (in noiseless case)

- Let $\mathcal{S} := \{ (\boldsymbol{x}', \boldsymbol{d}') : \operatorname{diag}(\boldsymbol{d}') \boldsymbol{A}_l \boldsymbol{x}' = \operatorname{diag}(\boldsymbol{d}) \boldsymbol{A}_l \boldsymbol{x} = \boldsymbol{y}_l, 1 \leqslant l \leqslant p \}$
- Scaling ambiguity:

 $(\boldsymbol{x}^*, \boldsymbol{d}^*) \in \mathcal{S} \quad \leftrightarrow \quad \forall \alpha \neq 0, \ (\frac{1}{\alpha} \, \boldsymbol{x}^*, \alpha \boldsymbol{d}^*) \in \mathcal{S}!$

Intrinsic ambiguity (in noiseless case)

- Let $\mathcal{S} := \{ (\boldsymbol{x}', \boldsymbol{d}') : \operatorname{diag}(\boldsymbol{d}') \boldsymbol{A}_l \boldsymbol{x}' = \operatorname{diag}(\boldsymbol{d}) \boldsymbol{A}_l \boldsymbol{x} = \boldsymbol{y}_l, 1 \leqslant l \leqslant p \}$
- Scaling ambiguity:

 $(\boldsymbol{x}^*, \boldsymbol{d}^*) \in \mathcal{S} \quad \leftrightarrow \quad \forall \alpha \neq 0, \ (\frac{1}{\alpha} \, \boldsymbol{x}^*, \alpha \boldsymbol{d}^*) \in \mathcal{S}!$

Our context:

• Gain calibration: $0 \leq d_i \approx 1, \ 1 \leq i \leq m$

• Let's assume (wlog):

$$\sum_{i} d_{i} = m,$$
or $\boldsymbol{d} \in \Pi_{m}^{+} = \{ \boldsymbol{w} \in \mathbb{R}_{+}^{m} : \mathbf{1}_{m}^{\top} \boldsymbol{w} = \sum_{i} w_{i} = m \}$
(Scaled) probability simplex

 Π_m^+

Intrinsic ambiguity (in noiseless case)

- Let $\mathcal{S} := \{ (\boldsymbol{x}', \boldsymbol{d}') : \operatorname{diag}(\boldsymbol{d}') \boldsymbol{A}_l \boldsymbol{x}' = \operatorname{diag}(\boldsymbol{d}) \boldsymbol{A}_l \boldsymbol{x} = \boldsymbol{y}_l, 1 \leqslant l \leqslant p \}$
- Scaling ambiguity:

 $(\boldsymbol{x}^*, \boldsymbol{d}^*) \in \mathcal{S} \quad \leftrightarrow \quad \forall \alpha \neq 0, \ (\frac{1}{\alpha} \, \boldsymbol{x}^*, \alpha \boldsymbol{d}^*) \in \mathcal{S}!$

Our context:

• Gain calibration: $0 \leq d_i \approx 1, \ 1 \leq i \leq m$

Let's assume (wlog):
$$\sum_{i} d_{i} = m,$$
or $d \in \Pi_{m}^{+} = \{ w \in \mathbb{R}_{+}^{m} : \mathbf{1}_{m}^{\top} w = \sum_{i} w_{i} = m \}$
+ perturbation analysis: $|d_{i} - 1| \leq \rho < 1$
(for some $0 \leq \rho < 1$)
$$\Rightarrow d \in \mathbf{1} + \rho \mathbb{B}_{\infty}^{m}$$

$$\Rightarrow \text{ We define } \mathcal{C}_{\rho} := \Pi_{m}^{+} \cap (\mathbf{1} + \rho \mathbb{B}_{\infty}^{m})$$
our optimization space!

A Non-Convex Optimisation Problem

Blind Calibration Problem:

$$(\hat{\boldsymbol{x}}, \hat{\boldsymbol{d}}) = \operatorname*{argmin}_{\boldsymbol{\xi} \in \mathbb{R}^{n}, \boldsymbol{\gamma} \in \mathcal{C}_{\rho}} \frac{1}{2mp} \sum_{l=1}^{p} \| \underbrace{\operatorname{diag}(\boldsymbol{d}) \boldsymbol{A}_{l} \boldsymbol{x}}_{\boldsymbol{y}_{l}} - \operatorname{diag}(\boldsymbol{\gamma}) \boldsymbol{A}_{l} \boldsymbol{\xi} \|_{2}^{2}$$

- Non-convex (bi-convex) but maybe locally convex?
- Idea: initialize + (projected) gradient descent

(as in Phase-Retrival via Wirtinger flow, e.g., [Candès, Li, 2015] [White et al., 2015] [Ling, Strohmer, Wei, 2016])

