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This Talk.
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Noise and Compressed Sensing 
Initially, CS tested for AWGN noise

with: 
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y = ΦΨα + n
Ψ α

ni ∼ N (0, σ2)

α sparse or compressible

Φ and Ψ the sensing and the sparsity bases

+ n
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Basis Pursuit DeNoise (BPDN)

Reconstruction with AWGN model

6

x∗ = argmin
u

�u�1 s.t. �y −Φu�2 � �

If y = Φx + n (with Ψ = Id and �n�2 � �),
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Basis Pursuit DeNoise (BPDN)
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x∗ = argmin
u

�u�1 s.t. �y −Φu�2 � �

If y = Φx + n (with Ψ = Id and �n�2 � �),

Restricted Isometry Property∃ µ > 0, δ ∈ (0, 1)

for all 2K sparse signals v.

√
1− δ �v�2 � 1

µ�Φv�2 �
√

1 + δ �v�2

�x− x∗�2 � A �/µ + B �x− xK�1/
√

KThen,

If

AND δ < δ0 (e.g., δ0 =
√

2− 1)

Reconstruction with AWGN model
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BDPN Drawbacks (wrt noise sources)
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x∗ = argmin
u

�u�1 s.t. �y −Φu�2 � �

MAP standpoint: adapted 
to AWGN only

Can we use other fidelity 
terms/norms 
for other noises?
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10

x∗ = argmin
u

�u�1 s.t. �y −Φu�2 � �

MAP standpoint: adapted 
to AWGN only

Can we use other fidelity 
terms/norms 
for other noises?

If heteroscedastic noise, e.g.,  

Wish to “stabilize” it, e.g.  

ni ∼ N (0, σ2
i )

n = y −Φx −→W (y −Φx),

with W = diag(σ1, · · · , σM )−1

but is it allowed?

What about non-linear 
operations, e.g., scalar 
Quantization ?

y = Q[Φu] ?
and y �= Q[Φx∗] !



2. Quantized CS
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Compressed Sensing theory says:
   “Linearly sample a signal at a rate 

function of its intrinsic dimensionality”
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The Quantized CS Problem
RM?
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The Quantized CS Problem
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ΩM !

|Ω| < ∞
finite codebook
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Compressed Sensing theory says:
   “Linearly sample a signal at a rate 

function of its intrinsic dimensionality”

Information Theory and Sensor designer say:
   “Okay, but I need to 

quantize/digitize (ADC) my measurements!”

Question: 
“Given quantized signal measurements (quantization is untouched), 
  how to minimize quantization effects in the reconstruction?”

Our answer: 
    “Oversample and reconstruct with compander theory and
         non-gaussian constraints, i.e. using (weighted)     - norm ”

14

�p
(for p > 2)(not the sparsity prior)

The Quantized CS Problem
RM?

ΩM !

|Ω| < ∞
finite codebook
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Turning Measurements into bits     scalar quantization 

with:           

Quantization of CS Measurements

15

∀λ ∈ R, Q[λ] = ωi ⇔ λ ∈ Ri � [ti, ti+1),

∀u ∈ RM , (Q[u])j = Q[uj ]

R
ti ti+1

ωiλ

→

(e.g. Lloyd-Max)

y = Q
�
Φx

�
∈ ΩM ,

Court. [Connexions]

Ω = {ωi ∈ R : 1 � i � 2B}, (levels)

T = {ti ∈ R : 1 � i � 2B + 1, ti � ti+1} (thresholds)
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Previous work: uniform quantization
✴ Distortion model:

✴ Observation:
✴ Reconstruction: Generalizing BPDN with BPDQ
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x∗ = arg min
v∈RN

�v�1 s.t. �y −Φv�p � �p

y = Q[Φx] = Φx + ε, εi ∼ U(−α
2 , α

2 )
λ

α

Q

�y −Φx�∞ � α
2

Towards
Related to GGD MAP 

p =∞

(J, Hammond, Fadili, 2009, 2011)
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Previous work: uniform quantization
✴ Distortion model:

✴ Observation:
✴ Reconstruction: Generalizing BPDN with BPDQ
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x∗ = arg min
v∈RN

�v�1 s.t. �y −Φv�p � �p

y = Q[Φx] = Φx + ε, εi ∼ U(−α
2 , α

2 )
λ

α

Q

�y −Φx�∞ � α
2

But no free lunch: 

⇒	  Another reading: limited range of valid p for a given M (and K)!

