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Brief introduction to
compressive sensing techniques



The multiple use of random projections in “data science”

Object @ Random projection
“a” > y = P(x)
signal smaller dimension
audio  yolume distinctive
measure compressed

Random “projections" are ubiquitous in:
Data mining & dimensionality reduction techniques
Sensing and imaging methods (optics, astronomy, ...)
Machine learning (sketching, explicit kernel, initialization, ...)

Randomized numerical methods



Compressive sensing...

M questions Sensing method Object
4

0 Low-complexity

0 object x

0 (e.g., sparse,

8 low-rank, ...)

0
0
0
0
0
[]
Generalized linear sensing 8
. T
() 5 Optimization, dee.p learning, — > @ (estimate)
greedy algorithms

T — Prior (sparsity) A



Embedding of sparse vectors / signals

Two K-sparse signals @, @’ € Y = {u : ||ullg ;= |suppu| < K}

For many random M x N matrices ® (e.g., Gaussian, Bernoulli, structured)
and “M 2 Klog(N/K)”, with high probability,

Geometry of ®(X )
~ (Geometry of X

br~dxr =x~x

observations true signals

+ extension to other sparsity models, low-rankness,



Structured random projections

Challenge: dense matrices @ not optimal for:
memory and computational complexity

physically friendly implementation

sensing higher dimensional objects

Other solutions:

Fourier (FFT) or Hadamard matrices

random subsampling
& modulation

_>¢




Focus on rank-one projections

Object to project = symmetric n X n matrices X € R™;

e.g., image, volume, covariance matrices, ...

Projection with m random vectors {a; ~iiq ajil, CR"

(e.9., Gaussian)

-

o L T \m m a X a
’y = q)(X) = ( G,J Xa]_ )j:1 & R IDDIIDIIéIéIé é
oo =
awore (@ja] X ]

Phase retrieval Covariance matrix estimation
@’% AEzz ") ~ A(+ >, zra)

=~ 2illa] ze)?]jL,

for L ~iid L

% Chen & Goldsmith (2015) [& Cai & Zhang (2015)



(compressive interferometry #1)

Lensless interferometry &
rank-one projections

)
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Lensless endoscopy: focused mode

N Photodetector
0
TS
Laser Lk SIX;M A\ AN o
A W Optics > core
=30

Laser Single pixel detector . .
M/ Multicore Fiber
o, Multicore
Wavefront ~ Optics L D optical fiber focused beam
shaper %
(biII)rllggiiﬂ) Fluorescence signal
Highlighted point

sample

Raster Scanning

!

Sensing model

Biological sample

% Andresen et al., 2016. [§ Sivankutty et al., 2018. .



A closer look to sensing model

Back to the model... q;
W SN @
Laser & '
A V' Optics W @'
1 &
a=(a, - ,ag) @ cores located on

SLM configuration
Random?

Q= {Qj}?zl

d |
W

N '.'t.\ "1
f Speckle

P
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A closer look to sensing model

Back to the model...

a=(a, - ,ag) @ cores located on

SLM configuration O = {qj}Q_ Speckle

P

Photodetector

.. o [ e e = ot

Measurement model
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A closer look to sensing model

Back to the model... W Photodetector

SLM
Laser A ¢ AN
A Vv Optics
a=(a, - ,ag) @ cores located on
: _ Q
SLM configuration Q — {qj }jzl

However, speckles are interferences: (under far-field approximation)

271 T
al\L )| X W\L Q . a-a*eﬁ(qg'—qk) €T
1,k=1 "1k
FOV Core pair
window interference

Can we do compressive sensing?
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A closer look to sensing model

Back to the model... i Photodetector q;

SLM
Laser Ak & J\\N
A Vv Optics y:
1 =
a=(a, - ,ag) @ cores located on .
: _ Q S R Speckle
SLM configuration O = {qj }jzl far ﬁej& ........... pgp
>y o

However, speckles are interferences: (under far-field approximation)

27I

(F(@), pa (@) o (w(z) f(2), X5, ) ajages @—a) @)

Can we do compressive sensing?
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(noiseless) Interferometric sensing model

Therefore

27

(fo o) = S Py o [ fpo €37 70 @ (z) f(z)da]
o LZlwfla - ROP!

with the (Hermitian) interferometric matrix Z|wf] € CO*? s.t.

27I

Tl = [ | FO wia) (@) do

R2
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(noiseless) Interferometric sensing model

Therefore

(fo o) = S Py o [ fpo €37 70 @ (z) f(z)da]
o LZlwfla - ROP!

with the (Hermitian) interferometric matrix Z|wf] € CO*? s.t.