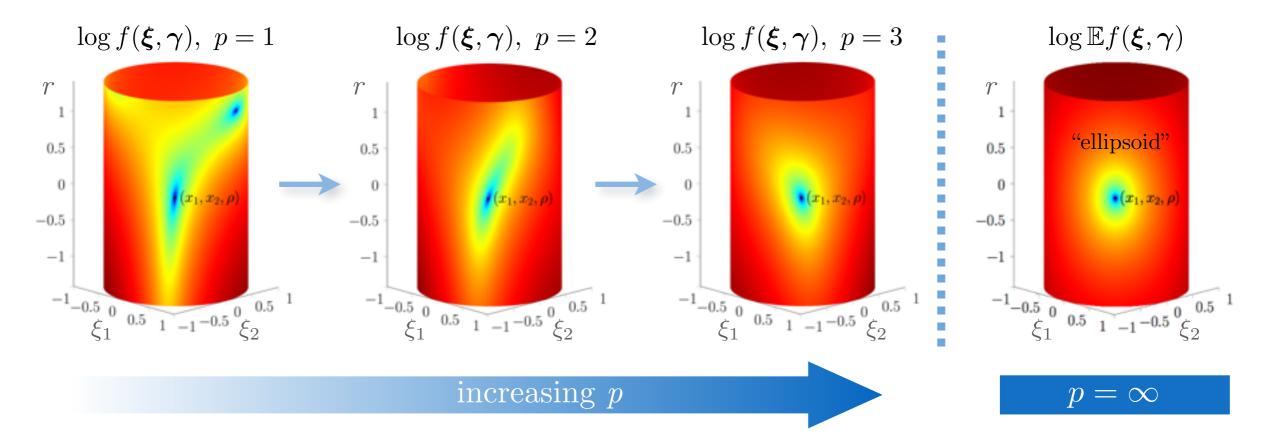
Geometric Analysis

Low-dimensional intuitive example:

$$\boldsymbol{\gamma}, \boldsymbol{\xi} \in \mathbb{R}^2, \ i.e., \ n = m = 2,$$

 $\|\boldsymbol{\xi}\| = 1, \ \boldsymbol{\gamma} = (1 + r, 1 - r) \in \Pi_2^+, \ r \in \mathbb{R}$
 \rightarrow Optimization space: (ξ_1, ξ_2, r) on a cylinder.

We study the variations of $f(\boldsymbol{\xi}, \boldsymbol{\gamma}) := \frac{1}{2mp} \sum_{l=1}^{p} \|\boldsymbol{y}_{l} - \operatorname{diag}(\boldsymbol{\gamma})\boldsymbol{A}_{l}\boldsymbol{\xi}\|^{2}$ around $(x_{1}, x_{2}, \rho) = (\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0.08)$



Geometric Analysis

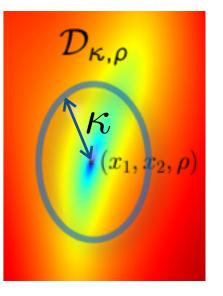
- Conclusion:
 - Hope for *local convexity*

in a neighborhood (an "ellipsoid" of radius κ)

$$\mathcal{D}_{\kappa,\rho} := \left\{ (\boldsymbol{\xi}, \boldsymbol{\gamma}) \in \mathbb{R}^n \times \mathcal{C}_{\rho} : \Delta(\boldsymbol{\xi}, \boldsymbol{\gamma}) \leqslant \kappa^2 \| \boldsymbol{x}^{\star} \|_2^2 \right\}$$

with distance
$$\Delta(\boldsymbol{\xi}, \boldsymbol{\gamma}) := \|\boldsymbol{\xi} - \boldsymbol{x}^{\star}\|^{2} + \frac{\|\boldsymbol{x}^{\star}\|^{2}}{m} \|\boldsymbol{\gamma} - \boldsymbol{d}^{\star}\|^{2}$$
$$\approx_{\rho} 2 \mathbb{E}f(\boldsymbol{\xi}, \boldsymbol{\gamma}) \text{ if } \boldsymbol{\gamma} \in \mathcal{C}_{\rho}.$$

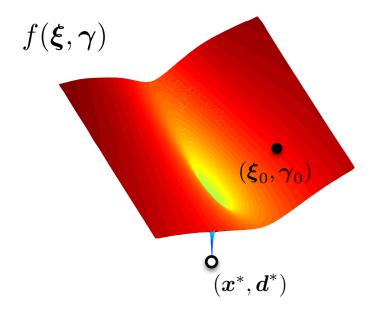
•
$$(x_1, x_2, \rho)$$



Algorithm:

 $f(\boldsymbol{\xi}, \boldsymbol{\gamma}) := \frac{1}{2mp} \sum_{l=1}^{p} \| \boldsymbol{y}_l - \operatorname{diag}(\boldsymbol{\gamma}) \boldsymbol{A}_l \boldsymbol{\xi} \|^2$

1: Initialize $\boldsymbol{\xi}_0 \coloneqq \frac{1}{mp} \sum_{l=1}^p (\boldsymbol{A}_l)^\top \boldsymbol{y}_l, \, \boldsymbol{\gamma}_0 \coloneqq \boldsymbol{1}_m, \, k \coloneqq 0.$ (almost dumb ...



Algorithm:

$$f(\boldsymbol{\xi}, \boldsymbol{\gamma}) := \frac{1}{2mp} \sum_{l=1}^{p} \| \boldsymbol{y}_{l} - \operatorname{diag}(\boldsymbol{\gamma}) \boldsymbol{A}_{l} \boldsymbol{\xi} \|^{2}$$

1: Initialize $\boldsymbol{\xi}_0 \coloneqq \frac{1}{mp} \sum_{l=1}^p (\boldsymbol{A}_l)^\top \boldsymbol{y}_l, \, \boldsymbol{\gamma}_0 \coloneqq \boldsymbol{1}_m, \, k \coloneqq 0.$ (almost dumb ...

