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additive noise
what if unknown gains? 
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additive noise
what if unknown gains? 

Blind Calibration Problem:
Recover x (signal) and d (gains) in

Recent related works:  
■ Blind calibration: [Friedlander, Strohmer, 14] [Li, Ling, Strohmer, 16] 
■ Blind deconvolution: [Ali, Rech, Romberg, 14], [Bilen, 14] [Li, Ling, Strohmer, 16]

unknown

with di ⇡ 1
y = diag(d)Ax+ ⌘

noise

yi ' hai,xi = a

T
i x
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additive noise
what if unknown gains? 

Multiple “snapshots”

Blind Calibration Problem:
Recover x (signal) and d (gains) in

our approach

yl = diag(d)Alx+ ⌘, 1 6 l 6 p

yi ' hai,xi = a

T
i x

Al ⇠iid A 2 Rm⇥n
,

with Aij sub-Gaussian, zero mean & unit variance.

with random sensing model: 
 
 
(e.g., Gaussian, Bernoulli, Bounded)
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additive noise
what if unknown gains? 

Blind Calibration Problem:
Recover x (signal) and d (gains) in

our approach

Inspirations: 
Programmable 
Compressive 
Imagers

yl = diag(d)Alx+ ⌘, 1 6 l 6 p

yi ' hai,xi = a

T
i x

Rice single pixel camera 
(Baraniuk, Kelly et al)

Coded aperture CS imagers 
(CASSI, Brady et al)
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additive noise
what if unknown gains? 

Blind Calibration Problem:
Recover x (signal) and d (gains) in

our approach

yl = diag(d)Alx+ ⌘, 1 6 l 6 p

Central questions:
■ Efficient algorithm? 
■ Minimal sample complexity: mp ? 
■ Minimal snapshot number: p ? 
■ Robustness vs η?

(for sub-Gaussian Al)

yi ' hai,xi = a

T
i x



Intrinsic ambiguity (in noiseless case)

‣   
‣ Scaling ambiguity: 
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Let S := {(x0,d0) : diag(d0)Alx
0 = diag(d)Alx = yl, 1 6 l 6 p}

(x⇤,d⇤) 2 S $ 8↵ 6= 0, ( 1
↵ x

⇤,↵d⇤) 2 S !



Intrinsic ambiguity (in noiseless case)

‣   
‣ Scaling ambiguity:  

Our context: 
‣ Gain calibration: 
‣ Let’s assume (wlog):  
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0 6 di ⇡ 1, 1 6 i 6 m

P
i di = m,

or d 2 ⇧

+
m = {w 2 Rm

+ : 1>
mw =

P
i wi = m}

(Scaled) probability simplex
⇧+

m
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Intrinsic ambiguity (in noiseless case)

‣   
‣ Scaling ambiguity:  

Our context: 
‣ Gain calibration: 
‣ Let’s assume (wlog): 

       + perturbation analysis:  
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P
i di = m,

or d 2 ⇧

+
m = {w 2 Rm

+ : 1>
mw =

P
i wi = m}

|di � 1| 6 ⇢ < 1

) d 2 1+ ⇢Bm
1

(for some 0 6 ⇢ < 1)

⇧+
m

1 + ⇢Bm
1

C⇢

We define C⇢ := ⇧+
m \ (1+ ⇢Bm

1))
our optimization space!

Let S := {(x0,d0) : diag(d0)Alx
0 = diag(d)Alx = yl, 1 6 l 6 p}

(x⇤,d⇤) 2 S $ 8↵ 6= 0, ( 1
↵ x

⇤,↵d⇤) 2 S !

0 6 di ⇡ 1, 1 6 i 6 m



A Non-Convex Optimisation Problem
‣ Blind Calibration Problem: 

‣ Non-convex (bi-convex) but maybe locally convex? 
‣ Idea: initialize + (projected) gradient descent 

     (as in Phase-Retrival via Wirtinger flow,  
        e.g., [Candès, Li, 2015] [White et al., 2015]  
              [Ling, Strohmer, Wei, 2016])
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(x̂, d̂) = argmin
⇠2Rn,�2C⇢

1
2mp

Pp
l=1 k diag(d)Alx| {z }

yl

� diag(�)Al⇠k22



Geometric Analysis
‣ Low-dimensional intuitive example: 
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�, ⇠ 2 R2, i.e., n = m = 2,

k⇠k = 1, � = (1 + r, 1� r) 2 ⇧+
2 , r 2 R

! Optimization space: (⇠1, ⇠2, r) on a cylinder.

increasing p p = 1

We study the variations of f(⇠,�) := 1
2mp

Pp
l=1 kyl � diag(�)Al⇠k2

around (x1, x2, ⇢) = (

1p
2
,� 1p

2
, 0.08)

r

log f(⇠,�), p = 1

⇠1 ⇠2



Geometric Analysis
‣ Low-dimensional intuitive example: 
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�, ⇠ 2 R2, i.e., n = m = 2,

k⇠k = 1, � = (1 + r, 1� r) 2 ⇧+
2 , r 2 R

! Optimization space: (⇠1, ⇠2, r) on a cylinder.

increasing p p = 1

“ellipsoid”

We study the variations of f(⇠,�) := 1
2mp

Pp
l=1 kyl � diag(�)Al⇠k2

around (x1, x2, ⇢) = (

1p
2
,� 1p

2
, 0.08)

r r r r

log f(⇠,�), p = 1 log f(⇠,�), p = 2 log f(⇠,�), p = 3 logEf(⇠,�)

⇠1 ⇠2 ⇠1 ⇠2 ⇠1 ⇠2 ⇠1 ⇠2



Geometric Analysis
‣ Conclusion:  
‣ Hope for local convexity 

in a neighborhood (an “ellipsoid” of radius   ) 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D,⇢ :=
�
(⇠,�) 2 Rn ⇥ C⇢ : �(⇠,�) 6 2kx?k22

 

with distance �(⇠,�) := k⇠ � x

?k2 + kx?k2

m k� � d

?k2

⇡⇢ 2Ef(⇠,�) if � 2 C⇢.






Solution by Projected Gradient Descent
‣ Algorithm:
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1: Initialize ⇠0 :=
1
mp

Pp
l=1 (Al)

> y l , �0 := 111m, k := 0.
2: while stop criteria not met do

3:

(
µ⇠ := argmin�2R f (⇠k � �r⇠f (⇠k , �k), �k)
µ� := argmin�2R f (⇠k , �k � �r?� f (⇠k , �k))

{Line search in ⇠, �}

4: ⇠k+1 := ⇠k � µ⇠r⇠f (⇠k , �k) {Signal Update}
5: �

k+1
:= �k � µ� r?� f (⇠k , �k) {Gain Update}

6: �k+1 := PC⇢�k+1 {Projection on C⇢}
7: k := k + 1
8: end while

f(⇠,�)

(⇠0,�0)

(x⇤,d⇤)

f(⇠,�) := 1
2mp

Pp
l=1 kyl � diag(�)Al⇠k2

(almost dumb …
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1: Initialize ⇠0 :=
1
mp

Pp
l=1 (Al)

> y l , �0 := 111m, k := 0.
2: while stop criteria not met do

3:

(
µ⇠ := argmin�2R f (⇠k � �r⇠f (⇠k , �k), �k)
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{Line search in ⇠, �}

4: ⇠k+1 := ⇠k � µ⇠r⇠f (⇠k , �k) {Signal Update}
5: �

k+1
:= �k � µ� r?� f (⇠k , �k) {Gain Update}

6: �k+1 := PC⇢�k+1 {Projection on C⇢}
7: k := k + 1
8: end while

f(⇠,�)

(⇠0,�0)

(x⇤,d⇤)

D,⇢

Prop. Let 0 < � < 1, t > 0, and define 2
:= �2 + ⇢2.

If

mp & ��2
(m+ n) log(n/�) and n & t log(mp),

then

(⇠0,�0) 2 D,⇢,

with prob. failure . e�c�2mp
+ (mp)�t

(c > 0).

… but not so bad 
  initialization!)

) k⇠0 � x

?k2 + kx?k2

m k�0 � d

?k2 6 2kx⇤k2

f(⇠,�) := 1
2mp

Pp
l=1 kyl � diag(�)Al⇠k2

(almost dumb …
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1: Initialize ⇠0 :=
1
mp

Pp
l=1 (Al)

> y l , �0 := 111m, k := 0.
2: while stop criteria not met do

3:

(
µ⇠ := argmin�2R f (⇠k � �r⇠f (⇠k , �k), �k)
µ� := argmin�2R f (⇠k , �k � �r?� f (⇠k , �k))

{Line search in ⇠, �}

4: ⇠k+1 := ⇠k � µ⇠r⇠f (⇠k , �k) {Signal Update}
5: �

k+1
:= �k � µ� r?� f (⇠k , �k) {Gain Update}

6: �k+1 := PC⇢�k+1 {Projection on C⇢}
7: k := k + 1
8: end while

r?� f (⇠, �) := P111?mr�f (⇠, �)

technical requirement for proofs  
(not required in experiments)

f(⇠,�)

(⇠0,�0)

(x⇤,d⇤)

D,⇢

1: Initialise ⇠0 :=
1
mp

Pp
l=1 (Al)

> y l , �0 := 111m, k := 0.
2: while stop criteria not met do

3:

(
µ⇠ := argmin�2R f (⇠k � �r⇠f (⇠k , �k), �k)
µ� := argmin�2R f (⇠k , �k � �r?� f (⇠k , �k))

{Line search in ⇠, �}

4: ⇠k+1 := ⇠k � µ⇠r⇠f (⇠k , �k) {Signal Update}
5: �

k+1
:= �k � µ� r?� f (⇠k , �k) {Gain Update}

6: �k+1 := PC⇢�k+1 {Projection on C⇢}
7: k := k + 1
8: end while

f(⇠,�) := 1
2mp

Pp
l=1 kyl � diag(�)Al⇠k2

(for some step sizes µ⇠, µ� > 0)
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1: Initialize ⇠0 :=
1
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(not required in experiments)
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D,⇢

f(⇠,�) := 1
2mp

Pp
l=1 kyl � diag(�)Al⇠k2
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Convergence to        ?(x⇤,d⇤)

with �(⇠,�) := k⇠ � x

?k2 + kx?k2

m k� � d

?k2

… we need to prove regularity on angles and magnitudes! 

f(⇠,�) := 1
2mp

Pp
l=1 kyl � diag(�)Al⇠k2

�(⇠k+1,�k+1)  �(⇠k+1,�k+1
) <

?
�(⇠k,�k)?

(from PC⇢)

(at any k � 0)

1: Initialize ⇠0 :=
1
mp

Pp
l=1 (Al)

> y l , �0 := 111m, k := 0.
2: while stop criteria not met do

3:

(
µ⇠ := argmin�2R f (⇠k � �r⇠f (⇠k , �k), �k)
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r?� f (⇠, �) := P111?mr�f (⇠, �)

1: Initialise ⇠0 :=
1
mp

Pp
l=1 (Al)

> y l , �0 := 111m, k := 0.
2: while stop criteria not met do

3:

(
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k+1
:= �k � µ� r?� f (⇠k , �k) {Gain Update}
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8: end while

(for some step sizes µ⇠, µ� > 0)
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r?� f (⇠, �) := P111?mr�f (⇠, �)

Convergence to        ?(x⇤,d⇤)

with �(⇠,�) := k⇠ � x

?k2 + kx?k2

m k� � d

?k2

�(⇠k+1,�k+1
) =�(⇠k,�k)� 2

Gradient Angle Partz }| {�
µ
⇠

hr
⇠

f(⇠k,�k), ⇠k � x

?i+ µ
�

kx?k2
2

m hr?
�

f(⇠k,�k),�k � g

?i
�

+ µ2
⇠

kr
⇠

f(⇠k,�k)k22 + µ2
�

kx?k2
2

m kr?
�

f(⇠k,�k)k22| {z }
Gradient Magnitude Part

<
?

�(⇠k,�k)

… we need to prove regularity on angles and magnitudes! 

f(⇠,�) := 1
2mp

Pp
l=1 kyl � diag(�)Al⇠k2

(must be > 0)

(must bounded)

1

2
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1
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(x⇤,d⇤)

D,⇢

Prop. Let 0 < � < 1, t > 0, and define 2
:= �2 + ⇢2. If n & t log(mp),

mp & ��2
(m+ n) log(n/�) and p & ��2

logm,

and if

⇢ < 1
9 (1� 2�),

then, 9 ⌘, L > 0 (only depending on � and ⇢) such that, 8 (⇠,�) 2 D,⇢,

D
r?f(⇠,�),

h
⇠�x

?

��d

?

iE
� 1

2⌘�(⇠,�) (Bounded angle)

kr?f(⇠,�)k2  L2
�(⇠,�) (Lipschitz gradient)

with prob. failure . e�c�2mp
+ e�c0�2p

+ (mp)�t
(for some c, c0 > 0).

Proof ingredients:

Measure concentration on sub-Gaussian r.v., Matrix Bernstein inequality,

non-uniformity wrt x

⇤
and d

⇤
.

1
2
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(x⇤,d⇤)

D,⇢

Prop. Let 0 < � < 1, t > 0, and define 2
:= �2 + ⇢2. If n & t log(mp),

mp & ��2
(m+ n) log(n/�) and p & ��2

logm,

and if

⇢ < 1
9 (1� 2�),

then, 9 ⌘, L > 0 (only depending on � and ⇢) such that, 8 (⇠,�) 2 D,⇢,

D
r?f(⇠,�),

h
⇠�x

?

