Compressed Sensing in Optics: Schlieren Deflectometry and Refractive Index Map Reconstruction

Joint work with:

P. Sudhakar*, A. Gonzalez*, C. De Vleeschouwer*, X. Dubois⁺, P. Antoine⁺, Luc Joannes⁺

icteam ELEN ISP Group

*: Louvain University (UCL), Louvain-la-Neuve, Belgium +: Lambda-X, Nivelles, Belgium

Compressed Sensing

Highly compressed recap of what is ...

Part I:

Compressive Sensing

UCL Universite deLowain ELEN ISP Group

Generally, sampling is ...

Human readable signal!

Generally, sampling is ...

UCL Université catholique ← icteam ELEN ISP Group

New ways to sample signals

"Computer readable" sensing + prior information

Generally, sampling is ...

← icteam ELEN ISP Group

New ways to sample signals structures, sparsity, low-rank, ...

"Computer readable" sensing + prior information

Compressed Sensing...

... in a nutshell:

"Forget" Dirac, forget Nyquist, ask *few* (**linear**) *questions* about your informative (**sparse**) signal, and recover it *differently* (**non-linearly**)"

Croup

2nd, CS \ni Non-linear reconstruction!

If \boldsymbol{x} is <u>K-sparse</u> and if $\boldsymbol{\Phi}$ well "conditioned" then: $\boldsymbol{x}^* = \underset{\boldsymbol{u} \in \mathbb{R}^N}{\operatorname{arg min}} \|\boldsymbol{u}\|_1 \text{ s.t. } \boldsymbol{y} = \boldsymbol{\Phi} \boldsymbol{u}$ $\|\boldsymbol{u}\|_1 = \sum_j |u_j|$ (Basis Pursuit) [Chen, Donoho, Saunders, 1998]

UCL Université de Jouvain

2nd, $CS \ni Non-linear$ reconstruction! Simplifying assumption <u>Restricted Isometry Property</u> $\exists \delta \in (0,1)$ $\sqrt{1-\delta} \, \|oldsymbol{v}\|_2 \ \leqslant \ \|oldsymbol{\Phi}oldsymbol{v}\|_2 \ \leqslant \ \sqrt{1+\delta} \, \|oldsymbol{v}\|_2$ for all 2K sparse signals \boldsymbol{v} . any subset of 2K columns is an *isometry* If x is K-sparse and if Φ well "conditioned" then:

$$egin{aligned} oldsymbol{x}^* &= rgmin_{oldsymbol{u} \in \mathbb{R}^N} & \|oldsymbol{u}\|_1 ext{ s.t. } oldsymbol{y} = oldsymbol{\Phi}oldsymbol{u} \ & ext{ if } \delta < \sqrt{2} - 1 \ \|oldsymbol{e}\| \| \|_1 = \sum_j |u_j| \end{aligned}$$
 (Basis Pursuit) [Chen, Donoho, Saunders, 1998]

← icteam ELEN ISP Group

2nd, $CS \ni Non-linear reconstruction!$

<u>Part II:</u> Compressive Schlieren Deflectometry

 $({\rm main\ contributor:\ Prasad\ Sudhakar} \\ + Lambda-X\ collaboration\)$

UCL Université catholique de Louvain

The problem:

- Local curvature at every \boldsymbol{p} is characterized by $\boldsymbol{s}_{\boldsymbol{p}}(\theta, \varphi)$
- \blacktriangleright Objective: Reconstruct deflection spectra at all p
- Application: Optical manufacturing and metrology

Deflection spectrum:

• Observation:

Smooth objects = controlled deflections = sparse deflection spectra

- Difficult to measure deflections directly
 Only indirect measurement
- <u>Tool: Schlieren Deflectometry</u>

Light changes its path based on refractive index change

← icteam ELEN ISP Group

Schlieren deflectometry:

ISP Group

ELEN

icteam

UCL Université catholique de Louvain

Measurements are here! Spatial Light Modulator Object Lens 2 Pinhole Lens 3 CCD Lens 1 (SLM) kUniform \mathcal{T} Backlight **H** OSource Deflection \iff Shift Telecentric system (TS) Allows light rays parallel to O $\Delta x = f \tan \theta_k.$ $y_{ik} = \langle oldsymbol{arphi}_i, oldsymbol{s}_k angle$ Deflection Inner product of SLM pattern Optics Spectrum the spectrum with e.g., Fourier $= y_{ik}$ SLM pattern or Hadamard $oldsymbol{arphi}_i$ \boldsymbol{s}_k Elementwise product

A system view ...

