Computational Fourier Transform Interferometry for Hyperspectral Imaging

A. Moshtaghpour¹, J. B. Dias², <u>Laurent Jacques¹</u>

In collaboration with

15PGroup, ICTEAM, UCLouvain, Belgium
 2: Instituto de Telecomunicações, Portugal

Interferometric imaging

Observations

Earth rotation

Optical Interferometry

Synthetic Aperture Radar

Phase Shifting in Optics (e.g., material surface imaging)

Interferometric imaging

Aperture Synthesisin Radio-Astronomyinterferometry $\vec{\omega}$

 $E_1(\vec{\omega}, t)$

Optical Interferometry

Synthetic Aperture Radar

Phase Shifting in Optics (e.g., material surface imaging)

and maybe soon ... HR gravitational wave imaging

Fourier Transform Interferometry (in biological imaging)

A. A. Michelson 1852-1931

Fourier Transform Interferometry (in biological imaging)

5

Fourier Transform Interferometry

FTI discrete sensing model
 (essentially, I-D Fourier sensing at Nyquist, on each pixel)

No spatial mixing!

Fourier Transform Interferometry

• Classical reconstruction: Fourier inversion $\hat{X} = F^{-1}Y$

Fourier Transform Interferometry

• Classical reconstruction: Fourier inversion $\hat{X} = F^{-1}Y$

higher spectral resolution (related to OPD discretization: O(100-1000) bands!)

more photo-bleaching

Solution: OPD subsampling

How? Using compressive sensing theory

Compressive FTI

Two possible system modifications

Coded Illumination (CI-FTI):

Structured Illumination (SI-FTI):

Uniform Density Sampling (UDS) in CS

• Reconstruction in CS theory: (use the restricted isometry property – RIP) If $A \in \mathbb{C}^{M \times N}$ is $\operatorname{RIP}(\delta < \sqrt{2} - 1, \Sigma_{2K})$, *i.e.*, $\|Ax\|^2 \simeq_{\delta} \|x\|^2$ for all $x \in \Sigma_{2K}$, Then, for y = Ax + n, $\|n\| \leq \epsilon$, and $\hat{x} = \arg\min_{u} \|u\|_{1}$ s.t. $\|Au - y\| \leq \epsilon$, $\|x - \hat{x}\| = O(K^{-1/2} \|x - x_{K}\|_{1} + \epsilon)$.

> $oldsymbol{\lambda}$ Combines both the sensing matrix and the sparsity basis $oldsymbol{y}= oldsymbol{\Phi}(\Psi oldsymbol{x})=oldsymbol{A}oldsymbol{x}$

Uniform Density Sampling (UDS) in CS

- Reconstruction in CS theory: (use the restricted isometry property RP) If $A \in \mathbb{C}^{M \times N}$ is $\operatorname{RIP}(\delta < \sqrt{2} - 1, \Sigma_{2K})$, *i.e.*, $\|Ax\|^2 \simeq_{\delta} \|x\|^2$ for all $x \in \Sigma_{2K}$, Then, for y = Ax + n, $\|n\| \leq \epsilon$, and $\hat{x} = \arg\min_{u} \|u\|_{1}$ s.t. $\|Au - y\| \leq \epsilon$, $\|x - \hat{x}\| = O(K^{-1/2} \|x - x_{K}\|_{1} + \epsilon)$.
- Partial random ONB sensing:

$$oldsymbol{A} = \sqrt{rac{N}{M}} oldsymbol{R}_{\Omega} oldsymbol{U}^* oldsymbol{\Psi} \in \mathbb{C}^{M imes N}$$

with $\boldsymbol{U}, \boldsymbol{\Psi}$ ONB, $\Omega = \{\Omega_1, \cdots, \Omega_M\}, \Omega_i \sim_{\text{iid}} \underbrace{\mathcal{U}(\{1, \cdots, N\})}_{\text{replacement}}$. (sampling without replacement) **RIP?** $M \ge C\delta^{-2}\mu^2 K \ln^3(K) \ln(N) \stackrel{\text{w.h.p.}}{\Rightarrow} \boldsymbol{A} \text{ is } \operatorname{RIP}(\delta, \Sigma_k)$

[Candès, Romberg, Rauhut, Foucart, ...]