Ty = [ X2 u(@) (@) de = Fluf](V)

Uu

N

N

Observation 1: denser Fourier sampling if

Flwf] V| ~ 2
4y V= Q
>+ Lattices are bad core arrangements
° ° ¢ + Fermat’s spiral is not bad
o
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(noiseless) Interferometric sensing model

Therefore

27

(fsPa) = ng 10430413[]]12{26“
o Zlwfla - ROP!

(qj_Qk)me(m)f(m)dm}

with the (Hermitian) interferometric matrix Z|wf] € CO*? s.t.

27I

(Tl ) = / X200 " () f(2) de = Flwf](V)

Uu

1 Observation 2:
Flwf] Fe===========- mmmmm e :
. /Z ' Low-complexity on f
> : - :
* | * + Low-complexity on Z.
e.g., sparsity - low-rank
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Interferometric sensing model

Composition of two sensing methods ) «

1 (1)
Y= Yar> " rYa,,) = ®(Z[wf]) + noise,
@TQ2

with (M) := {{a;a, M)r}7.,.
Sample complexities of interest:

@ Does @ capture enough from Z? <+ m big enough?

€ Does I capture enough from f? <> () big enough?

Core arrangement?

A few answers from a few simplifications ...

Theory + Simulations + Experimental results
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Theoretical guarantees

Given
a discretisation f of wf over N pixels

a frequency coverage 7" respecting usual CS conditions (RIP)

(under specific simplifying assumptions)
If the {a.} are (sub)Gaussian, given a sparsity level K
and provided M = O(K) and O? = O(K) (up to logs),

then, with high probability, given the observations z = ®'[ f] + noise,
[-1]1 <€

an £ ;-minimization program gives an estimate f” with

f_.f 1 | €
1f = £l <CHsl 1 pe

for some C,D > 0.

Proof idea: @’ = centering of ®@; show that ®’ respects a variants of the restricted isometry property.
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1-D simulations: phase transition diagrams

Simplified setting:

1-D core arrangement, N = 256 940
K-sparse vectors 180 |
Random {a;}¥, VI
60
0O, M, K varying 30

80 trials, Success if > 40 dB
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Experiments (in Institut Fresnel, France)

“In theory, theory and
practice are the same.
In practice, they are
not."

— A, Einstein

(Adapted from xkcd #1233)

s r
///‘r
e e P G
% P LG
(A
P o s

{-fr

.
7

4

+ a lot of calibrations & validations

Single pixel

Pixel summation
/\

Lo

OD filters

20



Experiments (in Institut Fresnel, France)

Average SNR (5 trials) USAF target O =55 0O=110

T (b) N =256 x 256

|

) =
. Ground truth M = 20000
% 5 ) (2)

N

@ \
N — Q=110 '
— @=5 RS Mode M = 20000

0 5000 10000 15000 20000
M
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(compressive interferometry #2)

Random beamforming in radio astronomy
follows rank-one projection sensing

NN _ /7 1 IR

O. Leblanc* L. Jacques*

Y. Wiauxt

*. ISPGroup, INMA, UCLouvain, Belgium.  : Heriot Watt, UK.



Radio interferometric sensing model

f d 8 Sky intensity distribution
() antennas focused on - 52(1) = o2(1.m)

a (small) region & of the sky <
- ;

Cosmic signals

s(l,t) ~ CN(0,0%(1))

i.i.d.

(t)
Antenn . /’I‘
measjreem:ntsi pQ(t)
. v Yo T
[zi(t) wa(t) o wot)] = a(t)
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Radio interferometric sensing model

f d 8 Sky intensity distribution
() antennas focused on - 52(1) = o2(1.m)

a (small) region & of the sky <
- ;

Cosmic signals

s(l,t) ~ CN(0,0%(1))

i.i.d.

\ Antenna |
measurementsi . pQ(t)
.. ) o v T
Tz () ma(t) - zot)] = x(t)

Sensing at g-th antenna signal:

2a(t) = [ s gO) exp (3 pE()) L)l + ny(t).

R2 — 2

FOV geometric delay noise

signal

24



Radio interferometric sensing model

By the Van Cittert-Zernike theorem (VCZ)

t | neglected |
EEn[z(t)z"(1)] = Zawle®] + 24
Short-Time Integration cov. of n(t)
with .
Fourier Tr.