The inverse problem

$$\boldsymbol{y}_k = \boldsymbol{\Phi} \boldsymbol{s}_k + \boldsymbol{n}$$

For each pixel k, Obtain $oldsymbol{s}_k$ from $oldsymbol{y}_k$

- Operational requirement
 - Fewer SLM patterns = small sized \boldsymbol{y}_k underdetermined linear inverse problem
- What helps?

- \blacktriangleright sparse deflection spectra ${\boldsymbol s}_k$
- pattern randomness

Compressive Sensing (CS)

CS of deflection spectra

• Rice University's single pixel camera

Each CCD pixel of Schlieren deflectometer = single pixel camera

Image credits: Rice University http://dsp.rice.edu/cscamera

icteam ELEN ISP Group

UCL Université catholique

What are the sensing constraints ?

- Physical constraints of the system:
 - ▶ Non-negative, real-valued sensing matrix entries
 - Binary sensing matrix entries: avoiding non-linearities
- Additional requirements:

UCL Université (i) victeam ELEN ISP Group

- Randomness for optimal measurements
- Structured measurements for fast computations

Spread Spectrum Compressive Sensing [Puy et al, 2012]

Spread Spectrum Compressive Sensing 1/2

• $\Gamma = H$: Hadamard basis (binary)

Need not be incoherent with the sparsity basis $\,\Psi\,$

- Spread spectrum: random phase modulation of \boldsymbol{s}
 - Rademacher/ Steinhaus sequence $\boldsymbol{m}, |m_i| = 1$ $M = \begin{bmatrix} \boldsymbol{M} \\ \in \mathbb{C}^{N \times N} \end{bmatrix} \quad \boldsymbol{M} = \boldsymbol{H}_{\Omega}^T \boldsymbol{M} \boldsymbol{S}$ $\Phi = \boldsymbol{H}_{\Omega}^T \boldsymbol{M}$
- Real valued $M \Rightarrow m_i = \pm 1$ w.e.p. $\Rightarrow H^T M \in \{\pm 1\}^{N \times N}$
- ▶ Bias and scale for non-negativity: (since optical)

$$\boldsymbol{\Phi} = \frac{1}{2} (\boldsymbol{H}_{\Omega}^{T} \boldsymbol{M} + \boldsymbol{1}_{N} \boldsymbol{1}_{N}^{T}) \in \{0, 1\}^{M \times N}$$

Spread Spectrum Compressive Sensing 2/2

• Universal sensing bases $|\Gamma_{ij}| = \text{const.}$

e.g., Fourier and Hadamard bases

• Successful recovery when $M \ge C_{\rho} K \log^{5}(N)$ with a probability at least $1 - O(N^{-\rho}), 0 < \rho < \log^{3}(N)$ whatever the sparsity basis!! (principle: *coherence* decreasing with spread spec.)

G. Puy, et al., "Universal and efficient compressed sensing by spread spectrum and application to realisticFourier imaging techniques," Journal on Adv. in Sig. Proc., 2012.