... but not so bad initialization!)

Prop. Let
$$0 < \delta < 1$$
, $t > 0$, and define $\kappa^2 := \delta^2 + \rho^2$.
If
 $mp \gtrsim \delta^{-2}(m+n)\log(n/\delta)$ and $n \gtrsim t\log(mp)$,
then
 $(\boldsymbol{\xi}_0, \boldsymbol{\gamma}_0) \in \mathcal{D}_{\kappa,\rho}$,
with prob. failure $\lesssim e^{-c\delta^2mp} + (mp)^{-t}$ $(c > 0)$.

$$f(\boldsymbol{\xi},\boldsymbol{\gamma})$$

$$\Rightarrow \|\boldsymbol{\xi}_0 - \boldsymbol{x}^\star\|^2 + \frac{\|\boldsymbol{x}^\star\|^2}{m} \|\boldsymbol{\gamma}_0 - \boldsymbol{d}^\star\|^2 \leqslant \kappa^2 \|\boldsymbol{x}^\star\|^2$$

Algorithm:

$$f(\boldsymbol{\xi}, \boldsymbol{\gamma}) := \frac{1}{2mp} \sum_{l=1}^{p} \|\boldsymbol{y}_{l} - \operatorname{diag}(\boldsymbol{\gamma})\boldsymbol{A}_{l}\boldsymbol{\xi}\|^{2}$$

 $\nabla_{\boldsymbol{\gamma}}^{\perp} f(\boldsymbol{\xi}, \boldsymbol{\gamma}) \coloneqq P_{\mathbf{1}_{m}^{\perp}} \nabla_{\boldsymbol{\gamma}} f(\boldsymbol{\xi}, \boldsymbol{\gamma})$

1: Initialize
$$\boldsymbol{\xi}_0 \coloneqq \frac{1}{mp} \sum_{l=1}^p (\boldsymbol{A}_l)^\top \boldsymbol{y}_l, \, \boldsymbol{\gamma}_0 \coloneqq \boldsymbol{1}_m, \, k \coloneqq 0.$$

(for some step sizes $\mu_{\boldsymbol{\xi}}, \mu_{\boldsymbol{\gamma}} > 0$)

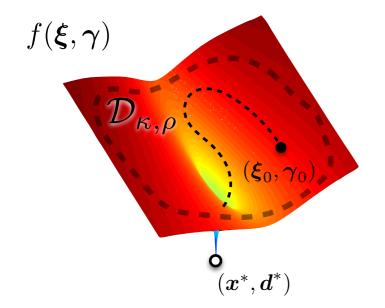
2: while stop criteria not met do

4:
$$\boldsymbol{\xi}_{k+1} \coloneqq \boldsymbol{\xi}_k - \mu_{\boldsymbol{\xi}} \nabla_{\boldsymbol{\xi}} f(\boldsymbol{\xi}_k, \boldsymbol{\gamma}_k)$$
 {Signal Update}

5:
$$\underline{\boldsymbol{\gamma}}_{k+1} \coloneqq \boldsymbol{\gamma}_k - \mu_{\boldsymbol{\gamma}} \nabla_{\boldsymbol{\gamma}}^{\perp} f(\boldsymbol{\xi}_k, \boldsymbol{\gamma}_k) \{\text{Gain Update}\}$$

- 6: $\boldsymbol{\gamma}_{k+1} \coloneqq P_{\mathcal{C}_{\rho}} \boldsymbol{\gamma}_{k+1}$ {Projection on \mathcal{C}_{ρ} } 7: $k \coloneqq k+1$
- 8: end while

technical requirement for proofs (not required in experiments)



<u>Algorithm:</u>

$$f(\boldsymbol{\xi}, \boldsymbol{\gamma}) := \frac{1}{2mp} \sum_{l=1}^{p} \| \boldsymbol{y}_l - \operatorname{diag}(\boldsymbol{\gamma}) \boldsymbol{A}_l \boldsymbol{\xi} \|^2$$

 $\nabla_{\boldsymbol{\gamma}}^{\perp} f(\boldsymbol{\xi}, \boldsymbol{\gamma}) \coloneqq P_{\mathbf{1}_{m}^{\perp}} \nabla_{\boldsymbol{\gamma}} f(\boldsymbol{\xi}, \boldsymbol{\gamma})$

1: Initialize
$$\boldsymbol{\xi}_0 \coloneqq \frac{1}{mp} \sum_{l=1}^p (\boldsymbol{A}_l)^\top \boldsymbol{y}_l, \, \boldsymbol{\gamma}_0 \coloneqq \boldsymbol{1}_m, \, k \coloneqq 0.$$

(for some step sizes $\mu_{\boldsymbol{\xi}}, \mu_{\boldsymbol{\gamma}} > 0$)

2: while stop criteria not met do

4:
$$\boldsymbol{\xi}_{k+1} \coloneqq \boldsymbol{\xi}_k - \mu_{\boldsymbol{\xi}} \nabla_{\boldsymbol{\xi}} f(\boldsymbol{\xi}_k, \boldsymbol{\gamma}_k)$$
 {Signal Update}
5: $\boldsymbol{\gamma} \coloneqq \boldsymbol{\gamma}_k - \mu_{\boldsymbol{\xi}} \nabla^{\perp} f(\boldsymbol{\xi}_k, \boldsymbol{\gamma}_k)$ {Gain Update}