Uniform Density Sampling (UDS) in CS

- Reconstruction in CS theory: (use the restricted isometry property RP) If $A \in \mathbb{C}^{M \times N}$ is $\operatorname{RIP}(\delta < \sqrt{2} - 1, \Sigma_{2K})$, *i.e.*, $\|Ax\|^2 \simeq_{\delta} \|x\|^2$ for all $x \in \Sigma_{2K}$, Then, for y = Ax + n, $\|n\| \leq \epsilon$, and $\hat{x} = \arg\min_{u} \|u\|_{1}$ s.t. $\|Au - y\| \leq \epsilon$, $\|x - \hat{x}\| = O(K^{-1/2} \|x - x_{K}\|_{1} + \epsilon)$.
- Partial random ONB sensing:

$$oldsymbol{A} = \sqrt{rac{N}{M}} oldsymbol{R}_\Omega oldsymbol{U}^* oldsymbol{\Psi} \in \mathbb{C}^{M imes N}$$

with $\boldsymbol{U}, \boldsymbol{\Psi}$ ONB, $\Omega = \{\Omega_1, \cdots, \Omega_M\}, \Omega_i \sim_{\text{iid}} \underbrace{\mathcal{U}(\{1, \cdots, N\})}_{\text{replacement}}$. (sampling without replacement) **RIP?** $M \ge C\delta^{-2}\mu^2 K \ln^3(K) \ln(N) \stackrel{\text{w.h.p.}}{\Rightarrow} \boldsymbol{A} \text{ is } \operatorname{RIP}(\delta, \Sigma_k)$

[Candès, Romberg, Rauhut, Foucart, ...]

• <u>Issue</u>: $\mu = \mu(U^*\Psi) := \sqrt{N} \max_{ij} |(U^*\Psi)_{ij}| \simeq \sqrt{N}$ for Fourier/Wavelet $\Rightarrow M \ge CN!$ No compressive FTI !?

with $\boldsymbol{U}, \boldsymbol{\Psi}$ ONB, $\Omega = \{\Omega_1, \cdots, \Omega_M\}, \Omega_j \sim_{\text{iid}} \beta$, with $\mathbb{P}(\beta = i) = p(i), \quad i \in \{1, \cdots, N\}).$

(sampling without replacement)

• Reconstruction in VDS?
Assuming
$$\boldsymbol{y} = \widehat{\boldsymbol{R}_{\Omega}} \widehat{\boldsymbol{U}}^* \boldsymbol{x} + \boldsymbol{n}$$
 with $\|\frac{1}{\sqrt{M}} \boldsymbol{D} \boldsymbol{n}\| \leq \epsilon$, and
 $\hat{\boldsymbol{x}} = \arg\min_{\boldsymbol{u}} \|\boldsymbol{\Psi}^* \boldsymbol{u}\|_1$ s.t. $\|\frac{1}{\sqrt{M}} \boldsymbol{D} (\underbrace{\boldsymbol{R}_{\Omega}} \underbrace{\boldsymbol{U}}^* \boldsymbol{u} - \boldsymbol{y})\| \leq \epsilon$
If $\frac{1}{\sqrt{M}} \boldsymbol{D} \boldsymbol{A}$ is RIP $(\delta < 1/3, \Sigma_{5k})$, then
 $\|\boldsymbol{x} - \hat{\boldsymbol{x}}\| = O(k^{-1/2} \|\boldsymbol{\Psi}^* \boldsymbol{x} - (\boldsymbol{\Psi}^* \boldsymbol{x})_k\|_1 + \epsilon)$

(& special care for noise power estimation)

Coded Illumination (CI-FTI):

$$egin{aligned} \Phi = egin{bmatrix} F_{\Omega^{\xi}}^{*} & 0 & \cdots & 0 \ 0 & F_{\Omega^{\xi}}^{*} & \cdots & 0 \ dots & dots & \ddots & dots \ 0 & 0 & \cdots & F_{\Omega^{\xi}}^{*} \end{bmatrix} \end{aligned}$$