��d

?

iE
� 1

2⌘�(⇠,�) (Bounded angle)

kr?f(⇠,�)k2  L2
�(⇠,�) (Lipschitz gradient)

with prob. failure . e�c�2mp
+ e�c0�2p

+ (mp)�t
(for some c, c0 > 0).

) kr?f(⇠,�)k 6= 0 but on the solution in D,⇢!

) allows convergence for µ� = µ⇠
m

kx⇤k .

(no spurious minima)



Convergence to          ?
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(x⇤,d⇤)

Theorem. Let 0 < � < 1, t > 0, and define 2 := �2 + ⇢2. If

n & t log(mp), mp & ��2(m+ n) log(n/�) and p & ��2 logm,

and if
⇢ < 1

9 (1� 2�),

then, 9 ⌘, L > 0 (only depending on � and ⇢) such that, with probability exceeding

1� C
⇥
e�c�2p + e�c�2mp + (mp)�t⇤

for some C, c > 0, our descent algorithm initialized on (⇠0,�0) with µ
⇠

= µ and µ
�

= µ m
kx?k22

gives jointly, at each iteration k,

(⇠k,�k) 2 D,⇢ and �(⇠k,�k) 
�
1� ⌘µ+ L2

⌧ µ2�k2 kx?k22,

provided µ 2
�
0, ⌘kx?k2

mL2+kx?k2L2

�
. Hence, �(⇠k,�k) �!

k!1
0.

Combining previous propositions gives then …

Roughly speaking, for ⇢ small enough,

we need n and p > 1 large enough,

and mp & (m+ n) log(n/�) observations.

< 1z }| {



Empirical Phase Transition
‣ To test the problem’s phase transition we measure the probability of successful recovery                                         

 
 
for 256 randomly generated problem instances (per point). 

26

P⇣ :

= P
h

max

n

kd̂�d

?k2

kd?k2
, kx̂�x

?k2

kx?k2

o

< ⇣
i

, (x?,d?
) 2 Bn ⇥ C⇢, n = 2

8

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

0.25

0.5

0.75

0.9
0.95

0.99

log2m

l
o
g

2
p

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

0.25

0.5

0.75

0.9

0.95

0.99

log2m

l
o
g

2
p

⇢ increases (10�3 ! 10�1/2)



Empirical Phase Transition
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l

o

g

2 m
p
=

l

o

g

2
(n
+

m
)

l

o

g

2 m
p
=

l

o

g

2
(n
+
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)

P⇣ :

= P
h

max

n

kd̂�d

?k2

kd?k2
, kx̂�x

?k2

kx?k2

o

< ⇣
i

, (x?,d?
) 2 Bn ⇥ C⇢, n = 2
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(Randomized) Computational Imaging
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Imaging you must recalibrate an imager 
that is far far away?
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Problem Setup and Motivation

x

yi,l
i-th sensor

l-th snapshot

dihai,l, ·i

Problem Setup:

x 2 Rn
Fixed unstructured signal

d 2 Rm
+

Fixed positive and bounded gains

ai,l 2 Rn Random i.i.d. sensing vectors
(isotropic, sub-Gaussian)

We tackle the noiseless uncalibrated sensing model:

yi,l = dia
⇤
i,lx 8i 2 [m], l 2 [p]

or in matrix form

yl = diag(d)Al x 8l 2 [p]

with dimensions:

n Ambient space of sensed signal

m Uncalibrated sensors/pixels

p Snapshots under random sensing model

Examples: Pixel non-uniformity, vignetting, fixed
pattern noise in (compressive) imaging systems,. . .

How many random measurements do we need to perform blind calibration? Which sample complexity?
Do mp & n log(mp) su�ce for an exact recovery of (x,d) up to global scaling?

Prior Works: lifting approach with sparsity [1], convex optimisation with multiple sparse xl [2], total least-
squares with multiple xl [3]. Our approach is inspired by [5].

A Non-Convex Formulation of Blind Calibration

We solve the blind calibration problem by (NC-BCP) around (x,d):

(

ˆ

x, ˆd) = argmin

⇠2Rn,�2⇧m
+

1

2mp

p
X

l=1

kdiag(�)Al⇠ � ylk2
2

with ⇧

m
+

= {� 2 Rm
+

, 1⇤m� = m} (NC-BCP)

Note that:

⌅ f (⇠,�) := 1

2mp
Pp

l=1 kdiag(�)Al⇠ �
yl

z }| {

diag(d)Alx k2
2

is a very natural Euclidean energy function.

⌅ Global minimisers:
n

(⇠ 2 Rn,� 2 Rm
: ⇠ =

1

↵x,� = ↵d,↵ 2 R
o

) ambiguous scaling ↵. Let us fix

↵ :=

m
kdk

1

: unique global minimiser (x?,d?) =
⇣kdk

1

m x, m
kdk

1

d

⌘

, i.e.,�,d? 2 ⇧

m
+

.

⌅ Generally 9(⇠,�) : Hf (⇠,�) ✏ 0. Non-convex in (⇠,�); convex in ⇠ given d, and vv. (biconvex [1]).

⌅ There exists ⇢ > 0 : d = 1m + !,! 2 1

?
m \ ⇢Bm1. Thus ⇢ � kd � 1mk1 2 [0, 1) is the maximum

deviation from unit gain. Problem in � is fully mapped to the variations " 2 1

?
m \ Bm1 : � = 1m + ".

Geometric Intuition in R2 ⌦R2
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Local convexity

n = m = 2

d = 1m + ⇢ 1p
2

⇥�1 1

⇤>

� = 1m + r 1p
2

⇥�1 1

⇤>

ai,l⇠i.i.d.N (0n, In)

Main Ingredients

⌅ As p ! 1, problem (NC-BCP) ap-
proaches local convexity in expectation,
i.e.,E

ai,l[Hf (⇠,�)] ⌫ 0 if � 2 ⇧

m
+

(i.e., for
the constrained problem) projected Hessian).

⌅ Concentration inequalities [4, The-
orem 1.4] w.r.t. matrix functions
of ai,l allow for a controlled de-

cay of
�

�

�

rf (⇠,�)� E
ai,l[rf (⇠,�)]

�

�

�

2

,
�

�

�

Hf (⇠,�)� E
ai,l[Hf (⇠,�)]

�

�

�

2

.

p!1

Level curve at k⇠k2 = 1, where the global minimum x =

1p
2

⇥

1 �1⇤> lies. Vertical axis r parametrises 1?2 .

Solution by Projected Gradient Descent

We start from a“smart” initialisation (⇠

0

,�
0

) and solve (NC-BCP) by projected gradient descent with

r
⇠

f (⇠,�) = 1

mp
Pp

l=1 (Al)
⇤
diag(�) (diag(�)Al⇠ � yl) (1)

r?
�

f (⇠,�) = P
1

?
m\Bm1

h

1

mp
Pp

l=1 diag (Al⇠) (diag(�)Al⇠ � yl)

i

(2)

1: Initialise k  0, �
0

 1m, ⇠
0

 1

mp
Pp

l=1 (Al)
⇤
yl {Backprojection}

2: while convergence criteria not met do
3: k  k + 1

4: ⇠k  ⇠k�1 � µr
⇠

f (⇠k�1,�k�1)
5: �k  �k�1 � µr?

�

f (⇠k�1,�k�1)
6: end while

Provable Guarantees: “Initialise & Converge”

Our signal-domain initialisation ⇠

0

lies in a `
2

-ball centred on x w.v.h.p. as p increases. In fact, E
ai,l[⇠0] =

x) ⇠

0

unbiased estimator of the solution.

Proposition 1 (Initialisation Proximity [6]). In the Problem Setup, let ⇠

0

:=

1

mp
Pm

i=1
Pp

l=1 diai,la
⇤
i,lx; if

the sample complexity

mp & (1 + ⇢2)✏�2n logmp (log n + log

1/⌘) and n & 1 + (logmp)�1 log 1/⌘ (3)

then, with probability exceeding 1� 2⌘, ⌘ 2 (0, 1), we have that ⇠
0

� x 2 ✏kxk
2

Bn
2

.

Moreover, by the Problem Setup the gain-domain initialisation �

0

:= 1m : �

0

� d 2 1

?
m \ ⇢Bm1.

Proposition 2 (Convergence of NC-BCP [6]). In the Problem Setup, let ✏ 2
h

0, 1
2

⌘

and ⇢ 2


0, 1�2✏
1+

✏
2

◆

.

Fix (⇠, ") : ⇠ � x 2 ✏kxk
2

Bn
2

, " 2 1

?
m \ ⇢Bm1. If the sample complexity

mp & ✏�2n logmp(log n + log

1/⌘) and n & 1 + (logmp)�1 log 1/⌘ (4)

then, with probability exceeding 1� 9⌘, ⌘ 2 (0, 1), we have that
⌧r

⇠

f (⇠,�)

r?
�

f (⇠,�)

�

,



⇠ � x

� � d

��

� �0
⇣

k⇠ � xk2
2

+ k"� !k2
2

⌘

(5)

kr
⇠

f (⇠,�)k2
2

+ kr?
�

f (⇠,�)k2
2

 �00
�k⇠ � xk2

2

+ k"� !k2
2

�

(6)

with �0 := 1� 2✏� ⇢
2

(2 + ✏), �00 := 2

m2

h

�

m(1 + ⇢2) + (1 + ✏)2
�

2

+

1

5

m2✏4
i

.

Furthermore, if µ  2�0
�00 then with probability 1� 9k⌘ at iteration k we have that

k⇠k � xk2
2


⇣

1� 2�0µ + �00µ2
⌘k

✏2kxk2
2

and k�k � dk2
2


⇣

1� 2�0µ + �00µ2
⌘k

m⇢2 (7)

Numerical Experiments
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1 ⌅ The empirical phase transition of (NC-BCP) is
explored for m = n = 2

8, p = {21, . . . , 28} and
⇢ = {10�3, . . . , 1}.

⌅ We generate 200 random instances per configura-
tion by ai,l⇠N (0n, In),x ⇠ N (0n, In), ran-
dom d 2 ⇧

m
+

: k!k1 = ⇢.

⌅
(

ˆ

x, ˆd) is obtained by our descent algorithm with
exact line search instead of fixed step µ to en-
hance convergence.

⌅ In noiseless regime, we set the stop criterion to
achieving f (⇠,�) ' 10

�8.

Application to Uncalibrated (Compressive) Imaging

Fixed signal x

x̂ with LS,

unstructured d

x̂ with

LS,structured d

Unstructured

d, ⇢ = 1/2
x̂ with NC-BCP,

unstructured d

d̂ with NC-BCP,

unstructured d

Structured

d, ⇢ = 9/10
x̂ with NC-BCP,

structured d

d̂ with NC-BCP,

structured d

⌅ “Far, far away”, calibration is a necessarily
blind and unstructured problem!

⌅ Applications where calibration is inevitable,
hard , randomised (e.g., compressive)
sensing systems to leverage diversity.

⌅ Example: x is an image of Pluto with m =

n = 4096 pixel, p = 4 snapshots with i.i.d.
Gaussian ai,l. d is unstructured (pixel non-
uniformity) or structured (vignetting).

⌅ The recovered (

ˆ

x, ˆd) ⌘
(x,d) by (NC-BCP) attains
max{RMSE

x

,RMSE

d

} ⇡ �147.38 dB.
⌅ Admitting a model error, least-squares (LS)

attains RMSE

x

⇡ �5.50 dB.

Conclusion and Open Questions

We observed a sample complexity that is essentially linear in the dimension of the signal being estimated. We
anticipate a very favourable noise sensitivity analysis. Sparsity priors could also be enforced on x to allow blind
calibration of randomised sensing systems operating in a compressive regime. Finally, the sample complexity for
partial random ensembles (Fourier, random convolution, . . . ) is unknown, and practically very relevant.
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Problem Setup:

x 2 Rn
Fixed unstructured signal

d 2 Rm
+

Fixed positive and bounded gains

ai,l 2 Rn Random i.i.d. sensing vectors
(isotropic, sub-Gaussian)

We tackle the noiseless uncalibrated sensing model:

yi,l = dia
⇤
i,lx 8i 2 [m], l 2 [p]

or in matrix form

yl = diag(d)Al x 8l 2 [p]

with dimensions:

n Ambient space of sensed signal

m Uncalibrated sensors/pixels

p Snapshots under random sensing model

Examples: Pixel non-uniformity, vignetting, fixed
pattern noise in (compressive) imaging systems,. . .

How many random measurements do we need to perform blind calibration? Which sample complexity?
Do mp & n log(mp) su�ce for an exact recovery of (x,d) up to global scaling?

Prior Works: lifting approach with sparsity [1], convex optimisation with multiple sparse xl [2], total least-
squares with multiple xl [3]. Our approach is inspired by [5].

A Non-Convex Formulation of Blind Calibration

We solve the blind calibration problem by (NC-BCP) around (x,d):

(

ˆ

x, ˆd) = argmin

⇠2Rn,�2⇧m
+

1

2mp

p
X

l=1

kdiag(�)Al⇠ � ylk2
2

with ⇧

m
+

= {� 2 Rm
+

, 1⇤m� = m} (NC-BCP)

Note that:

⌅ f (⇠,�) := 1

2mp
Pp

l=1 kdiag(�)Al⇠ �
yl

z }| {

diag(d)Alx k2
2

is a very natural Euclidean energy function.