← icteam ELEN ISP Group

Reconstructions

 $\underbrace{\text{Synthesis:}}_{\boldsymbol{\alpha} \in \mathbb{C}^N} \quad \widehat{\boldsymbol{\alpha}} := \underset{\boldsymbol{\alpha} \in \mathbb{C}^N}{\operatorname{arg\,min}} \quad \|\boldsymbol{\alpha}\|_1 \text{ subject to } \|\boldsymbol{y} - \boldsymbol{\Phi}_{\mathrm{S}} \boldsymbol{\alpha}\|_2 \leq \epsilon \text{ and } \boldsymbol{\Psi} \boldsymbol{\alpha} \in \mathbb{R}^N_+;$

Reconstructions

Reconstructions

- Ψ :DWT & UDWT (Daubechies 9/7 wavelet basis)
- Additional constraint: Non-negative spectra
- Numerically: Proximal methods (Chambolle-Pock algorithm)
 - Generalized gradient methods for non-smooth convex functions
 - (Not detailed here) **Proximal operators:** easy to evaluate for several functions
 - Easy to include additional constraints

Noise estimation (an important part)

- ▶ No test object: Physical model of deflection spectrum
 - deflection spectra = image of the pinhole.

ISP Group

ELEN

a disk with a certain radius r and height h.

 \blacktriangleright Without any object, obtain $\boldsymbol{y}^{\mathrm{no}}$ with 100% measurements

$$\Phi^* y^{\text{no}} s^{\text{no}} s^{\text{no}}$$

$$= \sum_{\substack{\text{Model spectrum} \\ \text{spectrum} \\ \text{with } M = N}} \epsilon(N) = \left\| y^{\text{no}} - \Phi_{M=N} \right\|_{2}$$

$$\left\{ \text{For } M < N, \quad \epsilon(M) = \sqrt{M + 2\sqrt{M}} \epsilon(N) / \sqrt{N} \right\} \simeq 5 \text{ dB!}$$

$$(\text{for all } M)$$

Journée thématique conjointe GDR/ISIS et GDR/SoC-SiP 28

Reconstruction results with experimental data

- ▶ Lambda-X NIMO system (9.99D plano-convex lens)
 - ▶ SLM size of 64×64 (one pixel "k")

 $100\%~(M\!/\!N\!)$

<u>Reminder</u>: input SNR $\simeq 5 \, \text{dB!}$

Reconstruction rea

- Lambe
 - $\blacktriangleright SLM \text{ size of } 64 \times 64 \text{ (one pixel "k")}$

 $100\%~(M\!/\!N\!)$

3.6% Synthesis DWT

3.6% Analysis UDWT (similar to synthesis UDWT)

Reconstruction results with experimental data

 \widehat{s}_k : Compressive sensing reconstruction

 $\widehat{\boldsymbol{s}}_{k}^{N}$: spectrum reconstructed with 100% measurements.

Deflection spectrum and the angles

UCL Universite de Louvien

Deflection radius r vs CCD pixel

Deflection radius γ vs CCD pixel

Main deflection without reconstruction? 1/2

- $\widehat{\boldsymbol{S}}_k$ characterized by $\widehat{\tau}_k = (\overline{c}_k^x, \overline{c}_k^y)^T$.
- $\boldsymbol{g}_{\tau}^{\rho}:$ 2D Gaussian

Location of dominant deflection.

with radius ρ , translated by τ .

- Matched filtering $\hat{\tau}_k = \underset{\tau}{\arg \max} |\langle \hat{s}_k, g_{\tau}^{\rho} \rangle|.$
- Efficiently implemented as convolution
- Can we do something similar in compressive domain?

Main deflection without reconstruction? 2/2

Compressive matched filtering **Smashed filtering***

* M. A. Davenport et al., "Signal processing with compressive measurements," IEEE J. Sel. T. Sig. Proc., 2010.