Structured Illumination (SI-FTI):

Sparsity model:

(globally) K-sparse in $\Psi_{1D} \otimes \Psi_{2D}$ (wavelet x wavelet)

Sensing model:

Coded Illumination (CI-FTI):

Structured Illumination (SI-FTI): Sparsity model: $N_{\rm sp}$ N_{ξ} (globally) K-sparse in $\Psi_{1D} \otimes \Psi_{2D}$ (wavelet x wavelet) Sensing model: $egin{array}{lll} \Phi = egin{bmatrix} F^{\star}_{\Omega_1} & \mathbf{0} & \cdots & \mathbf{0} \ \mathbf{0} & F^{\star}_{\Omega_2} & \cdots & \mathbf{0} \ dots & dots & \ddots & dots \ \mathbf{0} & \mathbf{0} & \cdots & F^{\star}_{\Omega_{N_{\mathrm{D}}}} \end{bmatrix},$

$$p(j_{\xi}, j_x, j_y) = C \min\left(1, \frac{1}{N_{sp}|j_{\xi} - \frac{1}{2}N_{\xi}|}\right)^{*}$$

 $egin{aligned} oldsymbol{X} &= (oldsymbol{x}_1, \cdots, oldsymbol{x}_{N_{ ext{sp}}}) \ oldsymbol{x} &= ext{vec}(oldsymbol{X}) \end{aligned}$

(vectorized model)

 $y = \Phi x + n$

Coded Illumination (CI-FTI):

Structured Illumination (SI-FTI):

Sparsity model:

(globally) K-sparse in $\Psi_{1D} \otimes \Psi_{2D}$ (wavelet x wavelet)

 $N_{\rm sp}$

Reconstruction:

Reconstruction:

On each pixel $j \in [N_{sp}]$, solve: $\hat{x}_j = \operatorname{argmin}_{\boldsymbol{u} \in \mathbb{R}^{N_{\xi}}} \| \boldsymbol{\Psi}_{1\mathrm{D}}^{\top} \boldsymbol{u} \|$ noise per pixel s.t. $\frac{1}{\sqrt{M}} \| \boldsymbol{D}(\boldsymbol{y}_j - \boldsymbol{F}_{\Omega^{\xi}}^* \boldsymbol{u}) \| \leqslant \frac{\epsilon}{\sqrt{N_{sp}}}$

$$\hat{\boldsymbol{x}} = \operatorname{argmin}_{\boldsymbol{u} \in \mathbb{R}^{N}} \| (\boldsymbol{\Psi}_{2\mathrm{D}} \otimes \boldsymbol{\Psi}_{1\mathrm{D}})^{\top} \boldsymbol{u} \|$$

s.t. $\frac{1}{\sqrt{M}} \| \boldsymbol{D} (\boldsymbol{y} - \boldsymbol{\Phi} \boldsymbol{u}) \| \leqslant \epsilon$

 $egin{aligned} oldsymbol{X} &= (oldsymbol{x}_1, \cdots, oldsymbol{x}_{N_{ ext{sp}}}) \ oldsymbol{x} &= ext{vec}(oldsymbol{X}) \end{aligned}$

(vectorized model)

 $y = \Phi x + n$

Coded Illumination (CI-FTI):

Structured Illumination (SI-FTI):

Sparsity model:

(globally) K-sparse in $\Psi_{1D} \otimes \Psi_{2D}$ (wavelet x wavelet)

 Ψ

 $N_{\rm sp}$

Reconstruction:

$$\hat{\boldsymbol{x}} = \operatorname{argmin}_{\boldsymbol{u} \in \mathbb{R}^{N}} \| (\boldsymbol{\Psi}_{2\mathrm{D}} \otimes \boldsymbol{\Psi}_{1\mathrm{D}})^{\top} \boldsymbol{u} \|$$

s.t. $\frac{1}{\sqrt{M}} \| \boldsymbol{D} (\boldsymbol{y} - \boldsymbol{\Phi} \boldsymbol{u}) \| \leqslant \epsilon$