- 5: $\underline{\boldsymbol{\gamma}}_{k+1} \coloneqq \boldsymbol{\gamma}_k \mu_{\boldsymbol{\gamma}} \nabla_{\boldsymbol{\gamma}}^{\perp} f(\boldsymbol{\xi}_k, \boldsymbol{\gamma}_k) \{\text{Gain Update}\}^{\boldsymbol{\gamma}}$ 6: $\boldsymbol{\gamma}_{k+1} \coloneqq P_{\mathcal{C}_{\rho}} \underline{\boldsymbol{\gamma}}_{k+1} \{\text{Projection on } C_{\rho}\}$
- k := k + 17:
- 8: end while

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} (\text{must be} > 0) \\ \text{Gradient Angle Part} \end{array} \end{array} \\ \underline{\Delta(\boldsymbol{\xi}_{k+1}, \underline{\gamma}_{k+1})} = \Delta(\boldsymbol{\xi}_{k}, \boldsymbol{\gamma}_{k}) - 2 \left(\mu_{\boldsymbol{\xi}} \langle \boldsymbol{\nabla}_{\boldsymbol{\xi}} f(\boldsymbol{\xi}_{k}, \boldsymbol{\gamma}_{k}), \boldsymbol{\xi}_{k} - \boldsymbol{x}^{\star} \rangle + \mu_{\boldsymbol{\gamma}} \frac{\|\boldsymbol{x}^{\star}\|_{2}^{2}}{m} \langle \boldsymbol{\nabla}_{\boldsymbol{\gamma}}^{\perp} f(\boldsymbol{\xi}_{k}, \boldsymbol{\gamma}_{k}), \boldsymbol{\gamma}_{k} - \boldsymbol{g}^{\star} \rangle \right) \\ + \mu_{\boldsymbol{\xi}}^{2} \| \boldsymbol{\nabla}_{\boldsymbol{\xi}} f(\boldsymbol{\xi}_{k}, \boldsymbol{\gamma}_{k}) \|_{2}^{2} + \mu_{\boldsymbol{\gamma}}^{2} \frac{\|\boldsymbol{x}^{\star}\|_{2}^{2}}{m} \| \boldsymbol{\nabla}_{\boldsymbol{\gamma}}^{\perp} f(\boldsymbol{\xi}_{k}, \boldsymbol{\gamma}_{k}) \|_{2}^{2} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \left(\boldsymbol{\chi}^{\star}, \boldsymbol{d}^{\star} \right) \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \left(\boldsymbol{\chi}^{\star}, \boldsymbol{d}^{\star} \right) \\ \left(\boldsymbol{\chi}^{\star}, \boldsymbol{\chi}^{\star} \right) \|_{2}^{2} + \mu_{\boldsymbol{\gamma}}^{2} \frac{\|\boldsymbol{x}^{\star}\|_{2}^{2}}{m} \| \boldsymbol{\nabla}_{\boldsymbol{\gamma}}^{\perp} f(\boldsymbol{\xi}_{k}, \boldsymbol{\gamma}_{k}) \|_{2}^{2} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \left(\boldsymbol{\chi}^{\star}, \boldsymbol{\chi}^{\star} \right) \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \left(\boldsymbol{\chi}^{\star}, \boldsymbol{\chi}^{\star} \right) \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \left(\boldsymbol{\chi}^{\star}, \boldsymbol{\chi}^{\star} \right) \\ \left(\boldsymbol{\chi}^{\star}, \boldsymbol{\chi}^{\star} \right) \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \left(\boldsymbol{\chi}^{\star}, \boldsymbol{\chi}^{\star} \right) \\ \end{array} \\ \begin{array}{c} \left(\boldsymbol{\chi}^{\star}, \boldsymbol{\chi}^{\star} \right) \\ \end{array} \\ \end{array} \\ \begin{array}{c} \left(\boldsymbol{\chi}^{\star}, \boldsymbol{\chi}^{\star} \right) \\ \end{array} \\ \begin{array}{c} \left(\boldsymbol{\chi}^{\star}, \boldsymbol{\chi}^{\star} \right) \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \left(\boldsymbol{\chi}^{\star}, \boldsymbol{\chi}^{\star} \right) \\ \end{array} \\ \end{array} \\ \begin{array}{c} \left(\boldsymbol{\chi}^{\star}, \boldsymbol{\chi}^{\star} \right) \\ \end{array} \\ \begin{array}{c} \left(\boldsymbol{\chi}^{\star}, \boldsymbol{\chi}^{\star} \right) \\ \end{array} \\ \end{array} \\ \begin{array}{c} \left(\boldsymbol{\chi}^{\star}, \boldsymbol{\chi}^{\star} \right) \\ \end{array} \\ \end{array} \\ \begin{array}{c} \left(\boldsymbol{\chi}^{\star}, \boldsymbol{\chi}^{\star} \right) \\ \end{array} \\ \end{array} \\ \begin{array}{c} \left(\boldsymbol{\chi}^{\star}, \boldsymbol{\chi}^{\star} \right) \\ \end{array} \\ \end{array} \\ \begin{array}{c} \left(\boldsymbol{\chi}^{\star}, \boldsymbol{\chi}^{\star} \right) \\ \end{array} \\ \end{array} \\ \begin{array}{c} \left(\boldsymbol{\chi}^{\star}, \boldsymbol{\chi}^{\star} \right) \\ \end{array} \\ \begin{array}{c} \left(\boldsymbol{\chi}^{\star}, \boldsymbol{\chi}^{\star} \right) \\ \end{array} \\ \end{array} \\ \begin{array}{c} \left(\boldsymbol{\chi}^{\star}, \boldsymbol{\chi}^{\star} \right) \\ \end{array} \\ \end{array} \\ \begin{array}{c} \left(\boldsymbol{\chi}^{\star}, \boldsymbol{\chi}^{\star} \right) \\ \end{array} \\ \end{array} \\ \begin{array}{c} \left(\boldsymbol{\chi}^{\star}, \boldsymbol{\chi}^{\star} \right) \\ \end{array} \\ \end{array} \\ \begin{array}{c} \left(\boldsymbol{\chi}^{\star}, \boldsymbol{\chi}^{\star} \right) \\ \end{array} \\ \begin{array}{c} \left(\boldsymbol{\chi}^{\star}, \boldsymbol{\chi}^{\star} \right) \\ \end{array} \\ \end{array} \\ \begin{array}{c} \left(\boldsymbol{\chi}^{\star}, \boldsymbol{\chi}^{\star} \right) \\ \end{array} \\ \end{array} \\ \begin{array}{c} \left(\boldsymbol{\chi}^{\star}, \boldsymbol{\chi}^{\star} \right) \\ \end{array} \\ \end{array} \\ \begin{array}{c} \left(\boldsymbol{\chi}^{\star}, \boldsymbol{\chi}^{\star} \right) \\ \end{array} \\ \end{array} \\ \begin{array}{c} \left(\boldsymbol{\chi}^{\star}, \boldsymbol{\chi}^{\star} \right) \\ \end{array} \\ \end{array} \\ \begin{array}{c} \left(\boldsymbol{\chi}^{\star}, \boldsymbol{\chi}^{\star} \right) \\ \end{array} \\ \end{array} \\ \begin{array}{c} \left(\boldsymbol{\chi}^{\star}, \boldsymbol{\chi}^{\star} \right) \\ \end{array} \\ \end{array} \\ \begin{array}{c} \left(\boldsymbol{\chi}^{\star}, \boldsymbol{\chi}^{\star} \right) \\ \end{array} \\ \end{array} \\ \begin{array}{c} \left(\boldsymbol{\chi}^{\star}, \boldsymbol{\chi}^{\star} \right) \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \left(\boldsymbol{\chi}^{\star}, \boldsymbol{\chi}^{\star} \right) \\ \end{array} \\ \end{array} \\ \begin{array}{c} \left(\boldsymbol{\chi}^{\star}, \boldsymbol{\chi}^{\star} \right) \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \left(\boldsymbol{\chi}^{\star}, \boldsymbol{\chi}^{\star} \right) \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \left(\boldsymbol{\chi}^{\star}, \boldsymbol{\chi}^{\star} \right$$