Visualization plot

UCL Université dal oursine

Plot of each r for CCD pixel:

Multifocal diffractive IOL: 2 Dioptric powers 28D and 30.25D

Visualization plot

Université del ouvain

icteam

ELEN ISP Group

Plot of each r for CCD pixel:

Summary and further work

- A real world instance of compressive sensing in action ... and its use
- Practical systems pose their own challenges
- Further...
 - Detailed noise modeling + calibration + nonlinearities
 - Multiple-location reconstruction
 - Consideration of system's PSF:
 blind compressive deconvolution

<u>Part III:</u> Optical Deflectometry

(main contributor: Adriana Gonzalez)

Optical Deflectometric Tomography Interest Intraocular

- Optical characterization of (transparent) objects ODT
- Tomographic Imaging Modality

UCL Université catholique

← icteam ELEN ISP Group

Measures light deviation caused by the difference in the object refractive index

lenses

Optical fibers

Optical Deflectometric Tomography Interest Intraocular

- Optical characterization of (transparent) objects ODT
- Tomographic Imaging Modality

ELEN ISP Group

Measures light deviation caused by the difference in the object refractive index \boldsymbol{e}_2

lenses

How to measure light deflections?

• We use our Schlieren Deflectometer (See Part 2)

UCL Université catholique

icteam

ELEN ISP Group

43

Continuous model

Mathematical Model

UCL Université catholique de louvain

- Eikonal equation $\mathcal{R} \text{ curved} : \mathbf{r}(s) \rightarrow \frac{\mathrm{d}}{\mathrm{d}s} (\mathfrak{n} \frac{\mathrm{d}}{\mathrm{d}s} \mathbf{r}(s)) = \mathbf{\nabla} \mathfrak{n}$
- Approximation small $\alpha \to \mathcal{R}$ straight : $\mathbf{r} \cdot \mathbf{p}_{\theta} = \tau$ error < 10% $\alpha(\tau, \theta) = \sin(\alpha)$

$$\alpha(\tau,\theta) = \frac{1}{\mathfrak{n}_{\mathrm{r}}} \int_{\mathbb{R}^2} \left(\boldsymbol{\nabla} \mathfrak{n}(\mathbf{r}) \cdot \mathbf{p}_{\theta} \right) \, \delta(\tau - \mathbf{r} \cdot \mathbf{p}_{\theta}) \, \mathrm{d}^2 \mathbf{r}$$

44

Continuous model

Mathematical Model

UCL Université catholique

- Eikonal equation $\mathcal{R} \text{ curved} : \mathbf{r}(s) \rightarrow \frac{\mathrm{d}}{\mathrm{d}s} (\mathfrak{n} \frac{\mathrm{d}}{\mathrm{d}s} \mathbf{r}(s)) = \mathbf{\nabla} \mathfrak{n}$
- Approximation small $\alpha \rightarrow \mathcal{R}$ straight : $\mathbf{r} \cdot \mathbf{p}_{\theta} = \tau$ error < 10% $\alpha(\tau, \theta) = \sin(\alpha)$

$$\alpha(\tau,\theta) = \frac{1}{\mathfrak{n}_{\mathrm{r}}} \int_{\mathbb{R}^2} \left(\boldsymbol{\nabla} \mathfrak{n}(\mathbf{r}) \cdot \mathbf{p}_{\theta} \right) \, \delta(\tau - \mathbf{r} \cdot \mathbf{p}_{\theta}) \, \mathrm{d}^2 \mathbf{r}$$

 $\frac{\text{Deflectometric Central Slice Theorem:}}{y(\omega, \theta) := \int_{\mathbb{R}} \alpha(\tau, \theta) e^{-2\pi i \tau \omega} d\tau = \frac{2\pi i \omega}{\mathfrak{n}_{r}} \,\widehat{\mathfrak{n}}(\omega \, \mathbf{p}_{\theta})}$ $\widehat{\mathfrak{n}}(\omega \, \mathbf{p}_{\theta}) : 2\text{-D Fourier transform of }\widehat{\mathfrak{n}} \text{ in Polar grid}$

Discrete Forward Model

- $\mathbf{n} \in \mathbb{R}^N$; Cartesian grid of $N = N_0^2$ pixels; sampling: δr
- $\mathbf{y} \in \mathbb{R}^{M}$; Polar grid of $M = N_{\tau}N_{\theta}$ pixels; sampling: $\delta \tau$, $\delta \theta$