∃ µp > 0, δ ∈ (0, 1),
√
1− δ �v�2 � 1

µp
�Φv�p �

√
1 + δ �v�2,

for all K sparse signals v.

⇒ �x− x∗� = O(α/
√
p+ 1)

If     is RIPp of order K, i.e., Φ

Towards
Related to GGD MAP 

p =∞

Gain over BPDN (for tight          )�p(α, M)

(J, Hammond, Fadili, 2009, 2011)



3. Non-Uniform Generalization
through Compander Theory
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Compander approach

19

ti

ti+1

ωi

pdf ϕ0

Non-uniform B bits
quantizer      .Q
R
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λ
α

Compander approach
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R

ti

ti+1

ωi

0 1ω�
i

Non-uniform B bits
quantizer      .Q

t�i t�i+1

pdf ϕ0

Compressor

Expander

Q = G−1 ◦ Qα ◦ G

G−1 : [0, 1]→ R

G : R→ [0, 1]

Qα

Uniform quantizer

Under High Resolution Assumption (HRA)
= high B

α = 2−B

B bits
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Optimal quantization: 

Compander approach
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d
dλG(λ) :=

� �

R
ϕ1/3

0 (t) dt

�−1

ϕ1/3
0 (λ)

Z ∼ ϕ0, E|Z − Q(Z)|2 min.

Distortion: [Panter & Dite, 1951]

Example:
If ϕ0 = γ0,σ0 ∼ N (0, σ2

0),
G�(t) = γ0,

√
3 σ0

(t) and
G(t) = G0,

√
3 σ0

(t).

Gaussian: 1
12�ϕ0�1/3 � 2.721 σ2

0

⇒

E|Z − Q(Z)|2 �
B

2−2B

12

�

R
G�(t)−2 ϕ0(t) dt = 2−2B

12 �ϕ0�1/3.

α2 �
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Optimal quantization: 

Therefore:                        , two observations:

Compander approach
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d
dλG(λ) :=

� �

R
ϕ1/3

0 (t) dt

�−1

ϕ1/3
0 (λ)

Z ∼ ϕ0, E|Z − Q(Z)|2 min.

E|Z − Q(Z)|2 �
B

2−2B

12

�

R
G�(t)−2 ϕ0(t) dt = 2−2B

12 �ϕ0�1/3.

if z ∼ NM×1(0, 1)

“Quantization Constraint” (QC): �G(Q[z])− G(z)�∞ �
M

1
22−B = 1

2α.

(c � 2.721)

“Distortion Constraint” (DC): �Q[z]− z�2 �
M,B

√
c M 2−B =

√
c M α.

Distortion: [Panter & Dite, 1951]

1.

2.

Example:
If ϕ0 = γ0,σ0 ∼ N (0, σ2

0),
G�(t) = γ0,

√
3 σ0

(t) and
G(t) = G0,

√
3 σ0

(t).

Gaussian: 1
12�ϕ0�1/3 � 2.721 σ2

0

⇒

α2 �
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‣ Is it useful for reconstructing from QCS ?
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Compander approach
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‣ Can we see QC and DC as 
    2 instances of a more general set of constraints?

‣ Is it useful for reconstructing from QCS ?

‣ How? Again with a             but ...
1. Generalize levels (not the thresholds, fixed by quantization)

2. Weight the bin contributions

24

Compander approach

YES!

�p-norm

... see next 2 slides
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1. Generalizing levels
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For 2 - optimal level:

ti ti+1

ωi

pdf ϕ0
λ

Q[λ]

ωi := arg min
λ∈Ri

� �

Ri

|λ− t|2 ϕ0(t) dt
�1/2

Lloyd-Max

We had ...
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1. Generalizing levels
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ωi = ωi,2Lloyd-Max, Companders:
ωi,∞ = 1

2 (ti + ti+1) = lim
p→+∞

ωi,pBin mid-point:

ωi,p := arg min
λ∈Ri

� �

Ri

|λ− t|p ϕ0(t) dt
�1/p

ti ti+1

ωi

pdf ϕ0
ωi,∞

ωi,p

λ

Q[λ]

Q∞[λ]

Qp[λ]

For p - optimal level:

Now we define ...
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1. Generalizing levels
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ωi = ωi,2Lloyd-Max, Companders:
ωi,∞ = 1

2 (ti + ti+1) = lim
p→+∞

ωi,pBin mid-point:

ωi,p := arg min
λ∈Ri

� �

Ri

|λ− t|p ϕ0(t) dt
�1/p

ti ti+1

ωi

pdf ϕ0
ωi,∞

ωi,p

λ

Q[λ]

Q∞[λ]

Qp[λ]
Requantization: Q → Qp?
ωi,p = Qp[λ] = Qp[Q[λ]],
⇔ λ in Ri,
⇔ ωi,2 = Q[λ] ∈ Ri.