 $\sum_{K \in \mathcal{M}} \sqrt{N_{sp}}$ $(\mathbf{x} \in \sqrt{N_{sp}}), \text{ then, w.h.p.,}$ $(\mathbf{x} \in \mathbf{x}), \mathbf{x} \in \mathbb{R}, \mathbf$

Reconstruction:

On each pixel $j \in [N_{sp}]$, solve: $\hat{x}_j = \operatorname{argmin}_{u \in \mathbb{R}^{N_{\xi}}} \|\Psi_{1D}^{\top} u\|$ noise per pixel s.t. $\frac{1}{\sqrt{M}} \|D(y_j - F_{\Omega^{\xi}}^* u)\| \leq \frac{\epsilon}{\sqrt{N_{sp}}}$ Error: If $M_{\xi} \gtrsim K_{\xi} \ln^3(K_{\xi}) \ln^2(N_{\xi})$, then, w.h.p., $\|x - \hat{x}\| =$ $O\left(K_{\xi}^{-1/2} (\sum_{j=1}^{N_{sp}} \|\Psi_{1D}^{\top} x_j - (\Psi_{1D}^{\top} x_j)_{K_{\xi}}\|_1^2)^{1/2} + \epsilon\right)$

Synthetic Data:

Reconstruction quality:

Synthetic Data:

Reconstruction quality:

Real experiments with constrained intensity

Setup:

Nyquist observations

+ subsampling to simulate CI-FTI

Real experiments with constrained intensity

Normalized intensity

"Single-pixelization" of FTI

Context:

Single Pixel Camera

Lensless Endoscope

Compressive fluorescence microscopy

"single-pixelization" of FTI !

Interest? Bring HS imaging to single-pixel imaging!

<u>Contributions:</u>

- Focus on variable density sampling (VDS) strategies
 & reconstruction guarantees of such schemes [Krahmer, Ward, 14]
- Analysis of Hadamard-Haar sensing/sparsity systems
- Numerical confirmations of boosted image qualities

"single-pixelization" of FTI!

Sensing & sparsity models?

"single-pixelization" of FTI!

Fourier

"single-pixelization" of FTI!

31

(from the first part, we know that ...)

Crucial question: estimate the local coherence of

Exploit recurrent H&H design in I-D, i.e.,

for Hadamard:

(W: wavelet, A: approx.)

for Haar:

$$\boldsymbol{H}_{N} = \frac{1}{\sqrt{2}} \begin{bmatrix} \boldsymbol{H}_{\frac{N}{2}} \otimes \begin{bmatrix} 1\\1 \end{bmatrix}, \ \boldsymbol{H}_{\frac{N}{2}} \otimes \begin{bmatrix} 1\\-1 \end{bmatrix} \end{bmatrix}, \quad \boldsymbol{H}_{1} = \begin{bmatrix} 1 \end{bmatrix}$$
$$\begin{cases} \boldsymbol{W}_{N} = \frac{1}{\sqrt{2}} \begin{bmatrix} \boldsymbol{W}_{\frac{N}{2}} \otimes \begin{bmatrix} 1\\1 \end{bmatrix}, \ \boldsymbol{I}_{\frac{N}{2}} \otimes \begin{bmatrix} 1\\-1 \end{bmatrix} \end{bmatrix}, \quad \boldsymbol{W}_{1} = \boldsymbol{A}_{1} = \begin{bmatrix} 1 \end{bmatrix}$$
$$\boldsymbol{A}_{N} = \frac{1}{\sqrt{2}} \begin{bmatrix} \boldsymbol{W}_{\frac{N}{2}} \otimes \begin{bmatrix} 1\\1 \end{bmatrix}, \ \boldsymbol{I}_{\frac{N}{2}} \otimes \begin{bmatrix} 1\\1 \end{bmatrix}, \ \boldsymbol{I}_{\frac{N}{2}} \otimes \begin{bmatrix} 1\\1 \end{bmatrix} \end{bmatrix}, \quad \boldsymbol{W}_{1} = \boldsymbol{A}_{1} = \begin{bmatrix} 1 \end{bmatrix}$$

By ordering i & j by their levels,

$$ig(oldsymbol{H}_N^ opoldsymbol{W}_Nig)_{i,j}$$

gets a fractal structure!