... we need to prove regularity on *angles* and *magnitudes*!

Convergence to (x^*, d^*) ?

• Regularity condition in $\mathcal{D}_{\kappa,\rho}$

Prop. Let $0 < \delta < 1$, t > 0, and define $\kappa^2 := \delta^2 + \rho^2$. If $\underline{n \gtrsim t \log(mp)}$, $\underline{mp \gtrsim \delta^{-2}(m+n) \log(n/\delta)}$ and $\underline{p \gtrsim \delta^{-2} \log m}$, and if $\rho < \frac{1}{9}(1-2\delta)$, then, $\exists \eta, L > 0$ (only depending on δ and ρ) such that, $\forall (\boldsymbol{\xi}, \boldsymbol{\gamma}) \in \mathcal{D}_{\kappa,\rho}$, $(1) \langle \boldsymbol{\nabla}^{\perp} f(\boldsymbol{\xi}, \boldsymbol{\gamma}), \begin{bmatrix} \boldsymbol{\xi} - \boldsymbol{x}^* \\ \boldsymbol{\gamma} - \boldsymbol{d}^* \end{bmatrix} \rangle \geq \frac{1}{2} \eta \Delta(\boldsymbol{\xi}, \boldsymbol{\gamma})$ (Bounded angle) $(2) \qquad \|\boldsymbol{\nabla}^{\perp} f(\boldsymbol{\xi}, \boldsymbol{\gamma})\|^2 \leq L^2 \Delta(\boldsymbol{\xi}, \boldsymbol{\gamma})$ (Lipschitz gradient) with prob. failure $\lesssim e^{-c\delta^2 mp} + e^{-c'\delta^2 p} + (mp)^{-t}$ (for some c, c' > 0).

Proof ingredients:

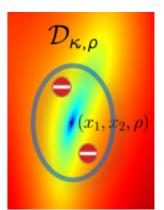
Measure concentration on sub-Gaussian r.v., Matrix Bernstein inequality, non-uniformity wrt x^* and d^* .

Convergence to (x^*, d^*) ?