⌅ Global minimisers:
n

(⇠ 2 Rn,� 2 Rm
: ⇠ =

1

↵x,� = ↵d,↵ 2 R
o

) ambiguous scaling ↵. Let us fix

↵ :=

m
kdk

1

: unique global minimiser (x?,d?) =
⇣kdk

1

m x, m
kdk

1

d

⌘

, i.e.,�,d? 2 ⇧

m
+

.

⌅ Generally 9(⇠,�) : Hf (⇠,�) ✏ 0. Non-convex in (⇠,�); convex in ⇠ given d, and vv. (biconvex [1]).

⌅ There exists ⇢ > 0 : d = 1m + !,! 2 1

?
m \ ⇢Bm1. Thus ⇢ � kd � 1mk1 2 [0, 1) is the maximum

deviation from unit gain. Problem in � is fully mapped to the variations " 2 1

?
m \ Bm1 : � = 1m + ".
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ai,l⇠i.i.d.N (0n, In)

Main Ingredients

⌅ As p ! 1, problem (NC-BCP) ap-
proaches local convexity in expectation,
i.e.,E

ai,l[Hf (⇠,�)] ⌫ 0 if � 2 ⇧

m
+

(i.e., for
the constrained problem) projected Hessian).

⌅ Concentration inequalities [4, The-
orem 1.4] w.r.t. matrix functions
of ai,l allow for a controlled de-

cay of
�

�
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rf (⇠,�)� E
ai,l[rf (⇠,�)]

�

�

�
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Level curve at k⇠k2 = 1, where the global minimum x =
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Solution by Projected Gradient Descent

We start from a“smart” initialisation (⇠

0

,�
0

) and solve (NC-BCP) by projected gradient descent with

r
⇠

f (⇠,�) = 1

mp
Pp

l=1 (Al)
⇤
diag(�) (diag(�)Al⇠ � yl) (1)

r?
�

f (⇠,�) = P
1

?
m\Bm1

h

1

mp
Pp

l=1 diag (Al⇠) (diag(�)Al⇠ � yl)

i

(2)

1: Initialise k  0, �
0

 1m, ⇠
0

 1

mp
Pp

l=1 (Al)
⇤
yl {Backprojection}

2: while convergence criteria not met do
3: k  k + 1

4: ⇠k  ⇠k�1 � µr
⇠

f (⇠k�1,�k�1)
5: �k  �k�1 � µr?

�

f (⇠k�1,�k�1)
6: end while

Provable Guarantees: “Initialise & Converge”

Our signal-domain initialisation ⇠

0

lies in a `
2

-ball centred on x w.v.h.p. as p increases. In fact, E
ai,l[⇠0] =

x) ⇠

0

unbiased estimator of the solution.

Proposition 1 (Initialisation Proximity [6]). In the Problem Setup, let ⇠

0

:=

1

mp
Pm

i=1
Pp

l=1 diai,la
⇤
i,lx; if

the sample complexity

mp & (1 + ⇢2)✏�2n logmp (log n + log

1/⌘) and n & 1 + (logmp)�1 log 1/⌘ (3)

then, with probability exceeding 1� 2⌘, ⌘ 2 (0, 1), we have that ⇠
0

� x 2 ✏kxk
2

Bn
2

.

Moreover, by the Problem Setup the gain-domain initialisation �

0

:= 1m : �

0

� d 2 1

?
m \ ⇢Bm1.

Proposition 2 (Convergence of NC-BCP [6]). In the Problem Setup, let ✏ 2
h

0, 1
2

⌘

and ⇢ 2


0, 1�2✏
1+

✏
2

◆

.

Fix (⇠, ") : ⇠ � x 2 ✏kxk
2

Bn
2

, " 2 1

?
m \ ⇢Bm1. If the sample complexity

mp & ✏�2n logmp(log n + log

1/⌘) and n & 1 + (logmp)�1 log 1/⌘ (4)

then, with probability exceeding 1� 9⌘, ⌘ 2 (0, 1), we have that
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�
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Furthermore, if µ  2�0
�00 then with probability 1� 9k⌘ at iteration k we have that
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1 ⌅ The empirical phase transition of (NC-BCP) is
explored for m = n = 2

8, p = {21, . . . , 28} and
⇢ = {10�3, . . . , 1}.

⌅ We generate 200 random instances per configura-
tion by ai,l⇠N (0n, In),x ⇠ N (0n, In), ran-
dom d 2 ⇧

m
+

: k!k1 = ⇢.

⌅
(

ˆ

x, ˆd) is obtained by our descent algorithm with
exact line search instead of fixed step µ to en-
hance convergence.

⌅ In noiseless regime, we set the stop criterion to
achieving f (⇠,�) ' 10

�8.

Application to Uncalibrated (Compressive) Imaging

Fixed signal x

x̂ with LS,

unstructured d

x̂ with

LS,structured d

Unstructured

d, ⇢ = 1/2
x̂ with NC-BCP,

unstructured d

d̂ with NC-BCP,

unstructured d

Structured

d, ⇢ = 9/10
x̂ with NC-BCP,

structured d

d̂ with NC-BCP,

structured d

⌅ “Far, far away”, calibration is a necessarily
blind and unstructured problem!

⌅ Applications where calibration is inevitable,
hard , randomised (e.g., compressive)
sensing systems to leverage diversity.

⌅ Example: x is an image of Pluto with m =

n = 4096 pixel, p = 4 snapshots with i.i.d.
Gaussian ai,l. d is unstructured (pixel non-
uniformity) or structured (vignetting).

⌅ The recovered (

ˆ

x, ˆd) ⌘
(x,d) by (NC-BCP) attains
max{RMSE

x

,RMSE

d

} ⇡ �147.38 dB.
⌅ Admitting a model error, least-squares (LS)

attains RMSE

x

⇡ �5.50 dB.

Conclusion and Open Questions

We observed a sample complexity that is essentially linear in the dimension of the signal being estimated. We
anticipate a very favourable noise sensitivity analysis. Sparsity priors could also be enforced on x to allow blind
calibration of randomised sensing systems operating in a compressive regime. Finally, the sample complexity for
partial random ensembles (Fourier, random convolution, . . . ) is unknown, and practically very relevant.
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Problem Setup and Motivation

x
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dihai,l, ·i

Problem Setup:

x 2 Rn
Fixed unstructured signal

d 2 Rm
+

Fixed positive and bounded gains

ai,l 2 Rn Random i.i.d. sensing vectors
(isotropic, sub-Gaussian)

We tackle the noiseless uncalibrated sensing model:

yi,l = dia
⇤
i,lx 8i 2 [m], l 2 [p]

or in matrix form

yl = diag(d)Al x 8l 2 [p]

with dimensions:

n Ambient space of sensed signal

m Uncalibrated sensors/pixels

p Snapshots under random sensing model

Examples: Pixel non-uniformity, vignetting, fixed
pattern noise in (compressive) imaging systems,. . .

How many random measurements do we need to perform blind calibration? Which sample complexity?
Do mp & n log(mp) su�ce for an exact recovery of (x,d) up to global scaling?

Prior Works: lifting approach with sparsity [1], convex optimisation with multiple sparse xl [2], total least-
squares with multiple xl [3]. Our approach is inspired by [5].

A Non-Convex Formulation of Blind Calibration

We solve the blind calibration problem by (NC-BCP) around (x,d):

(

ˆ

x, ˆd) = argmin

⇠2Rn,�2⇧m
+

1

2mp

p
X

l=1

kdiag(�)Al⇠ � ylk2
2

with ⇧

m
+

= {� 2 Rm
+

, 1⇤m� = m} (NC-BCP)

Note that:

⌅ f (⇠,�) := 1

2mp
Pp

l=1 kdiag(�)Al⇠ �
yl

z }| {

diag(d)Alx k2
2

is a very natural Euclidean energy function.

⌅ Global minimisers:
n

(⇠ 2 Rn,� 2 Rm
: ⇠ =

1

↵x,� = ↵d,↵ 2 R
o

) ambiguous scaling ↵. Let us fix

↵ :=

m
kdk
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: unique global minimiser (x?,d?) =
⇣kdk
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m x, m
kdk
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⌘
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.

⌅ Generally 9(⇠,�) : Hf (⇠,�) ✏ 0. Non-convex in (⇠,�); convex in ⇠ given d, and vv. (biconvex [1]).

⌅ There exists ⇢ > 0 : d = 1m + !,! 2 1

?
m \ ⇢Bm1. Thus ⇢ � kd � 1mk1 2 [0, 1) is the maximum

deviation from unit gain. Problem in � is fully mapped to the variations " 2 1

?
m \ Bm1 : � = 1m + ".
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Local convexity
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Main Ingredients

⌅ As p ! 1, problem (NC-BCP) ap-
proaches local convexity in expectation,
i.e.,E

ai,l[Hf (⇠,�)] ⌫ 0 if � 2 ⇧

m
+

(i.e., for
the constrained problem) projected Hessian).

⌅ Concentration inequalities [4, The-
orem 1.4] w.r.t. matrix functions
of ai,l allow for a controlled de-
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Solution by Projected Gradient Descent

We start from a“smart” initialisation (⇠

0

,�
0

) and solve (NC-BCP) by projected gradient descent with

r
⇠

f (⇠,�) = 1

mp
Pp

l=1 (Al)
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diag(�) (diag(�)Al⇠ � yl) (1)
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1: Initialise k  0, �
0

 1m, ⇠
0

 1

mp
Pp

l=1 (Al)
⇤
yl {Backprojection}

2: while convergence criteria not met do
3: k  k + 1

4: ⇠k  ⇠k�1 � µr
⇠

f (⇠k�1,�k�1)
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f (⇠k�1,�k�1)
6: end while

Provable Guarantees: “Initialise & Converge”

Our signal-domain initialisation ⇠

0

lies in a `
2

-ball centred on x w.v.h.p. as p increases. In fact, E
ai,l[⇠0] =
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unbiased estimator of the solution.

Proposition 1 (Initialisation Proximity [6]). In the Problem Setup, let ⇠
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Moreover, by the Problem Setup the gain-domain initialisation �
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Furthermore, if µ  2�0
�00 then with probability 1� 9k⌘ at iteration k we have that
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2
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Numerical Experiments
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1 ⌅ The empirical phase transition of (NC-BCP) is
explored for m = n = 2

8, p = {21, . . . , 28} and
⇢ = {10�3, . . . , 1}.

⌅ We generate 200 random instances per configura-
tion by ai,l⇠N (0n, In),x ⇠ N (0n, In), ran-
dom d 2 ⇧

m
+

: k!k1 = ⇢.

⌅
(

ˆ

x, ˆd) is obtained by our descent algorithm with
exact line search instead of fixed step µ to en-
hance convergence.

⌅ In noiseless regime, we set the stop criterion to
achieving f (⇠,�) ' 10

�8.

Application to Uncalibrated (Compressive) Imaging

Fixed signal x

x̂ with LS,

unstructured d

x̂ with

LS,structured d

Unstructured

d, ⇢ = 1/2
x̂ with NC-BCP,

unstructured d

d̂ with NC-BCP,

unstructured d

Structured

d, ⇢ = 9/10
x̂ with NC-BCP,

structured d

d̂ with NC-BCP,

structured d

⌅ “Far, far away”, calibration is a necessarily
blind and unstructured problem!

⌅ Applications where calibration is inevitable,
hard , randomised (e.g., compressive)
sensing systems to leverage diversity.

⌅ Example: x is an image of Pluto with m =

n = 4096 pixel, p = 4 snapshots with i.i.d.
Gaussian ai,l. d is unstructured (pixel non-
uniformity) or structured (vignetting).

⌅ The recovered (

ˆ

x, ˆd) ⌘
(x,d) by (NC-BCP) attains
max{RMSE

x

,RMSE

d

} ⇡ �147.38 dB.
⌅ Admitting a model error, least-squares (LS)

attains RMSE

x

⇡ �5.50 dB.

Conclusion and Open Questions

We observed a sample complexity that is essentially linear in the dimension of the signal being estimated. We
anticipate a very favourable noise sensitivity analysis. Sparsity priors could also be enforced on x to allow blind
calibration of randomised sensing systems operating in a compressive regime. Finally, the sample complexity for
partial random ensembles (Fourier, random convolution, . . . ) is unknown, and practically very relevant.
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with dimensions:
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How many random measurements do we need to perform blind calibration? Which sample complexity?
Do mp & n log(mp) su�ce for an exact recovery of (x,d) up to global scaling?

Prior Works: lifting approach with sparsity [1], convex optimisation with multiple sparse xl [2], total least-
squares with multiple xl [3]. Our approach is inspired by [5].