• **D**:
$$\frac{2\pi i (\delta r)^2}{\mathfrak{n}_r}$$
 diag $(\omega_{(1)}, \cdots, \omega_{(M)}) \in \mathbb{C}^{M \times M}$

- $\mathbf{F} \in \mathbb{C}^{M \times N}$: Non-equispaced Fourier Transform (NFFT) [4]
- η ∈ C^M : numerical computations, model discretization, model discrepancy, observation noise

[4] J. Keiner et al. (2009)

← cteam ELEN ISP Group

ODT vs. AT

$$\mathsf{y} = \mathsf{DFn} + \eta$$

- Main difference: Operator **D**
- ullet Without noise $\eta
 ightarrow$ classical tomographic model

$$\tilde{\mathbf{y}} = \mathbf{D}^{-1}\mathbf{y} = \mathbf{F}\mathbf{n}$$

- For $\eta
 eq 0
 ightarrow$ Not a classical tomographic model
 - η : AWGN $ightarrow {\sf D}^{-1}\eta$ not homoscedastic

ODT vs. AT

UCL Université catholique de Louvain Observation: 1-D FT of sinograms along the τ direction

Standard Reconstruction Methods

 $\mathsf{y} = \mathbf{\Phi} \mathfrak{n} + \eta = \mathsf{DF} \mathfrak{n} + \eta$

1. Filtered Back Projection

- Analytical method
- Solution $\tilde{\mathfrak{n}}_{\mathsf{FBP}}$:

Problems:

UCL Université catholique

- Filtering the tomographic projections
 - AT: ramp filter; ODT: Hilbert filter
- Backprojecting in the spatial domain by angular integration

2. Minimum Energy Reconstruction

$$\tilde{\mathfrak{n}}_{\mathsf{ME}} = \mathbf{\Phi}^{\dagger} \mathbf{y} = \mathbf{\Phi}^{*} (\mathbf{\Phi} \mathbf{\Phi}^{*})^{-1} \mathbf{y} \equiv \tilde{\mathfrak{n}}_{\mathsf{ME}} = \arg\min_{\mathbf{u} \in \mathbb{R}^{N}} \|\mathbf{u}\|_{2} \, \text{s.t.} \, \mathbf{y} = \mathbf{\Phi} \mathbf{u}$$

Noise

- Compressiveness $\Rightarrow M(N_{\theta}) < N$
 - \Rightarrow ill-posed problem

Solution: Regularization

Sparsity prior

Heterogeneous transparent materials with slowly varying refractive index separated by sharp interfaces

Intraocular lenses

Optical fibers

TV and BV promote the perfect "cartoon shape" model

"Sparse" gradient Small Total Variation norm

 $\|\mathbf{n}\|_{\mathsf{TV}} := \|\mathbf{\nabla}\mathbf{n}\|_{2,1}$

Other priors

• Positive RIM

UCL Université catholique $\Rightarrow \mathfrak{n} \succeq 0 \qquad (\mathrm{no} \ \mathrm{metamaterial} \ \mathrm{here} \ ;-)$

• The object is completely contained in the image. Pixels in the border are set to zero in order to guarantee uniqueness of the solution.

 $\Rightarrow \mathbf{n}|_{\delta\Omega} = 0 \quad \text{(up to an intensity shift)}$

SOLUTION UNIQUENESS

51

$TV-\ell_2$ reconstruction and Noise

$$\mathsf{y} = \mathbf{\Phi} \mathfrak{n} + \eta = \mathsf{DF} \mathfrak{n} + \eta$$

TV- ℓ_2 Reconstruction

$$\tilde{\mathbf{n}}_{\mathrm{TV}-\ell_2} = \underset{\mathbf{u}\in\mathbb{R}^N}{\arg\min\|\mathbf{u}\|_{\mathrm{TV}}} \text{ s.t. } \|\mathbf{y}-\mathbf{\Phi}\mathbf{u}\|_2 \leq \varepsilon, \ \mathbf{u}\succeq \mathbf{0}, \ \mathbf{u}_{\partial\Omega}=\mathbf{0}$$