L1
(Zawy (o)) jk == Flo~] (ka - )
l cV:i=A—1(Q-0Q)
visibilities

) = (o ()2,

100

Practically,

B short-time integration intervals (STI)
with I discrete time instants — E(-) = (- ),

Approx: over each STI, visibilities are fixed

Very Large Array (VLA)

25



Radio interferometric sensing model

Summary: 2 sensing operators

y o) (t)

L 40 20 T T T 4
P1 (t) 2 (t) Dy (t)
[ ) [ ]

ri(t)  xa(t) rq(t) (1)

(antennas level) x(t) (image level)
Sampling B STls, b € [B] Sampling over a N-pixel grid
X, = {xp]i] € C2, i€ [I]} o cRY

(correlator)

Covariances estimations

Cyp(Xp) = (xp|]zp[])1

=13 @iy [i]

O°B visibilities
(OBI - Q°B) .
(reconstruction level)
Acquisition operator Imaging operator
X = UpXp = U (X) := Ub Chy(Xp) - e— ®lo] = Flo|(V) = {Ty(o) )},
O’B values O’B values

[ I

equal in expectation
26



Challenges in radio-interferometry

Massive data stream:
#visibilities 7" = Ul_, 7", — O(Q*B)

e.g., for the square-kilometer array (SKA)
0 = 0(10°), B = O(100) — Storing O(107) visibilities

Computing F[o6°1(7) via {C,}2_, — OB Q%) = O(10° - 10°)

Solution: compressive radio-interferometric (RI) sensing scheme

leveraging an old scheme, beamforming, in a new setup
compressing measurements at antenna & reconstruction levels

supported by theoretical guarantees (under a few simplifications).

27



Beamforming = rank-one projections of covariance matrix

What if we create a virtual antenna? Let's do beamforming (again)

Y YvrY s

P+ (t) /[ \ P2 (£) [\ [\ Pgq (t) % Pqg (t)
x1(t)  xa2(t) Tq t) 5’3@(75)
o1 %761 Q9 %762 o o %ﬁq e o o OéQ_ 5@
arx1(t) froi(t) asxa(t) Baxa(t qxq(t) Berq(t) aorg(t) Boxg(t)

Given Q complex weights a,, f, 28



Beamforming = rank-one projections of covariance matrix

What if we create a virtual antenna? Let's do beamforming (again)

| a . | (asymmetric)
Tl N Bt = a*To[0°]8 RoP
S u(t) = S8, Byg() with (Za[o°]);x = Flo®) (Z522)
= (8,(1))

+ time reversal

qik 4 :u’ "1'.:"1” #

ha @‘ 1 g

. YN ' \_"'. T ES
Remark: =~ vl
O .

Qj/\ ‘{."n'\ S

R :;' y

Given Q complex weights a,, f,

29



The new sensing operators

N,,B
—1,b=1

.30, I S S S,

y 2 (t) y2fe) (t)

n(t)  wa(t) xq<t> £ (t)

Acquisition operator  Given {oys, By | C C@, {vmb}ziszl C C@ (Not specified yet)

(sampled antenna signals)
Sampling B STls, b € [B]

(1st compression @antennas level) (OBI — N,B)
P _ Q
Xy :={xpli] € C¥, i e [I]}

Random beamforming: for p € [Np] ROPs per b

. . , , (B STI, I time samples per batch)
ppo (] = (Qpp, T[1]), vpo[i] := (Bpp, Tat])

I . . .
Ypb = % D _ie1 Mpb|t]vpli] = aprbIpr

*
(87 pb
OOOEEDOE

i
S

with Cy = (xp|-]x[]) 1

eroEcoE Q)
Oooooon <
EREEEEE
EOECOOE
DooEEEE

= 7 Xicy wolilj i ROP
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The new sensing operators

Acquisition operator Given {a, 3 pb}N_p’le , C C¥, {vmb}ziszl C C@ (Not specified yet)

N t\ \/ \/\/ \/ \/. w(t)

1 (t) 562(t) Zq(1) 93@(75)

(sampled antenna signals)
Sampling B STls, b € [B]

(1st compression @antennas level) (OBI — N,B)
P Q
Xy :={xpli] € C¥, i e [I]}

Random beamforming: for p € [Np] ROPs per b

. . , , (B STI, I time samples per batch)
ppo (] = (Qpp, T[1]), vpo[i] := (Bpp, Tat])