A Non-Convex Formulation of Blind Calibration

We solve the blind calibration problem by (NC-BCP) around (x,d):
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Note that:
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Main Ingredients

⌅ As p ! 1, problem (NC-BCP) ap-
proaches local convexity in expectation,
i.e.,E

ai,l[Hf (⇠,�)] ⌫ 0 if � 2 ⇧
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(i.e., for
the constrained problem) projected Hessian).
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Solution by Projected Gradient Descent

We start from a“smart” initialisation (⇠

0
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0

) and solve (NC-BCP) by projected gradient descent with
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1: Initialise k  0, �
0
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⇤
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2: while convergence criteria not met do
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Provable Guarantees: “Initialise & Converge”

Our signal-domain initialisation ⇠

0

lies in a `
2

-ball centred on x w.v.h.p. as p increases. In fact, E
ai,l[⇠0] =

x) ⇠
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unbiased estimator of the solution.

Proposition 1 (Initialisation Proximity [6]). In the Problem Setup, let ⇠
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then, with probability exceeding 1� 2⌘, ⌘ 2 (0, 1), we have that ⇠
0

� x 2 ✏kxk
2

Bn
2

.
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⌅ “Far, far away”, calibration is a necessarily
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sensing systems to leverage diversity.

⌅ Example: x is an image of Pluto with m =

n = 4096 pixel, p = 4 snapshots with i.i.d.
Gaussian ai,l. d is unstructured (pixel non-
uniformity) or structured (vignetting).
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⌅ Admitting a model error, least-squares (LS)
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Conclusion and Open Questions

We observed a sample complexity that is essentially linear in the dimension of the signal being estimated. We
anticipate a very favourable noise sensitivity analysis. Sparsity priors could also be enforced on x to allow blind
calibration of randomised sensing systems operating in a compressive regime. Finally, the sample complexity for
partial random ensembles (Fourier, random convolution, . . . ) is unknown, and practically very relevant.
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x

yi,l
i-th sensor

l-th snapshot

dihai,l, ·i

Problem Setup:

x 2 Rn
Fixed unstructured signal

d 2 Rm
+

Fixed positive and bounded gains

ai,l 2 Rn Random i.i.d. sensing vectors
(isotropic, sub-Gaussian)

We tackle the noiseless uncalibrated sensing model:

yi,l = dia
⇤
i,lx 8i 2 [m], l 2 [p]

or in matrix form

yl = diag(d)Al x 8l 2 [p]

with dimensions:

n Ambient space of sensed signal

m Uncalibrated sensors/pixels

p Snapshots under random sensing model

Examples: Pixel non-uniformity, vignetting, fixed
pattern noise in (compressive) imaging systems,. . .

How many random measurements do we need to perform blind calibration? Which sample complexity?
Do mp & n log(mp) su�ce for an exact recovery of (x,d) up to global scaling?

Prior Works: lifting approach with sparsity [1], convex optimisation with multiple sparse xl [2], total least-
squares with multiple xl [3]. Our approach is inspired by [5].

A Non-Convex Formulation of Blind Calibration

We solve the blind calibration problem by (NC-BCP) around (x,d):

(

ˆ

x, ˆd) = argmin

⇠2Rn,�2⇧m
+

1

2mp

p
X

l=1

kdiag(�)Al⇠ � ylk2
2

with ⇧

m
+

= {� 2 Rm
+

, 1⇤m� = m} (NC-BCP)

Note that:

⌅ f (⇠,�) := 1

2mp
Pp

l=1 kdiag(�)Al⇠ �
yl

z }| {

diag(d)Alx k2
2

is a very natural Euclidean energy function.

⌅ Global minimisers:
n

(⇠ 2 Rn,� 2 Rm
: ⇠ =

1

↵x,� = ↵d,↵ 2 R
o

) ambiguous scaling ↵. Let us fix

↵ :=

m
kdk

1

: unique global minimiser (x?,d?) =
⇣kdk

1

m x, m
kdk

1

d

⌘

, i.e.,�,d? 2 ⇧

m
+

.

⌅ Generally 9(⇠,�) : Hf (⇠,�) ✏ 0. Non-convex in (⇠,�); convex in ⇠ given d, and vv. (biconvex [1]).

⌅ There exists ⇢ > 0 : d = 1m + !,! 2 1

?
m \ ⇢Bm1. Thus ⇢ � kd � 1mk1 2 [0, 1) is the maximum

deviation from unit gain. Problem in � is fully mapped to the variations " 2 1

?
m \ Bm1 : � = 1m + ".
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Local convexity
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ai,l⇠i.i.d.N (0n, In)

Main Ingredients

⌅ As p ! 1, problem (NC-BCP) ap-
proaches local convexity in expectation,
i.e.,E

ai,l[Hf (⇠,�)] ⌫ 0 if � 2 ⇧

m
+

(i.e., for
the constrained problem) projected Hessian).

⌅ Concentration inequalities [4, The-
orem 1.4] w.r.t. matrix functions
of ai,l allow for a controlled de-

cay of
�

�

�

rf (⇠,�)� E
ai,l[rf (⇠,�)]
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Level curve at k⇠k2 = 1, where the global minimum x =
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2
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1 �1⇤> lies. Vertical axis r parametrises 1?2 .

Solution by Projected Gradient Descent

We start from a“smart” initialisation (⇠

0

,�
0

) and solve (NC-BCP) by projected gradient descent with

r
⇠

f (⇠,�) = 1

mp
Pp

l=1 (Al)
⇤
diag(�) (diag(�)Al⇠ � yl) (1)

r?
�

f (⇠,�) = P
1

?
m\Bm1

h

1

mp
Pp

l=1 diag (Al⇠) (diag(�)Al⇠ � yl)

i

(2)

1: Initialise k  0, �
0

 1m, ⇠
0

 1

mp
Pp

l=1 (Al)
⇤
yl {Backprojection}

2: while convergence criteria not met do
3: k  k + 1

4: ⇠k  ⇠k�1 � µr
⇠

f (⇠k�1,�k�1)
5: �k  �k�1 � µr?

�

f (⇠k�1,�k�1)
6: end while

Provable Guarantees: “Initialise & Converge”

Our signal-domain initialisation ⇠

0

lies in a `
2

-ball centred on x w.v.h.p. as p increases. In fact, E
ai,l[⇠0] =

x) ⇠

0

unbiased estimator of the solution.

Proposition 1 (Initialisation Proximity [6]). In the Problem Setup, let ⇠

0

:=

1

mp
Pm

i=1
Pp

l=1 diai,la
⇤
i,lx; if

the sample complexity

mp & (1 + ⇢2)✏�2n logmp (log n + log

1/⌘) and n & 1 + (logmp)�1 log 1/⌘ (3)

then, with probability exceeding 1� 2⌘, ⌘ 2 (0, 1), we have that ⇠
0

� x 2 ✏kxk
2

Bn
2

.

Moreover, by the Problem Setup the gain-domain initialisation �

0

:= 1m : �

0

� d 2 1

?
m \ ⇢Bm1.

Proposition 2 (Convergence of NC-BCP [6]). In the Problem Setup, let ✏ 2
h

0, 1
2

⌘

and ⇢ 2


0, 1�2✏
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2

◆

.

Fix (⇠, ") : ⇠ � x 2 ✏kxk
2
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2

, " 2 1

?
m \ ⇢Bm1. If the sample complexity

mp & ✏�2n logmp(log n + log

1/⌘) and n & 1 + (logmp)�1 log 1/⌘ (4)

then, with probability exceeding 1� 9⌘, ⌘ 2 (0, 1), we have that
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2
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m(1 + ⇢2) + (1 + ✏)2
�

2

+

1

5

m2✏4
i

.

Furthermore, if µ  2�0
�00 then with probability 1� 9k⌘ at iteration k we have that

k⇠k � xk2
2


⇣

1� 2�0µ + �00µ2
⌘k

✏2kxk2
2

and k�k � dk2
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1 ⌅ The empirical phase transition of (NC-BCP) is
explored for m = n = 2

8, p = {21, . . . , 28} and
⇢ = {10�3, . . . , 1}.

⌅ We generate 200 random instances per configura-
tion by ai,l⇠N (0n, In),x ⇠ N (0n, In), ran-
dom d 2 ⇧

m
+

: k!k1 = ⇢.

⌅
(

ˆ

x, ˆd) is obtained by our descent algorithm with
exact line search instead of fixed step µ to en-
hance convergence.

⌅ In noiseless regime, we set the stop criterion to
achieving f (⇠,�) ' 10

�8.

Application to Uncalibrated (Compressive) Imaging

Fixed signal x

x̂ with LS,

unstructured d

x̂ with

LS,structured d

Unstructured

d, ⇢ = 1/2
x̂ with NC-BCP,

unstructured d

d̂ with NC-BCP,

unstructured d

Structured

d, ⇢ = 9/10
x̂ with NC-BCP,

structured d

d̂ with NC-BCP,

structured d

⌅ “Far, far away”, calibration is a necessarily
blind and unstructured problem!

⌅ Applications where calibration is inevitable,
hard , randomised (e.g., compressive)
sensing systems to leverage diversity.

⌅ Example: x is an image of Pluto with m =

n = 4096 pixel, p = 4 snapshots with i.i.d.
Gaussian ai,l. d is unstructured (pixel non-
uniformity) or structured (vignetting).

⌅ The recovered (

ˆ

x, ˆd) ⌘
(x,d) by (NC-BCP) attains
max{RMSE

x

,RMSE

d

} ⇡ �147.38 dB.
⌅ Admitting a model error, least-squares (LS)

attains RMSE

x

⇡ �5.50 dB.

Conclusion and Open Questions

We observed a sample complexity that is essentially linear in the dimension of the signal being estimated. We
anticipate a very favourable noise sensitivity analysis. Sparsity priors could also be enforced on x to allow blind
calibration of randomised sensing systems operating in a compressive regime. Finally, the sample complexity for
partial random ensembles (Fourier, random convolution, . . . ) is unknown, and practically very relevant.
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■ Computational (compressive) 
imaging under calibration errors 
for p = 4 snapshots  
when m = n = 4096. 
(with Gaussian random matrices) 

■ LS SNR: 5.5 dB on signal
5.5 dB



(Randomized) Computational Imaging
■ Computational (compressive) 

imaging under calibration errors 
for p = 4 snapshots  
when m = n = 4096. 
(with Gaussian random matrices) 

■ LS SNR: 5.5 dB on signal 
■ PGD:  

min. gain/signal SNR = 147.38 dB 

■ PGD c. time: 2’ here  
and still ok for large n  
(in paper: 40’ for n=16384, m=1024, p=32) 

■ Also converges with fast and 
structured random matrices  
(e.g., subsampled random 
convolution, spread-spectrum)    
(not covered by current theory).
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Université catholique de Louvain, Belgium

Problem Setup and Motivation

x

yi,l
i-th sensor

l-th snapshot

dihai,l, ·i

Problem Setup:

x 2 Rn
Fixed unstructured signal

d 2 Rm
+

Fixed positive and bounded gains

ai,l 2 Rn Random i.i.d. sensing vectors
(isotropic, sub-Gaussian)

We tackle the noiseless uncalibrated sensing model:

yi,l = dia
⇤
i,lx 8i 2 [m], l 2 [p]

or in matrix form

yl = diag(d)Al x 8l 2 [p]

with dimensions:

n Ambient space of sensed signal

m Uncalibrated sensors/pixels

p Snapshots under random sensing model

Examples: Pixel non-uniformity, vignetting, fixed
pattern noise in (compressive) imaging systems,. . .

How many random measurements do we need to perform blind calibration? Which sample complexity?
Do mp & n log(mp) su�ce for an exact recovery of (x,d) up to global scaling?

Prior Works: lifting approach with sparsity [1], convex optimisation with multiple sparse xl [2], total least-
squares with multiple xl [3]. Our approach is inspired by [5].

A Non-Convex Formulation of Blind Calibration

We solve the blind calibration problem by (NC-BCP) around (x,d):

(

ˆ

x, ˆd) = argmin

⇠2Rn,�2⇧m
+

1

2mp

p
X

l=1

kdiag(�)Al⇠ � ylk2
2

with ⇧

m
+

= {� 2 Rm
+

, 1⇤m� = m} (NC-BCP)

Note that:

⌅ f (⇠,�) := 1

2mp
Pp

l=1 kdiag(�)Al⇠ �
yl

z }| {

diag(d)Alx k2
2

is a very natural Euclidean energy function.

⌅ Global minimisers:
n

(⇠ 2 Rn,� 2 Rm
: ⇠ =

1

↵x,� = ↵d,↵ 2 R
o

) ambiguous scaling ↵. Let us fix

↵ :=

m
kdk

1

: unique global minimiser (x?,d?) =
⇣kdk

1

m x, m
kdk

1

d

⌘

, i.e.,�,d? 2 ⇧

m
+

.

⌅ Generally 9(⇠,�) : Hf (⇠,�) ✏ 0. Non-convex in (⇠,�); convex in ⇠ given d, and vv. (biconvex [1]).

⌅ There exists ⇢ > 0 : d = 1m + !,! 2 1

?
m \ ⇢Bm1. Thus ⇢ � kd � 1mk1 2 [0, 1) is the maximum

deviation from unit gain. Problem in � is fully mapped to the variations " 2 1

?
m \ Bm1 : � = 1m + ".
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Local convexity

n = m = 2

d = 1m + ⇢ 1p
2

⇥�1 1

⇤>

� = 1m + r 1p
2
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⇤>

ai,l⇠i.i.d.N (0n, In)

Main Ingredients

⌅ As p ! 1, problem (NC-BCP) ap-
proaches local convexity in expectation,
i.e.,E

ai,l[Hf (⇠,�)] ⌫ 0 if � 2 ⇧

m
+

(i.e., for
the constrained problem) projected Hessian).