For p - optimal level:

Now we define ...
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2. Weighting the bin contribution
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Given p � 2 and z ∈ RM ,
w ∈ RM

+ : wi(p) := G�
�
Qp(zi)

�(p−2)/pDefine  
and � · �p,w := �diag(w) · �p.

Consider the �p,w−distortion: �Qp(z)− z�p
p,w
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2. Weighting the bin contribution
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Given p � 2 and z ∈ RM ,
w ∈ RM

+ : wi(p) := G�
�
Qp(zi)

�(p−2)/pDefine  
and � · �p,w := �diag(w) · �p.

Consider the �p,w−distortion: �Qp(z)− z�p
p,w

Intuition:

For p = 2, w = 1 ⇒ Panter-Dite formula (DC)

For p→∞, then wi → G�(Qp(zi)) �B
α

αk(i)

⇒ �Qp(z)− z�p,w → maxi
α

αk(i)
|Qp(zi)− zi| � α/2 (QC)
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�Qp(z)− z�p
p,w �

B,M
M 2−Bp

(p+1) 2p �ϕ0�1/3 =: �p
p

If z ∼ NM×1(0, σ2
0), writing � · �p,w := �diag(w) · �p,

with �22 = M 2−2B

12 �ϕ0�1/3 and �∞ = α/2 !

Distortion Estimator in  �p,w
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�Qp(z)− z�p
p,w �

B,M
M 2−Bp

(p+1) 2p �ϕ0�1/3 =: �p
p

If z ∼ NM×1(0, σ2
0), writing � · �p,w := �diag(w) · �p,

with �22 = M 2−2B

12 �ϕ0�1/3 and �∞ = α/2 !

Equi-distortion principle: (asymptotically in B and M)

Validation of p-levels and weights at any p � 2 ? For z ∼ NM×1(0, σ0),
equal contribution of each bin to global �p,w−distortion �Qp[z]−z�p,w!

�ϕ0�1/3 2−B(p+1)

(p+1)2pbin contribution:→

Distortion Estimator in  �p,w



4. Reconstructing ...
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New          Constraints

34

(DpC)

Lemma: Asymptotically in B and M :
D2C ≡ DC and D∞C ≡ QC.

Given x ∈ RN , testing u ∈ RN with
�Φu−Qp(Φx)�p,w � �p

�p,w−
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New Reconstructions

35

Generalized Basis Pursuit DeNoise (GBPDN):

argminu∈RN �u�1 s.t. �y −Φu�p,w � �

Qp[Φx] wi(p) = G�(p−2)/p(Qp[zi])Dequantization:
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Generalized Basis Pursuit DeNoise (GBPDN):

argminu∈RN �u�1 s.t. �y −Φu�p,w � �

Qp[Φx] wi(p) = G�(p−2)/p(Qp[zi])Dequantization:

Stabilization: y = Φx + n, ni ∼iid GGD(0, αi, p) ∝ e−|t/αi|p
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New Reconstructions
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Generalized Basis Pursuit DeNoise (GBPDN):

argminu∈RN �u�1 s.t. �y −Φu�p,w � �

Forgetting y and w origins,
        is GBPDN provably robust/stable? 

Qp[Φx] wi(p) = G�(p−2)/p(Qp[zi])Dequantization:

Stabilization: y = Φx + n, ni ∼iid GGD(0, αi, p) ∝ e−|t/αi|p
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Need more general tools...

‣ Well ...
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(1/2)
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Need more general tools...

‣ Well ... a General

39

RIP(�p,w, �2|K, δ, µ)

∃ µ > 0, δ ∈ (0, 1)
√

1− δ �v�2 � 1
µ�Φv�p,w �

√
1 + δ �v�2

for all K sparse signals v.

(1/2)
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‣ Existence? Well, again Gaussian
‣ Converging Moment (CM):

40

Need more general tools...

∃ 0 < ρmin
p < ρmax

p < ∞ : ρmin
p � M−1/p�w�p � ρmax

p

Φ ∈ NM×N (0, 1)

(2/2)
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‣ Existence? Well, again Gaussian
‣ Converging Moment (CM):

‣     is                            (with high/controllable probability) 
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Need more general tools...