Exploit recurrent H&H design in I-D, i.e.,

$$\begin{array}{ll} \text{for Hadamard:} & \boldsymbol{H}_{N} = \frac{1}{\sqrt{2}} \begin{bmatrix} \boldsymbol{H}_{\frac{N}{2}} \otimes \begin{bmatrix} 1\\1 \end{bmatrix}, \ \boldsymbol{H}_{\frac{N}{2}} \otimes \begin{bmatrix} 1\\-1 \end{bmatrix} \end{bmatrix}, \quad \boldsymbol{H}_{1} = \begin{bmatrix} 1 \end{bmatrix} \\ \\ \text{for Haar:} \\ (\textbf{W: wavelet, A: approx.)} & \begin{cases} \boldsymbol{W}_{N} = \frac{1}{\sqrt{2}} \begin{bmatrix} \boldsymbol{W}_{\frac{N}{2}} \otimes \begin{bmatrix} 1\\1 \end{bmatrix}, \ \boldsymbol{I}_{\frac{N}{2}} \otimes \begin{bmatrix} 1\\-1 \end{bmatrix} \\ \\ \boldsymbol{H}_{N} = \frac{1}{\sqrt{2}} \begin{bmatrix} \boldsymbol{W}_{\frac{N}{2}} \otimes \begin{bmatrix} 1\\1 \end{bmatrix}, \ \boldsymbol{I}_{\frac{N}{2}} \otimes \begin{bmatrix} 1\\1 \end{bmatrix} \end{bmatrix}, \quad \boldsymbol{W}_{1} = \boldsymbol{A}_{1} = \begin{bmatrix} 1 \end{bmatrix} \\ \end{cases}$$

Coherence factors with Kronecker product, i.e.,

$$\begin{array}{ll} \mu_l(\mathbf{\Phi}^* \mathbf{\Psi}) = \mu_{l_{\xi}} (\mathbf{\Phi}_{\mathrm{dft}}^* \mathbf{\Psi}_{\mathrm{dhw}}^{\mathrm{1d}}) \cdot \mu_{l_{\mathrm{p}}} (\mathbf{\Phi}_{\mathrm{had}}^* \mathbf{\Psi}_{\mathrm{dhw}}) \\ \Phi_{\mathrm{had}} \otimes \Phi_{\mathrm{dft}} & \Psi_{\mathrm{dhw}} \otimes \Psi_{\mathrm{dhw}}^{\mathrm{1d}} & \leq \sqrt{\frac{2}{|l_{\xi}|}} \quad \text{[Krahmer, Ward, I4]} \end{array}$$

and
$$\mu_{l_p}(\Phi_{
m had}^*\Psi_{
m dhw})\leqslant 2^{-\lfloor\log_2(\max(l_x,l_y)-1)
floor}$$
 [Moshtaghpour et al., 19]

with:
$$l \equiv (l_{\xi}, l_{p}) \equiv \left(l_{\xi}, (l_{x}, l_{y})\right)$$

2-D Hadamard "frequencies"

Exploit recurrent H&H design in I-D, i.e.,

$$\begin{array}{ll} \text{for Hadamard:} & \boldsymbol{H}_{N} = \frac{1}{\sqrt{2}} \begin{bmatrix} \boldsymbol{H}_{\frac{N}{2}} \otimes \begin{bmatrix} 1\\1 \end{bmatrix}, \ \boldsymbol{H}_{\frac{N}{2}} \otimes \begin{bmatrix} 1\\-1 \end{bmatrix} \end{bmatrix}, \quad \boldsymbol{H}_{1} = \begin{bmatrix} 1 \end{bmatrix} \\ \\ \text{for Haar:} \\ (\textbf{W: wavelet, A: approx.)} & \begin{cases} \boldsymbol{W}_{N} = \frac{1}{\sqrt{2}} \begin{bmatrix} \boldsymbol{W}_{\frac{N}{2}} \otimes \begin{bmatrix} 1\\1 \end{bmatrix}, \ \boldsymbol{I}_{\frac{N}{2}} \otimes \begin{bmatrix} 1\\-1 \end{bmatrix} \\ \\ \boldsymbol{H}_{N} = \frac{1}{\sqrt{2}} \begin{bmatrix} \boldsymbol{W}_{\frac{N}{2}} \otimes \begin{bmatrix} 1\\1 \end{bmatrix}, \ \boldsymbol{I}_{\frac{N}{2}} \otimes \begin{bmatrix} 1\\1 \end{bmatrix} \end{bmatrix}, \quad \boldsymbol{W}_{1} = \boldsymbol{A}_{1} = \begin{bmatrix} 1 \end{bmatrix} \\ \end{cases}$$