⌅ Concentration inequalities [4, The-
orem 1.4] w.r.t. matrix functions
of ai,l allow for a controlled de-

cay of
�

�

�

rf (⇠,�)� E
ai,l[rf (⇠,�)]

�

�

�

2

,
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Hf (⇠,�)� E
ai,l[Hf (⇠,�)]
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.
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Level curve at k⇠k2 = 1, where the global minimum x =

1p
2

⇥

1 �1⇤> lies. Vertical axis r parametrises 1?2 .

Solution by Projected Gradient Descent

We start from a“smart” initialisation (⇠

0

,�
0

) and solve (NC-BCP) by projected gradient descent with

r
⇠

f (⇠,�) = 1

mp
Pp

l=1 (Al)
⇤
diag(�) (diag(�)Al⇠ � yl) (1)

r?
�

f (⇠,�) = P
1

?
m\Bm1

h

1

mp
Pp

l=1 diag (Al⇠) (diag(�)Al⇠ � yl)

i

(2)

1: Initialise k  0, �
0

 1m, ⇠
0

 1

mp
Pp

l=1 (Al)
⇤
yl {Backprojection}

2: while convergence criteria not met do
3: k  k + 1

4: ⇠k  ⇠k�1 � µr
⇠

f (⇠k�1,�k�1)
5: �k  �k�1 � µr?

�

f (⇠k�1,�k�1)
6: end while

Provable Guarantees: “Initialise & Converge”

Our signal-domain initialisation ⇠

0

lies in a `
2

-ball centred on x w.v.h.p. as p increases. In fact, E
ai,l[⇠0] =

x) ⇠

0

unbiased estimator of the solution.

Proposition 1 (Initialisation Proximity [6]). In the Problem Setup, let ⇠

0

:=

1

mp
Pm

i=1
Pp

l=1 diai,la
⇤
i,lx; if

the sample complexity

mp & (1 + ⇢2)✏�2n logmp (log n + log

1/⌘) and n & 1 + (logmp)�1 log 1/⌘ (3)

then, with probability exceeding 1� 2⌘, ⌘ 2 (0, 1), we have that ⇠
0

� x 2 ✏kxk
2

Bn
2

.

Moreover, by the Problem Setup the gain-domain initialisation �

0

:= 1m : �

0

� d 2 1

?
m \ ⇢Bm1.

Proposition 2 (Convergence of NC-BCP [6]). In the Problem Setup, let ✏ 2
h

0, 1
2

⌘

and ⇢ 2
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.

Fix (⇠, ") : ⇠ � x 2 ✏kxk
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, " 2 1

?
m \ ⇢Bm1. If the sample complexity

mp & ✏�2n logmp(log n + log

1/⌘) and n & 1 + (logmp)�1 log 1/⌘ (4)

then, with probability exceeding 1� 9⌘, ⌘ 2 (0, 1), we have that
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Furthermore, if µ  2�0
�00 then with probability 1� 9k⌘ at iteration k we have that
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1 ⌅ The empirical phase transition of (NC-BCP) is
explored for m = n = 2

8, p = {21, . . . , 28} and
⇢ = {10�3, . . . , 1}.

⌅ We generate 200 random instances per configura-
tion by ai,l⇠N (0n, In),x ⇠ N (0n, In), ran-
dom d 2 ⇧

m
+

: k!k1 = ⇢.

⌅
(

ˆ

x, ˆd) is obtained by our descent algorithm with
exact line search instead of fixed step µ to en-
hance convergence.

⌅ In noiseless regime, we set the stop criterion to
achieving f (⇠,�) ' 10

�8.

Application to Uncalibrated (Compressive) Imaging

Fixed signal x

x̂ with LS,

unstructured d

x̂ with

LS,structured d

Unstructured

d, ⇢ = 1/2
x̂ with NC-BCP,

unstructured d

d̂ with NC-BCP,

unstructured d

Structured

d, ⇢ = 9/10
x̂ with NC-BCP,

structured d

d̂ with NC-BCP,

structured d

⌅ “Far, far away”, calibration is a necessarily
blind and unstructured problem!

⌅ Applications where calibration is inevitable,
hard , randomised (e.g., compressive)
sensing systems to leverage diversity.

⌅ Example: x is an image of Pluto with m =

n = 4096 pixel, p = 4 snapshots with i.i.d.
Gaussian ai,l. d is unstructured (pixel non-
uniformity) or structured (vignetting).

⌅ The recovered (

ˆ

x, ˆd) ⌘
(x,d) by (NC-BCP) attains
max{RMSE

x

,RMSE

d

} ⇡ �147.38 dB.
⌅ Admitting a model error, least-squares (LS)

attains RMSE

x

⇡ �5.50 dB.

Conclusion and Open Questions

We observed a sample complexity that is essentially linear in the dimension of the signal being estimated. We
anticipate a very favourable noise sensitivity analysis. Sparsity priors could also be enforced on x to allow blind
calibration of randomised sensing systems operating in a compressive regime. Finally, the sample complexity for
partial random ensembles (Fourier, random convolution, . . . ) is unknown, and practically very relevant.
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Problem Setup and Motivation

x

yi,l
i-th sensor

l-th snapshot

dihai,l, ·i

Problem Setup:

x 2 Rn
Fixed unstructured signal

d 2 Rm
+

Fixed positive and bounded gains

ai,l 2 Rn Random i.i.d. sensing vectors
(isotropic, sub-Gaussian)

We tackle the noiseless uncalibrated sensing model:

yi,l = dia
⇤
i,lx 8i 2 [m], l 2 [p]

or in matrix form

yl = diag(d)Al x 8l 2 [p]

with dimensions:

n Ambient space of sensed signal

m Uncalibrated sensors/pixels

p Snapshots under random sensing model

Examples: Pixel non-uniformity, vignetting, fixed
pattern noise in (compressive) imaging systems,. . .

How many random measurements do we need to perform blind calibration? Which sample complexity?
Do mp & n log(mp) su�ce for an exact recovery of (x,d) up to global scaling?

Prior Works: lifting approach with sparsity [1], convex optimisation with multiple sparse xl [2], total least-
squares with multiple xl [3]. Our approach is inspired by [5].

A Non-Convex Formulation of Blind Calibration

We solve the blind calibration problem by (NC-BCP) around (x,d):

(

ˆ

x, ˆd) = argmin

⇠2Rn,�2⇧m
+

1

2mp

p
X

l=1

kdiag(�)Al⇠ � ylk2
2

with ⇧

m
+

= {� 2 Rm
+

, 1⇤m� = m} (NC-BCP)

Note that:

⌅ f (⇠,�) := 1

2mp
Pp

l=1 kdiag(�)Al⇠ �
yl

z }| {

diag(d)Alx k2
2

is a very natural Euclidean energy function.

⌅ Global minimisers:
n

(⇠ 2 Rn,� 2 Rm
: ⇠ =

1

↵x,� = ↵d,↵ 2 R
o

) ambiguous scaling ↵. Let us fix

↵ :=

m
kdk

1

: unique global minimiser (x?,d?) =
⇣kdk

1

m x, m
kdk

1

d

⌘

, i.e.,�,d? 2 ⇧

m
+

.

⌅ Generally 9(⇠,�) : Hf (⇠,�) ✏ 0. Non-convex in (⇠,�); convex in ⇠ given d, and vv. (biconvex [1]).

⌅ There exists ⇢ > 0 : d = 1m + !,! 2 1

?
m \ ⇢Bm1. Thus ⇢ � kd � 1mk1 2 [0, 1) is the maximum

deviation from unit gain. Problem in � is fully mapped to the variations " 2 1

?
m \ Bm1 : � = 1m + ".
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Local convexity

n = m = 2

d = 1m + ⇢ 1p
2

⇥�1 1

⇤>

� = 1m + r 1p
2

⇥�1 1

⇤>

ai,l⇠i.i.d.N (0n, In)

Main Ingredients

⌅ As p ! 1, problem (NC-BCP) ap-
proaches local convexity in expectation,
i.e.,E

ai,l[Hf (⇠,�)] ⌫ 0 if � 2 ⇧

m
+

(i.e., for
the constrained problem) projected Hessian).

⌅ Concentration inequalities [4, The-
orem 1.4] w.r.t. matrix functions
of ai,l allow for a controlled de-

cay of
�

�

�

rf (⇠,�)� E
ai,l[rf (⇠,�)]

�

�

�

2

,
�

�

�

Hf (⇠,�)� E
ai,l[Hf (⇠,�)]

�

�

�

2

.

p!1

Level curve at k⇠k2 = 1, where the global minimum x =

1p
2

⇥

1 �1⇤> lies. Vertical axis r parametrises 1?2 .

Solution by Projected Gradient Descent

We start from a“smart” initialisation (⇠

0

,�
0

) and solve (NC-BCP) by projected gradient descent with

r
⇠

f (⇠,�) = 1

mp
Pp

l=1 (Al)
⇤
diag(�) (diag(�)Al⇠ � yl) (1)

r?
�

f (⇠,�) = P
1

?
m\Bm1

h

1

mp
Pp

l=1 diag (Al⇠) (diag(�)Al⇠ � yl)

i

(2)

1: Initialise k  0, �
0

 1m, ⇠
0

 1

mp
Pp

l=1 (Al)
⇤
yl {Backprojection}

2: while convergence criteria not met do
3: k  k + 1

4: ⇠k  ⇠k�1 � µr
⇠

f (⇠k�1,�k�1)
5: �k  �k�1 � µr?

�

f (⇠k�1,�k�1)
6: end while

Provable Guarantees: “Initialise & Converge”

Our signal-domain initialisation ⇠

0

lies in a `
2

-ball centred on x w.v.h.p. as p increases. In fact, E
ai,l[⇠0] =

x) ⇠

0

unbiased estimator of the solution.

Proposition 1 (Initialisation Proximity [6]). In the Problem Setup, let ⇠

0

:=

1

mp
Pm

i=1
Pp

l=1 diai,la
⇤
i,lx; if

the sample complexity

mp & (1 + ⇢2)✏�2n logmp (log n + log

1/⌘) and n & 1 + (logmp)�1 log 1/⌘ (3)

then, with probability exceeding 1� 2⌘, ⌘ 2 (0, 1), we have that ⇠
0

� x 2 ✏kxk
2

Bn
2

.

Moreover, by the Problem Setup the gain-domain initialisation �

0

:= 1m : �

0

� d 2 1

?
m \ ⇢Bm1.

Proposition 2 (Convergence of NC-BCP [6]). In the Problem Setup, let ✏ 2
h

0, 1
2

⌘

and ⇢ 2


0, 1�2✏
1+

✏
2

◆

.

Fix (⇠, ") : ⇠ � x 2 ✏kxk
2

Bn
2

, " 2 1

?
m \ ⇢Bm1. If the sample complexity

mp & ✏�2n logmp(log n + log

1/⌘) and n & 1 + (logmp)�1 log 1/⌘ (4)

then, with probability exceeding 1� 9⌘, ⌘ 2 (0, 1), we have that
⌧r

⇠

f (⇠,�)

r?
�

f (⇠,�)

�

,



⇠ � x

� � d

��

� �0
⇣

k⇠ � xk2
2

+ k"� !k2
2

⌘

(5)

kr
⇠

f (⇠,�)k2
2

+ kr?
�

f (⇠,�)k2
2

 �00
�k⇠ � xk2

2

+ k"� !k2
2

�

(6)

with �0 := 1� 2✏� ⇢
2

(2 + ✏), �00 := 2

m2

h

�

m(1 + ⇢2) + (1 + ✏)2
�

2

+

1

5

m2✏4
i

.

Furthermore, if µ  2�0
�00 then with probability 1� 9k⌘ at iteration k we have that

k⇠k � xk2
2


⇣

1� 2�0µ + �00µ2
⌘k

✏2kxk2
2

and k�k � dk2
2


⇣

1� 2�0µ + �00µ2
⌘k

m⇢2 (7)
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1 ⌅ The empirical phase transition of (NC-BCP) is
explored for m = n = 2

8, p = {21, . . . , 28} and
⇢ = {10�3, . . . , 1}.

⌅ We generate 200 random instances per configura-
tion by ai,l⇠N (0n, In),x ⇠ N (0n, In), ran-
dom d 2 ⇧

m
+

: k!k1 = ⇢.

⌅
(

ˆ

x, ˆd) is obtained by our descent algorithm with
exact line search instead of fixed step µ to en-
hance convergence.

⌅ In noiseless regime, we set the stop criterion to
achieving f (⇠,�) ' 10

�8.

Application to Uncalibrated (Compressive) Imaging

Fixed signal x

x̂ with LS,

unstructured d

x̂ with

LS,structured d

Unstructured

d, ⇢ = 1/2
x̂ with NC-BCP,

unstructured d

d̂ with NC-BCP,

unstructured d

Structured

d, ⇢ = 9/10
x̂ with NC-BCP,

structured d

d̂ with NC-BCP,

structured d

⌅ “Far, far away”, calibration is a necessarily
blind and unstructured problem!

⌅ Applications where calibration is inevitable,
hard , randomised (e.g., compressive)
sensing systems to leverage diversity.

⌅ Example: x is an image of Pluto with m =

n = 4096 pixel, p = 4 snapshots with i.i.d.
Gaussian ai,l. d is unstructured (pixel non-
uniformity) or structured (vignetting).