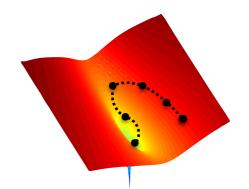
• Regularity condition in $\mathcal{D}_{\kappa,\rho}$

Prop. Let $0 < \delta < 1$, t > 0, and define $\kappa^2 := \delta^2 + \rho^2$. If $n \gtrsim t \log(mp)$, $mp \gtrsim \delta^{-2}(m+n)\log(n/\delta)$ and $p \gtrsim \delta^{-2}\log m$, and if $\rho < \frac{1}{9}(1 - 2\delta),$ then, $\exists \eta, L > 0$ (only depending on δ and ρ) such that, $\forall (\boldsymbol{\xi}, \boldsymbol{\gamma}) \in \mathcal{D}_{\kappa,\rho}$, $\left\langle \boldsymbol{\nabla}^{\perp} f(\boldsymbol{\xi},\boldsymbol{\gamma}), \left[\begin{array}{c} \boldsymbol{\xi} - \boldsymbol{x}^{\star} \\ \boldsymbol{\gamma} - \boldsymbol{d}^{\star} \end{array} \right] \right\rangle \ \geq \ \frac{1}{2} \eta \, \Delta(\boldsymbol{\xi},\boldsymbol{\gamma})$ (Bounded angle) $\|\boldsymbol{\nabla}^{\perp} f(\boldsymbol{\xi}, \boldsymbol{\gamma})\|^2 \leq L^2 \Delta(\boldsymbol{\xi}, \boldsymbol{\gamma})$ (Lipschitz gradient) with prob. failure $\leq e^{-c\delta^2 mp} + e^{-c'\delta^2 p} + (mp)^{-t}$ (for some c, c' > 0). (no spurious minima) $\mathbf{X} \Rightarrow \| \mathbf{\nabla}^{\perp} f(\boldsymbol{\xi}, \boldsymbol{\gamma}) \| \neq 0$ but on the solution in $\mathcal{D}_{\kappa, \rho}!$

 \Rightarrow allows convergence for $\mu_{\gamma} = \mu_{\xi} \frac{m}{\|\boldsymbol{x}^*\|}$.



Convergence to (x^*, d^*) ?



Combining previous propositions gives then ...

Theorem. Let $0 < \delta < 1$, t > 0, and define $\kappa^2 := \delta^2 + \rho^2$. If

$$n \gtrsim t \log(mp)$$
, $mp \gtrsim \delta^{-2}(m+n) \log(n/\delta)$ and $p \gtrsim \delta^{-2} \log m$,

and if

$$\rho < \frac{1}{9}(1-2\delta),$$

then, $\exists\,\eta,L>0$ (only depending on δ and $\rho)$ such that, with probability exceeding

$$1 - C \left[e^{-c\delta^2 p} + e^{-c\delta^2 m p} + (mp)^{-t} \right]$$

for some C, c > 0, our descent algorithm initialized on $(\boldsymbol{\xi}_0, \boldsymbol{\gamma}_0)$ with $\mu_{\boldsymbol{\xi}} = \mu$ and $\mu_{\boldsymbol{\gamma}} = \mu \frac{m}{\|\boldsymbol{x}^{\star}\|_2^2}$ gives jointly, at each iteration k,

$$(\boldsymbol{\xi}_k, \boldsymbol{\gamma}_k) \in \mathcal{D}_{\kappa, \rho} \quad \text{and} \quad \Delta(\boldsymbol{\xi}_k, \boldsymbol{\gamma}_k) \leq \left(1 - \eta \mu + \frac{L^2}{\tau} \mu^2\right)^k \kappa^2 \|\boldsymbol{x}^{\star}\|_2^2,$$

provided $\mu \in \left(0, \frac{\eta \| \boldsymbol{x}^{\star} \|^2}{mL^2 + \| \boldsymbol{x}^{\star} \|^2 L^2}\right)$. Hence, $\Delta(\boldsymbol{\xi}_k, \boldsymbol{\gamma}_k) \xrightarrow[k \to \infty]{} 0$.

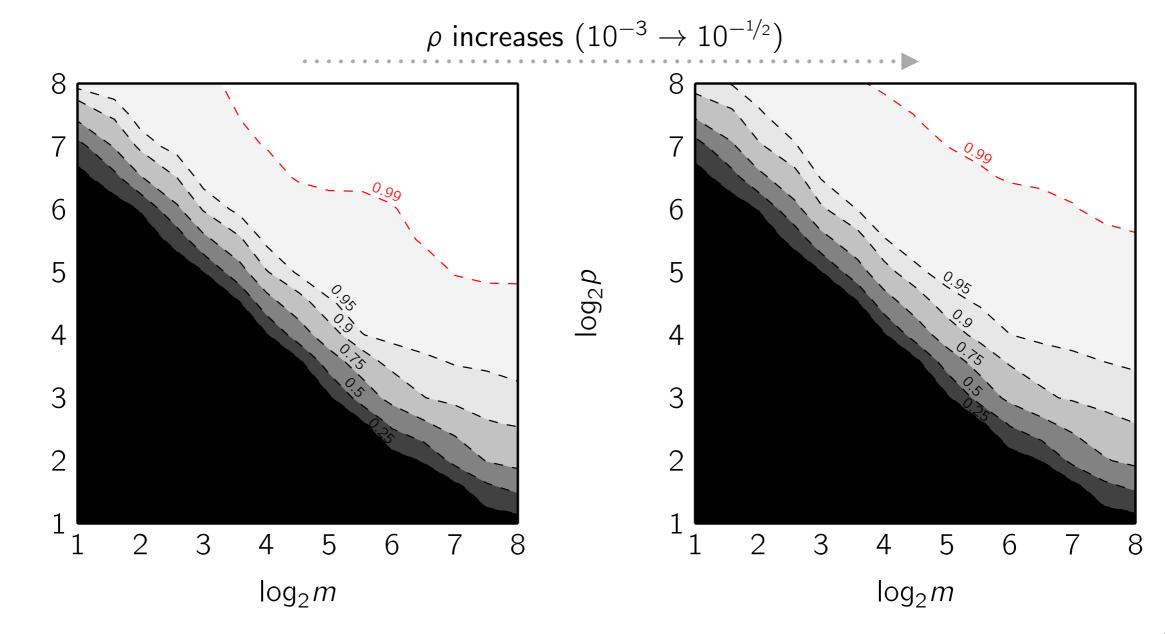
Roughly speaking, for ρ small enough, we need n and p > 1 large enough, and $mp \gtrsim (m+n)\log(n/\delta)$ observations.