- Coherence factors with Kronecker product
- Combining everything: select patterns with pmf

$$p(l) = p(l_{\xi}, l_x, l_y) \propto |l_{\xi}|^{-1} |\max(l_x, l_y)|^{-1}$$

- Exploit recurrent H&H design in I-D, i.e.,
- $\begin{array}{ll} \text{for Hadamard:} & \boldsymbol{H}_{N} = \frac{1}{\sqrt{2}} \begin{bmatrix} \boldsymbol{H}_{\frac{N}{2}} \otimes \begin{bmatrix} 1\\1 \end{bmatrix}, \ \boldsymbol{H}_{\frac{N}{2}} \otimes \begin{bmatrix} 1\\-1 \end{bmatrix} \end{bmatrix}, \quad \boldsymbol{H}_{1} = \begin{bmatrix} 1 \end{bmatrix} \\ \\ \text{for Haar:} \\ (\textbf{W: wavelet, A: approx.)} & \begin{cases} \boldsymbol{W}_{N} = \frac{1}{\sqrt{2}} \begin{bmatrix} \boldsymbol{W}_{\frac{N}{2}} \otimes \begin{bmatrix} 1\\1 \end{bmatrix}, \ \boldsymbol{I}_{\frac{N}{2}} \otimes \begin{bmatrix} 1\\-1 \end{bmatrix} \\ \\ \boldsymbol{H}_{N} = \frac{1}{\sqrt{2}} \begin{bmatrix} \boldsymbol{W}_{\frac{N}{2}} \otimes \begin{bmatrix} 1\\1 \end{bmatrix}, \ \boldsymbol{I}_{\frac{N}{2}} \otimes \begin{bmatrix} 1\\1 \end{bmatrix} \end{bmatrix}, \quad \boldsymbol{W}_{1} = \boldsymbol{A}_{1} = \begin{bmatrix} 1 \end{bmatrix} \\ \end{cases}$
- Coherence factors with Kronecker product
- Combining everything: select patterns with pmf

 $p(l) = p(l_{\xi}, l_x, l_y) \propto |l_{\xi}|^{-1} |\max(l_x, l_y)|^{-1}$

Sample complexity for K-sparse HS volume:

 $M \ge c K \log(N_{\xi}) \log(N_{p}) \log(\eta)$

• Synthetic HS volume: $(N_{\xi}, N_{p}) = (512, 64^{2})$

3 maps from database [Ruusuvuori et al, 08] known spectra of 3 fluorochromes

• Synthetic HS volume: $(N_{\xi}, N_{p}) = (512, 64^{2})$

3 maps from database [Ruusuvuori et al, 08] known spectra of 3 fluorochromes

Measurements obtained with I-pix FTI model + noise

• Synthetic HS volume: $(N_{\xi}, N_{p}) = (512, 64^{2})$

3 maps from database [Ruusuvuori et al, 08] known spectra of 3 fluorochromes

Measurements obtained with I-pix FTI model + noise

Conclusions and perspectives

- FTI is another modality where VD5/C5 helps
- New answers to constrained intensity sensing and new possibility to limit, e.g., photobleaching.
- Promising usefulness of single-pixel FTI
 with Hadamard illumination patterns + Haar sparsity basis
- Run this on an actual setup? (for multi-pixel FTI [Moshtaghpour et al., 19])
 Gain for biological factor of Merit (e.g., light exposure)?
- Hadamard with other wavelet bases?
 Is there generalized recurrent relations?
 (connection with bases constructions in quantum physics)
- Extension to Multilevel Density Sampling [Adcock et al., 17]

(very recent work on this in [Adcock et al., 19])

Thank you for your attention!