⌅ The recovered (

ˆ

x, ˆd) ⌘
(x,d) by (NC-BCP) attains
max{RMSE

x

,RMSE

d

} ⇡ �147.38 dB.
⌅ Admitting a model error, least-squares (LS)

attains RMSE

x

⇡ �5.50 dB.

Conclusion and Open Questions

We observed a sample complexity that is essentially linear in the dimension of the signal being estimated. We
anticipate a very favourable noise sensitivity analysis. Sparsity priors could also be enforced on x to allow blind
calibration of randomised sensing systems operating in a compressive regime. Finally, the sample complexity for
partial random ensembles (Fourier, random convolution, . . . ) is unknown, and practically very relevant.
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Université catholique de Louvain, Belgium

Problem Setup and Motivation

x

yi,l
i-th sensor

l-th snapshot

dihai,l, ·i

Problem Setup:

x 2 Rn
Fixed unstructured signal

d 2 Rm
+

Fixed positive and bounded gains

ai,l 2 Rn Random i.i.d. sensing vectors
(isotropic, sub-Gaussian)

We tackle the noiseless uncalibrated sensing model:

yi,l = dia
⇤
i,lx 8i 2 [m], l 2 [p]

or in matrix form

yl = diag(d)Al x 8l 2 [p]

with dimensions:

n Ambient space of sensed signal

m Uncalibrated sensors/pixels

p Snapshots under random sensing model

Examples: Pixel non-uniformity, vignetting, fixed
pattern noise in (compressive) imaging systems,. . .

How many random measurements do we need to perform blind calibration? Which sample complexity?
Do mp & n log(mp) su�ce for an exact recovery of (x,d) up to global scaling?

Prior Works: lifting approach with sparsity [1], convex optimisation with multiple sparse xl [2], total least-
squares with multiple xl [3]. Our approach is inspired by [5].

A Non-Convex Formulation of Blind Calibration

We solve the blind calibration problem by (NC-BCP) around (x,d):

(

ˆ

x, ˆd) = argmin

⇠2Rn,�2⇧m
+

1

2mp

p
X

l=1

kdiag(�)Al⇠ � ylk2
2

with ⇧

m
+

= {� 2 Rm
+

, 1⇤m� = m} (NC-BCP)

Note that:

⌅ f (⇠,�) := 1

2mp
Pp

l=1 kdiag(�)Al⇠ �
yl

z }| {

diag(d)Alx k2
2

is a very natural Euclidean energy function.

⌅ Global minimisers:
n

(⇠ 2 Rn,� 2 Rm
: ⇠ =

1

↵x,� = ↵d,↵ 2 R
o

) ambiguous scaling ↵. Let us fix

↵ :=

m
kdk

1

: unique global minimiser (x?,d?) =
⇣kdk

1

m x, m
kdk

1

d

⌘

, i.e.,�,d? 2 ⇧

m
+

.

⌅ Generally 9(⇠,�) : Hf (⇠,�) ✏ 0. Non-convex in (⇠,�); convex in ⇠ given d, and vv. (biconvex [1]).

⌅ There exists ⇢ > 0 : d = 1m + !,! 2 1

?
m \ ⇢Bm1. Thus ⇢ � kd � 1mk1 2 [0, 1) is the maximum

deviation from unit gain. Problem in � is fully mapped to the variations " 2 1

?
m \ Bm1 : � = 1m + ".
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Local convexity

n = m = 2

d = 1m + ⇢ 1p
2

⇥�1 1

⇤>

� = 1m + r 1p
2
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⇤>

ai,l⇠i.i.d.N (0n, In)

Main Ingredients

⌅ As p ! 1, problem (NC-BCP) ap-
proaches local convexity in expectation,
i.e.,E

ai,l[Hf (⇠,�)] ⌫ 0 if � 2 ⇧

m
+

(i.e., for
the constrained problem) projected Hessian).

⌅ Concentration inequalities [4, The-
orem 1.4] w.r.t. matrix functions
of ai,l allow for a controlled de-

cay of
�

�

�

rf (⇠,�)� E
ai,l[rf (⇠,�)]

�

�

�

2

,
�
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ai,l[Hf (⇠,�)]
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Level curve at k⇠k2 = 1, where the global minimum x =

1p
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⇥

1 �1⇤> lies. Vertical axis r parametrises 1?2 .

Solution by Projected Gradient Descent

We start from a“smart” initialisation (⇠

0

,�
0

) and solve (NC-BCP) by projected gradient descent with

r
⇠

f (⇠,�) = 1

mp
Pp

l=1 (Al)
⇤
diag(�) (diag(�)Al⇠ � yl) (1)

r?
�

f (⇠,�) = P
1

?
m\Bm1

h

1

mp
Pp

l=1 diag (Al⇠) (diag(�)Al⇠ � yl)

i

(2)

1: Initialise k  0, �
0

 1m, ⇠
0

 1

mp
Pp

l=1 (Al)
⇤
yl {Backprojection}

2: while convergence criteria not met do
3: k  k + 1

4: ⇠k  ⇠k�1 � µr
⇠

f (⇠k�1,�k�1)
5: �k  �k�1 � µr?

�

f (⇠k�1,�k�1)
6: end while

Provable Guarantees: “Initialise & Converge”

Our signal-domain initialisation ⇠

0

lies in a `
2

-ball centred on x w.v.h.p. as p increases. In fact, E
ai,l[⇠0] =

x) ⇠

0

unbiased estimator of the solution.

Proposition 1 (Initialisation Proximity [6]). In the Problem Setup, let ⇠

0

:=

1

mp
Pm

i=1
Pp

l=1 diai,la
⇤
i,lx; if

the sample complexity

mp & (1 + ⇢2)✏�2n logmp (log n + log

1/⌘) and n & 1 + (logmp)�1 log 1/⌘ (3)

then, with probability exceeding 1� 2⌘, ⌘ 2 (0, 1), we have that ⇠
0

� x 2 ✏kxk
2

Bn
2

.

Moreover, by the Problem Setup the gain-domain initialisation �

0

:= 1m : �

0

� d 2 1

?
m \ ⇢Bm1.

Proposition 2 (Convergence of NC-BCP [6]). In the Problem Setup, let ✏ 2
h

0, 1
2

⌘

and ⇢ 2


0, 1�2✏
1+

✏
2

◆

.

Fix (⇠, ") : ⇠ � x 2 ✏kxk
2

Bn
2

, " 2 1

?
m \ ⇢Bm1. If the sample complexity

mp & ✏�2n logmp(log n + log

1/⌘) and n & 1 + (logmp)�1 log 1/⌘ (4)

then, with probability exceeding 1� 9⌘, ⌘ 2 (0, 1), we have that
⌧r

⇠

f (⇠,�)
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�
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�
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Furthermore, if µ  2�0
�00 then with probability 1� 9k⌘ at iteration k we have that

k⇠k � xk2
2


⇣

1� 2�0µ + �00µ2
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1 ⌅ The empirical phase transition of (NC-BCP) is
explored for m = n = 2

8, p = {21, . . . , 28} and
⇢ = {10�3, . . . , 1}.

⌅ We generate 200 random instances per configura-
tion by ai,l⇠N (0n, In),x ⇠ N (0n, In), ran-
dom d 2 ⇧

m
+

: k!k1 = ⇢.

⌅
(

ˆ

x, ˆd) is obtained by our descent algorithm with
exact line search instead of fixed step µ to en-
hance convergence.

⌅ In noiseless regime, we set the stop criterion to
achieving f (⇠,�) ' 10

�8.

Application to Uncalibrated (Compressive) Imaging

Fixed signal x

x̂ with LS,

unstructured d

x̂ with

LS,structured d

Unstructured

d, ⇢ = 1/2
x̂ with NC-BCP,

unstructured d

d̂ with NC-BCP,

unstructured d

Structured

d, ⇢ = 9/10
x̂ with NC-BCP,

structured d

d̂ with NC-BCP,

structured d

⌅ “Far, far away”, calibration is a necessarily
blind and unstructured problem!

⌅ Applications where calibration is inevitable,
hard , randomised (e.g., compressive)
sensing systems to leverage diversity.

⌅ Example: x is an image of Pluto with m =

n = 4096 pixel, p = 4 snapshots with i.i.d.
Gaussian ai,l. d is unstructured (pixel non-
uniformity) or structured (vignetting).

⌅ The recovered (

ˆ

x, ˆd) ⌘
(x,d) by (NC-BCP) attains
max{RMSE

x

,RMSE

d

} ⇡ �147.38 dB.
⌅ Admitting a model error, least-squares (LS)

attains RMSE

x

⇡ �5.50 dB.

Conclusion and Open Questions

We observed a sample complexity that is essentially linear in the dimension of the signal being estimated. We
anticipate a very favourable noise sensitivity analysis. Sparsity priors could also be enforced on x to allow blind
calibration of randomised sensing systems operating in a compressive regime. Finally, the sample complexity for
partial random ensembles (Fourier, random convolution, . . . ) is unknown, and practically very relevant.
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Problem Setup and Motivation

x

yi,l
i-th sensor

l-th snapshot

dihai,l, ·i

Problem Setup:

x 2 Rn
Fixed unstructured signal

d 2 Rm
+

Fixed positive and bounded gains

ai,l 2 Rn Random i.i.d. sensing vectors
(isotropic, sub-Gaussian)

We tackle the noiseless uncalibrated sensing model:

yi,l = dia
⇤
i,lx 8i 2 [m], l 2 [p]

or in matrix form

yl = diag(d)Al x 8l 2 [p]

with dimensions:

n Ambient space of sensed signal

m Uncalibrated sensors/pixels

p Snapshots under random sensing model

Examples: Pixel non-uniformity, vignetting, fixed
pattern noise in (compressive) imaging systems,. . .

How many random measurements do we need to perform blind calibration? Which sample complexity?
Do mp & n log(mp) su�ce for an exact recovery of (x,d) up to global scaling?

Prior Works: lifting approach with sparsity [1], convex optimisation with multiple sparse xl [2], total least-
squares with multiple xl [3]. Our approach is inspired by [5].

A Non-Convex Formulation of Blind Calibration

We solve the blind calibration problem by (NC-BCP) around (x,d):

(

ˆ

x, ˆd) = argmin

⇠2Rn,�2⇧m
+

1

2mp

p
X

l=1

kdiag(�)Al⇠ � ylk2
2

with ⇧

m
+

= {� 2 Rm
+

, 1⇤m� = m} (NC-BCP)

Note that:

⌅ f (⇠,�) := 1

2mp
Pp

l=1 kdiag(�)Al⇠ �
yl

z }| {

diag(d)Alx k2
2

is a very natural Euclidean energy function.

⌅ Global minimisers:
n

(⇠ 2 Rn,� 2 Rm
: ⇠ =

1

↵x,� = ↵d,↵ 2 R
o

) ambiguous scaling ↵. Let us fix

↵ :=

m
kdk

1

: unique global minimiser (x?,d?) =
⇣kdk

1

m x, m
kdk

1

d

⌘

, i.e.,�,d? 2 ⇧

m
+

.

⌅ Generally 9(⇠,�) : Hf (⇠,�) ✏ 0. Non-convex in (⇠,�); convex in ⇠ given d, and vv. (biconvex [1]).

⌅ There exists ⇢ > 0 : d = 1m + !,! 2 1

?
m \ ⇢Bm1. Thus ⇢ � kd � 1mk1 2 [0, 1) is the maximum

deviation from unit gain. Problem in � is fully mapped to the variations " 2 1

?
m \ Bm1 : � = 1m + ".

Geometric Intuition in R2 ⌦R2
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Local convexity

n = m = 2

d = 1m + ⇢ 1p
2

⇥�1 1

⇤>

� = 1m + r 1p
2

⇥�1 1

⇤>

ai,l⇠i.i.d.N (0n, In)

Main Ingredients

⌅ As p ! 1, problem (NC-BCP) ap-
proaches local convexity in expectation,
i.e.,E

ai,l[Hf (⇠,�)] ⌫ 0 if � 2 ⇧

m
+

(i.e., for
the constrained problem) projected Hessian).

⌅ Concentration inequalities [4, The-
orem 1.4] w.r.t. matrix functions
of ai,l allow for a controlled de-

cay of
�

�

�

rf (⇠,�)� E
ai,l[rf (⇠,�)]

�

�

�

2

,
�

�

�

Hf (⇠,�)� E
ai,l[Hf (⇠,�)]

�

�

�

2

.

p!1

Level curve at k⇠k2 = 1, where the global minimum x =

1p
2

⇥

1 �1⇤> lies. Vertical axis r parametrises 1?2 .

Solution by Projected Gradient Descent

We start from a“smart” initialisation (⇠

0

,�
0

) and solve (NC-BCP) by projected gradient descent with

r
⇠

f (⇠,�) = 1

mp
Pp

l=1 (Al)
⇤
diag(�) (diag(�)Al⇠ � yl) (1)

r?
�

f (⇠,�) = P
1

?
m\Bm1

h

1

mp
Pp

l=1 diag (Al⇠) (diag(�)Al⇠ � yl)

i

(2)

1: Initialise k  0, �
0

 1m, ⇠
0

 1

mp
Pp

l=1 (Al)
⇤
yl {Backprojection}

2: while convergence criteria not met do
3: k  k + 1

4: ⇠k  ⇠k�1 � µr
⇠

f (⇠k�1,�k�1)
5: �k  �k�1 � µr?