Empirical Phase Transition

 $\log_2 p$

 $\begin{array}{l} & \quad \text{To test the problem's phase transition we measure the probability of successful recovery} \\ & \quad P_{\zeta} \coloneqq \mathbb{P}\left[\max\left\{ \frac{\|\hat{\boldsymbol{d}} - \boldsymbol{d}^{\star}\|_2}{\|\boldsymbol{d}^{\star}\|_2}, \frac{\|\hat{\boldsymbol{x}} - \boldsymbol{x}^{\star}\|_2}{\|\boldsymbol{x}^{\star}\|_2} \right\} < \zeta \right], (\boldsymbol{x}^{\star}, \boldsymbol{d}^{\star}) \in \mathbb{B}^n \times \mathcal{C}_{\rho}, n = 2^8 \end{array}$

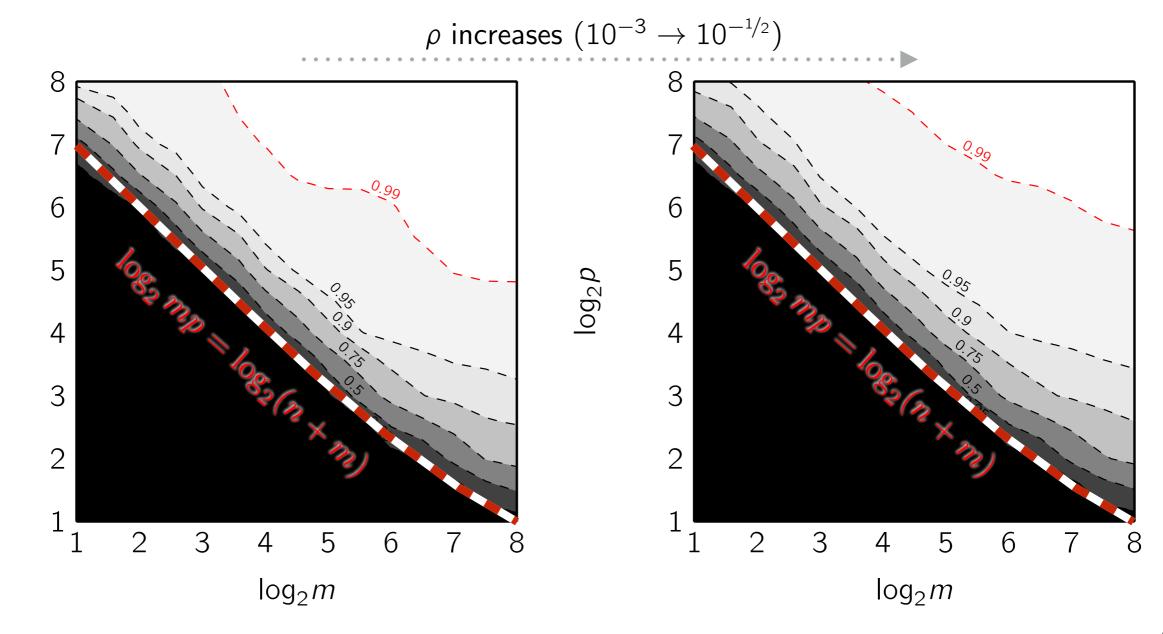
for 256 randomly generated problem instances (per point).



Empirical Phase Transition

 $\begin{array}{l} & \quad \text{To test the problem's phase transition we measure the probability of successful recovery} \\ & \quad P_{\zeta} \coloneqq \mathbb{P}\left[\max\left\{\frac{\|\hat{\boldsymbol{d}}-\boldsymbol{d}^{\star}\|_{2}}{\|\boldsymbol{d}^{\star}\|_{2}}, \frac{\|\hat{\boldsymbol{x}}-\boldsymbol{x}^{\star}\|_{2}}{\|\boldsymbol{x}^{\star}\|_{2}}\right\} < \zeta\right], (\boldsymbol{x}^{\star}, \boldsymbol{d}^{\star}) \in \mathbb{B}^{n} \times \mathcal{C}_{\rho}, n = 2^{8} \end{array}$

for 256 randomly generated problem instances (per point).



(Randomized) Computational Imaging

Imaging you must recalibrate an imager that is *far far away*?