∃ 0 < ρmin
p < ρmax

p < ∞ : ρmin
p � M−1/p�w�p � ρmax

p

Φ ∈ NM×N (0, 1)

RIP(�p,w, �2|K, δ, µ)Φ

µ = E�g�p,w, g ∼ NM×1(0, 1)

M2/p � c δ−2

�
ρmax
∞

ρmin
p

�2

K log N/K

and M � 2 (2θp)p. θp�

(2/2)
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‣ Existence? Well, again Gaussian
‣ Converging Moment (CM):

‣     is                            (with high/controllable probability) 

‣ BTW, is it consistent?  
for p = 2 and

42

Need more general tools...

∃ 0 < ρmin
p < ρmax

p < ∞ : ρmin
p � M−1/p�w�p � ρmax

p

Φ ∈ NM×N (0, 1)

RIP(�p,w, �2|K, δ, µ)

M2/p � c δ−2

�
ρmax
∞

ρmin
p

�2

K log N/K

Φ

wi = 1 with Pr = q, and 0 with Pr = 1− q

(good!)

µ = E�g�p,w, g ∼ NM×1(0, 1)θp�

θp � 1/q ⇒ qM = O(K logN/K)

and M � 2 (2θp)p.

(2/2)
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GBPDN Robustness

43

If Φ is RIP(�p,w, �2|s, δs, µ) s ∈ {K, 2K, 3K}for

Then,

Ap = 4
�

1 + δ2K/(1− δ2K − Cp) � 4
Bp = 2(1 + Cp − δ2K)/(1− δ2K − Cp) � 2

Cp = O
��

(δ2K + δ3K)(p− 2)
�
, p� 2

Cp = δ3K + O(p− 2), p � 2

with 1− δ2K − Cp > 0

�

�x− x∗�2 � Ap �/µ + Bp �x− xK�1/
√
K

GBPDN
solution
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GBPDN and QCS

44

Given Qp[·], w(p) ∈ RM
+ and �p as before,

GBPDN robustness provides:

�x∗ − x� �
B,M

4 c� 2−B
√
p+1

+ 2 e0(K),

with c� = (9/8)(eπ/3)1/2 < 1.8981.
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GBPDN and QCS

‣ Of course, no free lunch:
 Gaussian                            imposes

45

Given Qp[·], w(p) ∈ RM
+ and �p as before,

GBPDN robustness provides:

�x∗ − x� �
B,M

4 c� 2−B
√
p+1

+ 2 e0(K),

with c� = (9/8)(eπ/3)1/2 < 1.8981.

θp/2p �B,M

�
(p+ 1)/3

M = O
�
(θp K logN/K)p/2

�
RIP(�p,w, �2|K, δ, µ)



5. Numerical Experiments
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Solving GBPDN

‣ Proximal methods and operator splitting.
‣ Relaxed Arrow-Hurwicz algorithm [Chambolle, Pock, 2010]

‣ Projection on                        (Newton method) 

47

GBPDN ⇔ min
u∈RN

f(u) + g(Lu)

Non smooth lsc convex functions

�p−balls (p � 2)
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Results

48

N = 1024, K = 16, 24 bits, avg. over 50 trials

Bernoulli-Gaussian K-sparse signal model.
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Results
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N = 1024, K = 16, 24 bits, avg. over 50 trials

Bernoulli-Gaussian K-sparse signal model.

unif
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α−1
�
G(Φx∗)− G(y)

�

p = 2 p = 10

Results

50

N = 1024, K = 16, 24 bits, avg. over 50 trials

Bernoulli-Gaussian K-sparse signal model.



ELEN iTWIST, May 9-11, 2012.

Results
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N = 1024, K = 16, 24 bits, avg. over 50 trials

Bernoulli-Gaussian K-sparse signal model.

Reconstruction gain (in dB)
between non-uniform and uniform
quantization at the same p.
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Results
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N = 1024, K = 16, 24 bits, avg. over 50 trials

Bernoulli-Gaussian K-sparse signal model.

Reconstruction gain (in dB)
between non-uniform and uniform
quantization at the same p.

Room for improvements ?



Conclusions
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Conclusions and perspectives 
‣ Compander formalism       new        constraints 
‣ Precise new estimator bound

               given fixed quantization! (    optimal)
‣ New reconstruction: GBPDN

  + use in heteroscedastic GGD noise stabilization
‣ QCS oversampling principle ...
‣ Future work: 
‣ optimize quantizer thresholds 

                given        distortion
‣ correlated measurements?  

54

⇒ �p,w

�2

�p,w



Thank you.