Noise

• Observation noise $\rightarrow \sigma^2_{\rm obs}$

UCL Universite attorner (i) Croup

- Modeling error ightarrow ray tracing with Snell law pprox 10%
- Interpolation noise \rightarrow NFFT error (very small)
- + Reconstruction using CP algorithm [5] expanded in a product space

[5] A. Chambolle and T. Pock. Journal of Mathematical Imaging and Vision. (2011)

Synthetic Results

Université catholique de louvain

Compressiveness and noise robustness

Synthetic Results

- No measurement noise (MSNR $= \infty$)
- $N_{\theta}/360 = 25\%$

Université catholique de louvain

√icteam ELEN ISP Group Journée théma

Synthetic Results

- No measurement noise (MSNR $= \infty$)
- $N_{\theta}/360 = 5\%$

x 10⁻³

10

8

6

4

2

0

-2

- Bundle of 10 fibers immersed in an optical fluid
- MSNR pprox 10dB
- $N_{\theta} = 60 \Rightarrow N_{\theta}/360 = 17\%$

- Bundle of 10 fibers immersed in an optical fluid
- MSNR \approx 10dB

ELEN ISP Group

-icteam

UCL Université catholique de Louvain • $N_{\theta} = 60 \Rightarrow N_{\theta}/360 = 17\%$

- Bundle of 10 fibers immersed in an optical fluid
- MSNR \approx 10dB

ELEN ISP Group

-icteam

Ucl Université catholique de Louvain • $N_{\theta} = 60 \Rightarrow N_{\theta}/360 = 17\%$

- Bundle of 10 fibers immersed in an optical fluid
- MSNR \approx 10dB

cicteam ELEN ISP Group

Université del ouvain • $N_{\theta} = 60 \Rightarrow N_{\theta}/360 = 17\%$

Summary and further work (1/2)

- Optical Deflectometry Tomography benefit of sparse regularization!
- ▶ Robust "Compressiveness" is allowed but ...
 - ► NFFT mandatory!
 - careful noise estimation is needed (not explained here)
 - non-linearities remain (handled as noise up to now)

Summary and further work (2/2)

- Other applications?
 - Phase-contrast X-ray imaging (deflection \rightarrow phase change)

[T. Pfeiffer et al. Nature Physics, 2006]

Summary and further work (2/2)

- Other applications?
 - Phase-contrast X-ray imaging (deflection \rightarrow phase change)

• Gravitational weak lensing?

[T. Pfeiffer et al. Nature Physics, 2006]

[A. Amara, A. Réfrégier, "Optimal surveys for weak-lensing tomography", MNRAS, 381(3), 1018-1026.]

Thank you!

Further readings

- Prasad Sudhakar, Laurent Jacques, Xavier Dubois, Philippe Antoine, Luc Joannes, "Compressive Imaging and Characterization of Sparse Light Deflection Maps" Submitted, <u>arXiv:1406.6425</u>
- A. Gonzalez, L. Jacques, C. De Vleeschouwer, P. Antoine, "Compressive Optical Deflectometric Tomography: A Constrained Total-Variation Minimization Approach", Journal of Inverse Problems and Imaging, vol. 8, no.2, p. 421-457 (2014), <u>arXiv:1209.0654</u>
- G. S. Settles, "Schlieren and Shadowgraph Techniques: Visualizing Phenomena in Transparent Media," Springer, New York, NY, USA, 2001.
- L. Joannes et al., "Phase-shifting schlieren: high-resolution quantitative schlieren that uses the phase-shifting technique principle," Applied optics, 2003.
- G. Puy, et al., "Universal and efficient compressed sensing by spread spectrum and application to realistic Fourier imaging techniques," Journal on Adv. in Sig. Proc., 2012.
- E. Candès et al., "Sparsity and incoherence in compressive sampling," Inverse problems, 2007.
- A. Chambolle et al., "A first-order primal-dual algorithm for convex problems with applications to imaging," Journal of Mathematical Imaging and Vision, 2011.