(subset of) References

- A. <u>Moshtaghpour</u>, L. Jacques, V. Cambareri, P. Antoine, and M. Roblin, "A variable density sampling scheme for compressive Fourier transform interferometry," SIAM Journal on Imaging Sciences, vol. 12, no. 2, pp. 671–715, 2019.
- V. Studer, J. Bobin, M. Chahid, H. S. Mousavi, E. Candès, and M. Dahan, "Compressive fluorescence microscopy for biological and hyperspectral imaging," Proceedings of the National Academy of Sciences, vol. 109, no. 26, pp. E1679-E1687, 2012.
- A. Michelson, "ART. XXI.--The relative motion of the Earth and the Luminiferous ether." American Journal of Science (1880–1910) 22.128 (1881): 120.
- F. Krahmer and R. Ward, "Stable and robust sampling strategies for compressive imaging," IEEE transactions on image processing, vol. 23, no. 2, pp. 612–622, 2014.
- B. Adcock, A. C. Hansen, C. Poon, and B. Roman, "Breaking the coherence barrier: A new theory for compressed sensing," in Forum of Mathematics, Sigma, vol. 5. Cambridge University Press, 2017.
- P. Ruusuvuori, A. Lehmussola, J. Selinummi, T. Rajala, H. Huttunen, and O. Yli-Harja, "Benchmark set of synthetic images for validating cell image analysis algorithms," in 16th European signal processing conference, 2008, pp. 1-5.
- Ben Adcock, Vegard Antun, Anders C. Hansen, "Uniform recovery in infinite-dimensional compressed sensing and applications to structured binary sampling", arXiv: 1905.00126
- And the XKCD, font style ;-) (<u>https://github.com/ipython/xkcd-font</u>)

41

Extra slides

 \Rightarrow *D* accounts for the multiplicities of selected OPDs!

Spectra on a single point

- Reconstruction in VDS? Assuming $\boldsymbol{y} = \boldsymbol{R}_{\Omega} \boldsymbol{U}^* \boldsymbol{x} + \boldsymbol{n}$ with $\|\frac{1}{\sqrt{M}} \boldsymbol{D} \boldsymbol{n}\| \leq \epsilon$, and $\hat{\boldsymbol{x}} = \arg\min_{\boldsymbol{u}} \|\boldsymbol{\Psi}^* \boldsymbol{u}\|_1$ s.t. $\|\frac{1}{\sqrt{M}} \boldsymbol{D}(\boldsymbol{R}_{\Omega} \boldsymbol{U}^* \boldsymbol{u} - \boldsymbol{y})\| \leq \epsilon$ If $\frac{1}{\sqrt{M}} \boldsymbol{D} \boldsymbol{A}$ is RIP $(\delta < 1/3, \Sigma_{5k})$, then $\|\boldsymbol{x} - \hat{\boldsymbol{x}}\| = O(k^{-1/2} \|\boldsymbol{\Psi}^* \boldsymbol{x} - (\boldsymbol{\Psi}^* \boldsymbol{x})_k\|_1 + \epsilon)$
- Noise estimation? (*e.g.*, assuming $n_i \sim_{i.i.d.} \mathcal{N}(0, \sigma^2)$)

 \bigcirc

- Standard (e.g., UDS): Estimator of $\eta^2 \ge \|\boldsymbol{n}\|^2 = \sum_i n_i^2$, e.g., $\eta^2 = O(\sigma^2 M + c\sigma^2 \sqrt{M})$ w.h.p.
 - VDS, beware of \boldsymbol{D} : $\frac{M}{N} \|\boldsymbol{D}\boldsymbol{n}\|^{2} \leq \epsilon^{2} = O(\sigma^{2}M + c \sigma^{2}\sqrt{M}(1 + \rho \ln M))$ with $\rho = \rho(p)$, *i.e.*, $\rho = 0$ for UDS, $\rho = O(\ln N)$ for $p(i) \propto 1/|i|$. e.g., for Fourier/Haar