1 I . S *
Ypb = T 2_iz1 Hpbtvpbli] = a CoBy, (2nd compression) (N,B — N,N,,)

Bernoulli modulations: for m € [N,,] modulations

o, C, B ~ N,
pb b b B
DEEEEEE EOn00n Ep X — ‘I’(X) = {Zm ‘= szl Ymb yb}
| * seaak efF1y "
with Cp = <$b”$b[]>1 EEEEH
ey q el onoB B N,N,, values
= 7 2_i=1 Tv[t]x} i) ROP

= ROP of C := bdiag(C4,...,Cp)
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The new sensing operators

Acquisition operator

-
-

“ )\/ﬂ \/, v \/ “

:l:(t) P/ polt Py(1)/ Po(t)/
z1(t)  22(?) q(t) 2Q(t)

(1st compression @antennas level)
Sampling B STls, b € [B]
X, = {x[i] € C@, i€ [I]}

Random beamforming: for p € [Np] ROPs per b
ppbli] = (Qupp, Tu[i]), vpoli] := <16pb7$b[i]>

I : : N
Ypb = % D i1 Hpblt]vpp|t] = o, Co By,

ROP
(OBl — N,B)

(2nd compression) (N,B — N,N,)
Bernoulli modulations: for m € [N,,] modulations

~ B N,
X = U(X) = {zm =8 s yb}
e{x1}

m=1

N,N,, values

[

equal in expectation

Imaging operator

(image level)

Sampling over a N-pixel grid

ocRY
leen ) {Vb}szl —)
*
apb Ib(a-) Ipr
DEEEEEE 0500000
0050 O
e )
0?B visibilities EIIEIIEIE H
(compression for the reconstruction level)
ROP }—' [G](Vb') N B
/I * p

o ; {yb — [apb Ib(a) /pr)}pzl}bzl

Mod. & B Nom
L} @[0’] — {szl /ymbyg)}m=1

N,N,, values

I
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Reconstruction guarantees?

Questions:
For which (distribution on) {e,;, 0, 7,,} can we estimate 67

What are the compression ratios?

Our answers:
1. Theory: ok if {a,,,f,,} are random and (sub)Gaussian

without modulations (y,,, = 1, N, = 1) and N, large enough

2. Experiments: ok if {a,,,p,,.7,,} are random and (sub)Gaussian
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Reconstruction guarantees? Theory

Batched ROP model: withy,, =1, N, = 1, we find:

Flol(Ve) Flo](V)

Blo] =7 (o, To(o) By, = o T(o) B,

with oy, = [ogslily, B, = [Bpp)iet; T = bdiag(Z1,...,Ip).

(under specific simplifying assumptions)

It {e,,.0,,} are (sub)Gaussian, given a sparsity level K
and provided N, = O(K) and O?B = O(K) (up to logs),

then, with high probability, given the observations z = (i)[a] + noise,
[-1]1 <€

an Z;-minimization gives an estimate 6’ with

lo—o'|ls < 12 4 e

for some C,D > 0.
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Reconstruction guarantees? Simulations

Modulated ROP model:

Monte Carlo simulations
N =10% B=100, Q =27
Various K, Np, N,

Very Large Array (VLA)
visibility /frequency coverage

N = 100 x 100
Phase transition diagrams (success if SNR > 40 dB)

- 0.8

Success rate

40 60 &80 100 120 140 40 60 &80 100 120 140 5 15 25 35 45

(b) K (c) K (d) Ny

High reconstruction success as soon as N N, = CK, with C =~ 5.

— N,N,, < Q’B =70200
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Conclusions and perspectives

Summary:

Two applications where
Interferometry and “beamforming” — ROP + Fourier

Theory, experiments and simulations confirm
the efficiency of such a compressive combination
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Conclusions and perspectives

Summary:

Two applications where
Interferometry and “beamforming” — ROP + Fourier

Theory, experiments and simulations confirm
the efficiency of such a compressive combination

More to come soon:

Comprehensive analysis of ROP/BF schemes in Rl
Open questions:

Integrating frequency weighting?

Faster ROP models?

Calibration?
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Conclusions and perspectives

Summary:

Two applications where
Interferometry and “beamforming” — ROP + Fourier

Theory, experiments and simulations confirm
the efficiency of such a compressive combination

More to come soon:

Comprehensive analysis of ROP/BF schemes in Rl
Open questions:

Integrating frequency weighting?

Faster ROP models?

Calibration?
Advertisement: Open PhD positions/postdoc — contact me
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Thank you for your attention!
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