�

f (⇠k�1,�k�1)
6: end while

Provable Guarantees: “Initialise & Converge”

Our signal-domain initialisation ⇠

0

lies in a `
2

-ball centred on x w.v.h.p. as p increases. In fact, E
ai,l[⇠0] =

x) ⇠

0

unbiased estimator of the solution.

Proposition 1 (Initialisation Proximity [6]). In the Problem Setup, let ⇠

0

:=

1

mp
Pm

i=1
Pp

l=1 diai,la
⇤
i,lx; if

the sample complexity

mp & (1 + ⇢2)✏�2n logmp (log n + log

1/⌘) and n & 1 + (logmp)�1 log 1/⌘ (3)

then, with probability exceeding 1� 2⌘, ⌘ 2 (0, 1), we have that ⇠
0

� x 2 ✏kxk
2

Bn
2

.

Moreover, by the Problem Setup the gain-domain initialisation �

0

:= 1m : �

0

� d 2 1

?
m \ ⇢Bm1.

Proposition 2 (Convergence of NC-BCP [6]). In the Problem Setup, let ✏ 2
h

0, 1
2

⌘

and ⇢ 2


0, 1�2✏
1+

✏
2

◆

.

Fix (⇠, ") : ⇠ � x 2 ✏kxk
2

Bn
2

, " 2 1

?
m \ ⇢Bm1. If the sample complexity

mp & ✏�2n logmp(log n + log

1/⌘) and n & 1 + (logmp)�1 log 1/⌘ (4)

then, with probability exceeding 1� 9⌘, ⌘ 2 (0, 1), we have that
⌧r

⇠

f (⇠,�)

r?
�

f (⇠,�)

�

,



⇠ � x

� � d

��

� �0
⇣

k⇠ � xk2
2

+ k"� !k2
2

⌘

(5)

kr
⇠

f (⇠,�)k2
2

+ kr?
�

f (⇠,�)k2
2

 �00
�k⇠ � xk2

2

+ k"� !k2
2

�

(6)

with �0 := 1� 2✏� ⇢
2

(2 + ✏), �00 := 2

m2

h

�

m(1 + ⇢2) + (1 + ✏)2
�

2

+

1

5

m2✏4
i

.

Furthermore, if µ  2�0
�00 then with probability 1� 9k⌘ at iteration k we have that

k⇠k � xk2
2


⇣

1� 2�0µ + �00µ2
⌘k

✏2kxk2
2

and k�k � dk2
2


⇣

1� 2�0µ + �00µ2
⌘k

m⇢2 (7)

Numerical Experiments
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1 ⌅ The empirical phase transition of (NC-BCP) is
explored for m = n = 2

8, p = {21, . . . , 28} and
⇢ = {10�3, . . . , 1}.

⌅ We generate 200 random instances per configura-
tion by ai,l⇠N (0n, In),x ⇠ N (0n, In), ran-
dom d 2 ⇧

m
+

: k!k1 = ⇢.

⌅
(

ˆ

x, ˆd) is obtained by our descent algorithm with
exact line search instead of fixed step µ to en-
hance convergence.

⌅ In noiseless regime, we set the stop criterion to
achieving f (⇠,�) ' 10

�8.

Application to Uncalibrated (Compressive) Imaging

Fixed signal x

x̂ with LS,

unstructured d

x̂ with

LS,structured d

Unstructured

d, ⇢ = 1/2
x̂ with NC-BCP,

unstructured d

d̂ with NC-BCP,

unstructured d

Structured

d, ⇢ = 9/10
x̂ with NC-BCP,

structured d

d̂ with NC-BCP,

structured d

⌅ “Far, far away”, calibration is a necessarily
blind and unstructured problem!

⌅ Applications where calibration is inevitable,
hard , randomised (e.g., compressive)
sensing systems to leverage diversity.

⌅ Example: x is an image of Pluto with m =

n = 4096 pixel, p = 4 snapshots with i.i.d.
Gaussian ai,l. d is unstructured (pixel non-
uniformity) or structured (vignetting).

⌅ The recovered (

ˆ

x, ˆd) ⌘
(x,d) by (NC-BCP) attains
max{RMSE

x

,RMSE

d

} ⇡ �147.38 dB.
⌅ Admitting a model error, least-squares (LS)

attains RMSE

x

⇡ �5.50 dB.

Conclusion and Open Questions

We observed a sample complexity that is essentially linear in the dimension of the signal being estimated. We
anticipate a very favourable noise sensitivity analysis. Sparsity priors could also be enforced on x to allow blind
calibration of randomised sensing systems operating in a compressive regime. Finally, the sample complexity for
partial random ensembles (Fourier, random convolution, . . . ) is unknown, and practically very relevant.
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Preliminary extension to sparse signals  (ICASSP’17)

‣ Assumption: 

‣ Hard thresholding “projection”:

31

Hk(u) := argminv ku� vk s.t. kvk0 = k

x is k-sparse in an ONB  

(i.e., | supp >
x| =: k >

xk0 6 k)



Preliminary extension to sparse signals  (ICASSP’17)

‣ Assumption: 

‣ Hard thresholding “projection”: 

‣ Objective: (under similar assumptions:                           ) 

‣ Hope: sample complexity should be like

32

Hk(u) := argminv ku� vk s.t. kvk0 = k

x is k-sparse in an ONB  

(i.e., | supp >
x| =: k >

xk0 6 k)

Recover (x,d) from {yl = diag(d)Alx : 1 6 p 6 p}

mp & m+ k ) m(p� 1) & k

d 2 ⇧+
m, kd� 1k1 6 ⇢



Preliminary extension to sparse signals  (ICASSP’17)

‣ Assumption: 

‣ Hard thresholding “projection”: 

‣ Blind Calibration with Iterative Hard Thresholding

33

1: Initialize ⇠0 :

=

1
mp

Pp
l=1 (Al)

> yl, �0 :

= 1

1

1m, j := 0.

2: while stop criteria not met do

3: ⇠j+1 :

=  Hk[ 
>
(⇠j � µ⇠r⇠f(⇠j ,�j)] {Signal Update}

4: �
j+1

:

= �j � µ� r?
� f(⇠j ,�j) {Gain Update}

5: �j+1 :

= PC⇢�j+1
{Projection on C⇢}

6: j := j + 1

7: end while

Hk(u) := argminv ku� vk s.t. kvk0 = k

x is k-sparse in an ONB  

(i.e., | supp >
x| =: k >

xk0 6 k)



Empirical Phase Transition (bis)

34

n = 210 = 1024, k = 25 = 32, m 2 [2k, 32k = n]



Empirical Phase Transition (bis)
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n = 210 = 1024, k = 25 = 32, m 2 [2k, 32k = n]

log2 mp = log2(C(m+ k))



“Tous les jours”, by René Magritte

36

(a) True signal x, n = 256 ⇥ 256 px (b) Recovery ˆ

x provided by IHT,
RSNR

x,x̂ = 17.83 dB

(c) Recovery ˆ

x provided by BC-IHT,
RSNR

x,x̂ = 153.16 dB
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(d) True gains g, m = 103 ⇥ 103 px
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(e) Recovery ˆ

g provided by BC-IHT, RSNR

g,ĝ =

122.76 dB

Fig. 2. A numerical example of blind calibration for compressive imaging; the test image is a detail of “Tous les jours”, René Magritte, 1966,
c� Charly Herscovici 2011. The artwork was retrieved at wikiart.org and is intended for fair use. A comparison of the original and retrieved

signal and gains is reported in a-c and d-e, respectively.

matrices Al, l 2 [p]. This experiment could be carried out with
other sub-Gaussian matrix ensembles such as Bernoulli sensing ma-
trices, with the results being substantially unaltered. Since the spar-
sity level of the chosen test image is high, we can simulate its ac-
quisition with a sensor array of m = 103 ⇥ 103 px (m ⇡ 6k) and
use p = 5 snapshots to meet the requirements of our method; thus
mp
n ⇡ 0.8, and once the gains are retrieved this CS scheme could

revert to m
n ⇡ 0.16 while benefiting from the improved model ac-

curacy provided by blind calibration. As for the gains, we set ⇢ =

1
2

and draw g uniformly at random from G⇢.
We then run BC-IHT on each of the RGB channels sepa-

rately, until the relative change in the signal and gain estimates
falls below 10

�7; the quality and data reported below are the
worst case among the colour channels. This causes the algo-
rithm to run for 884 iterations, achieving a high-quality esti-
mate having RSNR

x,x̂ = �20 log10
kx̂�xk2
kxk2

= 153.16 dB and

RSNR

g,ĝ = �20 log10
kĝ�gk2
kgk2

= 122.76 dB. The quality of the
estimates can be observed in Figure 2c and 2e.

To see the beneficial effect of blind calibration, we use the ac-
celerated version of IHT [27] given the exact sparsity level k, the
snapshots yl and the corresponding sensing matrices, which form
a standard CS model when concatenated vertically. Hence, accel-
erated IHT attempts to recover an estimate ˆ

x while neglecting the
model error. The algorithm converges in only 29 iterations to a local
minimiser ˆ

x, whose RSNR

x,x̂ = 17.83 dB. The modest perfor-
mances can be seen directly in Figure 2b.

No comparison with other blind calibration algorithms has re-

ported since the peculiar choice of using a single sparse input and
multiple snapshots is specific to our framework. Nevertheless, we
note that (i) the computational complexity of our algorithm is com-
petitively low, as it amounts to that of IHT plus an additional pro-
jected gradient step in the gain domain per iteration; (ii) just as a
proof of convergence for IHT to a local minimiser has been devised,
we expect to have provable convergence results in the same fashion,
which will lead to a bound on the sample complexity that ensures
the retrieval of the exact solution.

5. CONCLUSION

We proposed a novel approach to blind calibration based on the use
of snapshots with multiple draws of the random sensing operator,
and on a greedy algorithm which enforces sparsity on the steps re-
sulting from gradient descent on a non-convex objective. Our ap-
proach is capable of achieving, within a few snapshots, perfect re-
covery of the signal and gains in a computationally efficient fashion.

We envision that our method may be used both for blind calibra-
tion of imaging sensors, as well as distributed sensor arrays or net-
works if suitably modified to allow for compressive sensing. While
we presented empirical evidence on the phase transition of our al-
gorithm, a more rigorous convergence guarantee is under study and
will be the subject of a future communication.

“Tous les jours”, René Magritte, 1966 (Charly Herscovici 2011, Wikiart.org)

(a) True signal x, n = 256 ⇥ 256 px (b) Recovery ˆ

x provided by IHT,
RSNR

x,x̂ = 17.83 dB

(c) Recovery ˆ

x provided by BC-IHT,
RSNR

x,x̂ = 153.16 dB
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(d) True gains g, m = 103 ⇥ 103 px
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Fig. 2. A numerical example of blind calibration for compressive imaging; the test image is a detail of “Tous les jours”, René Magritte, 1966,
c� Charly Herscovici 2011. The artwork was retrieved at wikiart.org and is intended for fair use. A comparison of the original and retrieved

signal and gains is reported in a-c and d-e, respectively.

matrices Al, l 2 [p]. This experiment could be carried out with
other sub-Gaussian matrix ensembles such as Bernoulli sensing ma-
trices, with the results being substantially unaltered. Since the spar-
sity level of the chosen test image is high, we can simulate its ac-
quisition with a sensor array of m = 103 ⇥ 103 px (m ⇡ 6k) and
use p = 5 snapshots to meet the requirements of our method; thus
mp
n ⇡ 0.8, and once the gains are retrieved this CS scheme could

revert to m
n ⇡ 0.16 while benefiting from the improved model ac-

curacy provided by blind calibration. As for the gains, we set ⇢ =

1
2

and draw g uniformly at random from G⇢.
We then run BC-IHT on each of the RGB channels sepa-

rately, until the relative change in the signal and gain estimates
falls below 10

�7; the quality and data reported below are the
worst case among the colour channels. This causes the algo-
rithm to run for 884 iterations, achieving a high-quality esti-
mate having RSNR

x,x̂ = �20 log10
kx̂�xk2
kxk2

= 153.16 dB and

RSNR

g,ĝ = �20 log10
kĝ�gk2
kgk2

= 122.76 dB. The quality of the
estimates can be observed in Figure 2c and 2e.

To see the beneficial effect of blind calibration, we use the ac-
celerated version of IHT [27] given the exact sparsity level k, the
snapshots yl and the corresponding sensing matrices, which form
a standard CS model when concatenated vertically. Hence, accel-
erated IHT attempts to recover an estimate ˆ

x while neglecting the
model error. The algorithm converges in only 29 iterations to a local
minimiser ˆ

x, whose RSNR

x,x̂ = 17.83 dB. The modest perfor-
mances can be seen directly in Figure 2b.

No comparison with other blind calibration algorithms has re-

ported since the peculiar choice of using a single sparse input and
multiple snapshots is specific to our framework. Nevertheless, we
note that (i) the computational complexity of our algorithm is com-
petitively low, as it amounts to that of IHT plus an additional pro-
jected gradient step in the gain domain per iteration; (ii) just as a
proof of convergence for IHT to a local minimiser has been devised,
we expect to have provable convergence results in the same fashion,
which will lead to a bound on the sample complexity that ensures
the retrieval of the exact solution.