Fixed signal x

e.g.,

Pluto (NewHorizon 2015)

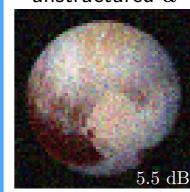
(Randomized) Computational Imaging

- Computational (compressive) imaging under calibration errors for p = 4 snapshots when m = n = 4096. (with Gaussian random matrices)
- LS SNR: 5.5 dB on signal

Fixed signal x

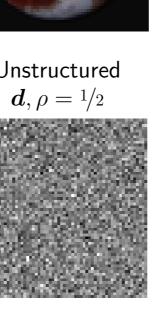
Unstructured

 \hat{x} with LS, unstructured d



 $\hat{oldsymbol{x}}$ with LS, structured d

(about 2')



Structured $d, \rho = 9/10$

(Randomized) Computational Imaging

- Computational (compressive) imaging under calibration errors for p = 4 snapshots when m = n = 4096. (with Gaussian random matrices)
- LS SNR: 5.5 dB on signal
- PGD: min. gain/signal SNR = 147.38 dB
- PGD c. time: 2' here
 and still ok for large n
 (in paper: 40' for n=16384, m=1024, p=32)
- Also converges with *fast* and structured random matrices *A_I* (e.g., *subsampled random convolution, spread-spectrum*) (not covered by current theory).

Fixed signal x

Unstructured $oldsymbol{d},
ho = 1\!/2$

Structured $\boldsymbol{d}, \rho = 9/10$

 \hat{x} with LS, unstructured d

 \hat{x} with PGD

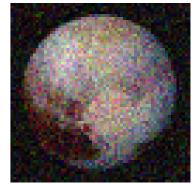
 \hat{x} with PGD

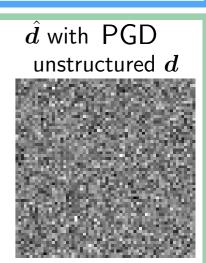
structured d

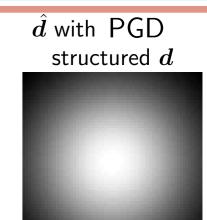
unstructured d

 $(ext{about 2'})$ $\hat{m{x}}$ with

LS,structured d







(about 10')

Conclusion

 We have shown that a *simple* application of gradient descent provably solves this bilinear inverse problem with sample complexity:

$$mp \gtrsim_* (n+m)\log n, \ p \gtrsim \log m, \ n \gtrsim \log mp$$

(*: note: it was " $(\sqrt{m})p \gtrsim (n+m)\log(n)$ " in our CoSeRa'16 paper)

- **Proved extension** of this approach:
 - Stability analysis w.r.t. additive noise, in fact:

$$\Delta(\boldsymbol{\xi}_k, \boldsymbol{\gamma}_k) \xrightarrow[k \to \infty]{} C \|\text{noise}\|^2$$

- (almost done: known subspaces on signal and gains.)
- Connections with other works: e.g., [Li, Ling, Strohmer, 16]
- Future developments:
 - Extension to signal-domain *sparsity* via hard thresholding: reduces sample complexity (*i.e.*, blind calibration for compressed sensing); **empirically shown** (+ conf paper), not yet proved.
 - More advanced calibration? (e.g., through matrix probing).

Thank you for you attention!

Bibliography

- 1. M. A. Herman and T. Strohmer, "General deviants: An analysis of perturbations in compressed sensing," IEEE Journal of Selected Topics in Signal Processing, vol. 4, no. 2, pp. 342–349, 2010.
- 2. R. Vershynin, "Introduction to the non-asymptotic analysis of random matrices," in Compressed Sensing: Theory and Applications. Cambridge University Press, 2012, pp. 210–268.
- 3. C. Bilen, G. Puy, R. Gribonval, and L. Daudet, "Convex Optimisation Approaches for Blind Sensor Calibration Using Sparsity," IEEE Transactions on Signal Processing, vol. 62, no. 18, pp. 4847–4856, Sep. 2014.
- 4. B. Friedlander and T. Strohmer, "Bilinear compressed sensing for array self-calibration," in 2014 48th Asilomar Conference on Signals, Systems and Computers, Nov. 2014, pp. 363–367.
- 5. S. Ling and T. Strohmer, "Self-calibration and biconvex compressive sensing," Inverse Problems, vol. 31, no. 11, p. 115002, 2015.
- 6. E. Candès, X. Li, and M. Soltanolkotabi, "Phase Retrieval via Wirtinger Flow: Theory and Algorithms," IEEE Transactions on Information Theory, vol. 61, no. 4, pp. 1985–2007, Apr. 2015.
- C. D. White, S. Sanghavi, and R. Ward, "The local convexity of solving systems of quadratic equations," arXiv:1506.07868 [math, stat], Jun. 2015, arXiv: 1506.07868.
- 8. <u>V. Cambareri</u> and <u>L. Jacques</u>, "A Non-Convex Blind Calibration Method for Randomised Sensing Strategies," in IEEE 2016 4th International Workshop on Compressed Sensing Theory and its Applications to Radar, Sonar and Remote Sensing (CoSeRa).
- 9. <u>V. Cambareri</u> and <u>L. Jacques</u>, "Through the Haze: A Non-Convex Approach to Blind Calibration for Linear Random Sensing Models," 2016, in preparation.
- 10. X.Li, S.Ling, T.Strohmer, K.Wei, "Rapid, Robust, and Reliable Blind Deconvolution via Nonconvex Optimization," ArXiv Preprint, 2016.