5. CONCLUSION

We proposed a novel approach to blind calibration based on the use
of snapshots with multiple draws of the random sensing operator,
and on a greedy algorithm which enforces sparsity on the steps re-
sulting from gradient descent on a non-convex objective. Our ap-
proach is capable of achieving, within a few snapshots, perfect re-
covery of the signal and gains in a computationally efficient fashion.

We envision that our method may be used both for blind calibra-
tion of imaging sensors, as well as distributed sensor arrays or net-
works if suitably modified to allow for compressive sensing. While
we presented empirical evidence on the phase transition of our al-
gorithm, a more rigorous convergence guarantee is under study and
will be the subject of a future communication.

 = Daubechies - 4, k = 1800, n = 2562, m = 1032, m
k ⇡ 6 and p = 5

(sparsified) true signal
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(a) True signal x, n = 256 ⇥ 256 px (b) Recovery ˆ

x provided by IHT,
RSNR
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(c) Recovery ˆ

x provided by BC-IHT,
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x,x̂ = 153.16 dB
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Fig. 2. A numerical example of blind calibration for compressive imaging; the test image is a detail of “Tous les jours”, René Magritte, 1966,
c� Charly Herscovici 2011. The artwork was retrieved at wikiart.org and is intended for fair use. A comparison of the original and retrieved

signal and gains is reported in a-c and d-e, respectively.

matrices Al, l 2 [p]. This experiment could be carried out with
other sub-Gaussian matrix ensembles such as Bernoulli sensing ma-
trices, with the results being substantially unaltered. Since the spar-
sity level of the chosen test image is high, we can simulate its ac-
quisition with a sensor array of m = 103 ⇥ 103 px (m ⇡ 6k) and
use p = 5 snapshots to meet the requirements of our method; thus
mp
n ⇡ 0.8, and once the gains are retrieved this CS scheme could

revert to m
n ⇡ 0.16 while benefiting from the improved model ac-

curacy provided by blind calibration. As for the gains, we set ⇢ =

1
2

and draw g uniformly at random from G⇢.
We then run BC-IHT on each of the RGB channels sepa-

rately, until the relative change in the signal and gain estimates
falls below 10

�7; the quality and data reported below are the
worst case among the colour channels. This causes the algo-
rithm to run for 884 iterations, achieving a high-quality esti-
mate having RSNR

x,x̂ = �20 log10
kx̂�xk2
kxk2

= 153.16 dB and

RSNR

g,ĝ = �20 log10
kĝ�gk2
kgk2

= 122.76 dB. The quality of the
estimates can be observed in Figure 2c and 2e.

To see the beneficial effect of blind calibration, we use the ac-
celerated version of IHT [27] given the exact sparsity level k, the
snapshots yl and the corresponding sensing matrices, which form
a standard CS model when concatenated vertically. Hence, accel-
erated IHT attempts to recover an estimate ˆ

x while neglecting the
model error. The algorithm converges in only 29 iterations to a local
minimiser ˆ

x, whose RSNR

x,x̂ = 17.83 dB. The modest perfor-
mances can be seen directly in Figure 2b.

No comparison with other blind calibration algorithms has re-

ported since the peculiar choice of using a single sparse input and
multiple snapshots is specific to our framework. Nevertheless, we
note that (i) the computational complexity of our algorithm is com-
petitively low, as it amounts to that of IHT plus an additional pro-
jected gradient step in the gain domain per iteration; (ii) just as a
proof of convergence for IHT to a local minimiser has been devised,
we expect to have provable convergence results in the same fashion,
which will lead to a bound on the sample complexity that ensures
the retrieval of the exact solution.

5. CONCLUSION

We proposed a novel approach to blind calibration based on the use
of snapshots with multiple draws of the random sensing operator,
and on a greedy algorithm which enforces sparsity on the steps re-
sulting from gradient descent on a non-convex objective. Our ap-
proach is capable of achieving, within a few snapshots, perfect re-
covery of the signal and gains in a computationally efficient fashion.

We envision that our method may be used both for blind calibra-
tion of imaging sensors, as well as distributed sensor arrays or net-
works if suitably modified to allow for compressive sensing. While
we presented empirical evidence on the phase transition of our al-
gorithm, a more rigorous convergence guarantee is under study and
will be the subject of a future communication.
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matrices Al, l 2 [p]. This experiment could be carried out with
other sub-Gaussian matrix ensembles such as Bernoulli sensing ma-
trices, with the results being substantially unaltered. Since the spar-
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use p = 5 snapshots to meet the requirements of our method; thus
mp
n ⇡ 0.8, and once the gains are retrieved this CS scheme could

revert to m
n ⇡ 0.16 while benefiting from the improved model ac-

curacy provided by blind calibration. As for the gains, we set ⇢ =

1
2

and draw g uniformly at random from G⇢.
We then run BC-IHT on each of the RGB channels sepa-

rately, until the relative change in the signal and gain estimates
falls below 10

�7; the quality and data reported below are the
worst case among the colour channels. This causes the algo-
rithm to run for 884 iterations, achieving a high-quality esti-
mate having RSNR
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RSNR
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= 122.76 dB. The quality of the
estimates can be observed in Figure 2c and 2e.

To see the beneficial effect of blind calibration, we use the ac-
celerated version of IHT [27] given the exact sparsity level k, the
snapshots yl and the corresponding sensing matrices, which form
a standard CS model when concatenated vertically. Hence, accel-
erated IHT attempts to recover an estimate ˆ

x while neglecting the
model error. The algorithm converges in only 29 iterations to a local
minimiser ˆ

x, whose RSNR

x,x̂ = 17.83 dB. The modest perfor-
mances can be seen directly in Figure 2b.

No comparison with other blind calibration algorithms has re-

ported since the peculiar choice of using a single sparse input and
multiple snapshots is specific to our framework. Nevertheless, we
note that (i) the computational complexity of our algorithm is com-
petitively low, as it amounts to that of IHT plus an additional pro-
jected gradient step in the gain domain per iteration; (ii) just as a
proof of convergence for IHT to a local minimiser has been devised,
we expect to have provable convergence results in the same fashion,
which will lead to a bound on the sample complexity that ensures
the retrieval of the exact solution.

5. CONCLUSION

We proposed a novel approach to blind calibration based on the use
of snapshots with multiple draws of the random sensing operator,
and on a greedy algorithm which enforces sparsity on the steps re-
sulting from gradient descent on a non-convex objective. Our ap-
proach is capable of achieving, within a few snapshots, perfect re-
covery of the signal and gains in a computationally efficient fashion.

We envision that our method may be used both for blind calibra-
tion of imaging sensors, as well as distributed sensor arrays or net-
works if suitably modified to allow for compressive sensing. While
we presented empirical evidence on the phase transition of our al-
gorithm, a more rigorous convergence guarantee is under study and
will be the subject of a future communication.
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petitively low, as it amounts to that of IHT plus an additional pro-
jected gradient step in the gain domain per iteration; (ii) just as a
proof of convergence for IHT to a local minimiser has been devised,
we expect to have provable convergence results in the same fashion,
which will lead to a bound on the sample complexity that ensures
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5. CONCLUSION

We proposed a novel approach to blind calibration based on the use
of snapshots with multiple draws of the random sensing operator,
and on a greedy algorithm which enforces sparsity on the steps re-
sulting from gradient descent on a non-convex objective. Our ap-
proach is capable of achieving, within a few snapshots, perfect re-
covery of the signal and gains in a computationally efficient fashion.

We envision that our method may be used both for blind calibra-
tion of imaging sensors, as well as distributed sensor arrays or net-
works if suitably modified to allow for compressive sensing. While
we presented empirical evidence on the phase transition of our al-
gorithm, a more rigorous convergence guarantee is under study and
will be the subject of a future communication.
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c� Charly Herscovici 2011. The artwork was retrieved at wikiart.org and is intended for fair use. A comparison of the original and retrieved

signal and gains is reported in a-c and d-e, respectively.

matrices Al, l 2 [p]. This experiment could be carried out with
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trices, with the results being substantially unaltered. Since the spar-
sity level of the chosen test image is high, we can simulate its ac-
quisition with a sensor array of m = 103 ⇥ 103 px (m ⇡ 6k) and
use p = 5 snapshots to meet the requirements of our method; thus
mp
n ⇡ 0.8, and once the gains are retrieved this CS scheme could
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To see the beneficial effect of blind calibration, we use the ac-
celerated version of IHT [27] given the exact sparsity level k, the
snapshots yl and the corresponding sensing matrices, which form
a standard CS model when concatenated vertically. Hence, accel-
erated IHT attempts to recover an estimate ˆ

x while neglecting the
model error. The algorithm converges in only 29 iterations to a local
minimiser ˆ

x, whose RSNR

x,x̂ = 17.83 dB. The modest perfor-
mances can be seen directly in Figure 2b.

No comparison with other blind calibration algorithms has re-

ported since the peculiar choice of using a single sparse input and
multiple snapshots is specific to our framework. Nevertheless, we
note that (i) the computational complexity of our algorithm is com-
petitively low, as it amounts to that of IHT plus an additional pro-
jected gradient step in the gain domain per iteration; (ii) just as a
proof of convergence for IHT to a local minimiser has been devised,
we expect to have provable convergence results in the same fashion,
which will lead to a bound on the sample complexity that ensures
the retrieval of the exact solution.

5. CONCLUSION

We proposed a novel approach to blind calibration based on the use
of snapshots with multiple draws of the random sensing operator,
and on a greedy algorithm which enforces sparsity on the steps re-
sulting from gradient descent on a non-convex objective. Our ap-
proach is capable of achieving, within a few snapshots, perfect re-
covery of the signal and gains in a computationally efficient fashion.

We envision that our method may be used both for blind calibra-
tion of imaging sensors, as well as distributed sensor arrays or net-
works if suitably modified to allow for compressive sensing. While
we presented empirical evidence on the phase transition of our al-
gorithm, a more rigorous convergence guarantee is under study and
will be the subject of a future communication.
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matrices Al, l 2 [p]. This experiment could be carried out with
other sub-Gaussian matrix ensembles such as Bernoulli sensing ma-
trices, with the results being substantially unaltered. Since the spar-
sity level of the chosen test image is high, we can simulate its ac-
quisition with a sensor array of m = 103 ⇥ 103 px (m ⇡ 6k) and
use p = 5 snapshots to meet the requirements of our method; thus
mp
n ⇡ 0.8, and once the gains are retrieved this CS scheme could

revert to m
n ⇡ 0.16 while benefiting from the improved model ac-

curacy provided by blind calibration. As for the gains, we set ⇢ =

1
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and draw g uniformly at random from G⇢.
We then run BC-IHT on each of the RGB channels sepa-

rately, until the relative change in the signal and gain estimates
falls below 10

�7; the quality and data reported below are the
worst case among the colour channels. This causes the algo-
rithm to run for 884 iterations, achieving a high-quality esti-
mate having RSNR
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To see the beneficial effect of blind calibration, we use the ac-
celerated version of IHT [27] given the exact sparsity level k, the
snapshots yl and the corresponding sensing matrices, which form
a standard CS model when concatenated vertically. Hence, accel-
erated IHT attempts to recover an estimate ˆ

x while neglecting the
model error. The algorithm converges in only 29 iterations to a local
minimiser ˆ

x, whose RSNR

x,x̂ = 17.83 dB. The modest perfor-
mances can be seen directly in Figure 2b.

No comparison with other blind calibration algorithms has re-

ported since the peculiar choice of using a single sparse input and
multiple snapshots is specific to our framework. Nevertheless, we
note that (i) the computational complexity of our algorithm is com-
petitively low, as it amounts to that of IHT plus an additional pro-
jected gradient step in the gain domain per iteration; (ii) just as a
proof of convergence for IHT to a local minimiser has been devised,
we expect to have provable convergence results in the same fashion,
which will lead to a bound on the sample complexity that ensures
the retrieval of the exact solution.

5. CONCLUSION

We proposed a novel approach to blind calibration based on the use
of snapshots with multiple draws of the random sensing operator,
and on a greedy algorithm which enforces sparsity on the steps re-
sulting from gradient descent on a non-convex objective. Our ap-
proach is capable of achieving, within a few snapshots, perfect re-
covery of the signal and gains in a computationally efficient fashion.

We envision that our method may be used both for blind calibra-
tion of imaging sensors, as well as distributed sensor arrays or net-
works if suitably modified to allow for compressive sensing. While
we presented empirical evidence on the phase transition of our al-
gorithm, a more rigorous convergence guarantee is under study and
will be the subject of a future communication.
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■ Known subspaces on signal and gains (no shown here)
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Conclusion
■ We have shown that a simple application of gradient descent provably 

solves this bilinear inverse problem with sample complexity: 

■ Proved extension of this approach: 
■ Stability analysis w.r.t. additive noise, in fact: 

■ Known subspaces on signal and gains (no shown here) 
■ Connections with other works: e.g., [Li, Ling, Strohmer, 16] 
■ Future developments:  

■ Extension to signal-domain sparsity via hard thresholding:  
reduces sample complexity (i.e., blind calibration for compressed 
sensing); empirically shown (+ conf paper), not yet proved. 

■ More advanced calibration? (e.g., through matrix probing).
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