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1. Introduction




CS facts
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Compressed Sensing...

m a nutshell:

Generalize Dirac/Nyquist sampling:
1°) ask few (linear) questions

about your informative signal

2°) and recover it differently (non-linearly)”

e.g., sparse, structured, low-rank, ...
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Ist, CS > Generalized Linear Sensing!
M questions Sensing method  Signal

Sparsity

Prior
(U =1d)

A signal
N in this

discrete
world
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Ist, CS > Generalized Linear Sensing!
M questions Sensing method  Signal

Sparsity
Prior
(¥ = 1Id)

Generalized Linear Sensing! N
A signal

~ _ AT o
Yi —= <90@7 "L‘> — P, L in this
\ discrete

' e.g., to be realized
l<i<M g . world
optically /analogically
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2nd, CS > Non-linear reconstruction!

Mmm, M equations, N unknowns?!
I1l-posed problem

You must regularize it!

(4ntuition: would you know the signal support,

much less unknowns)

Universie @ \v7 Icteam l S l)



2nd, CS > Non-linear reconstruction!

Possible reconstruction: (others exist, e.g., greedy)

(Basis Pursuit DeNoise)
|Chen, Donoho, Saunders, 1998|

x = arg min ||u|; s.t. ||y — Pu|| < ¢
u € RN
Sparsity promotion: |[ull1=)_; [uy] Level of “noise”

Convexification of £y-norm:
|ullo = |supp u| = {k : ux # 0}




2nd, CS > Non-linear reconstruction!

BPDN instance optimality:

If \/LM(I) respects the Restricted Isometry Property (RIP)

(1= p)llul? < 57l|Pul* < (14 p)ul

for all u € Yo :={u : ||[ul|g := [suppu| < 2K}

Universie %’1 \v7 Icteam l S P



2nd, CS > Non-linear reconstruction!

BPDN instance optimality:

If \/LM(I) respects the Restricted Isometry Property (RIP)

(1= p)llul? < 57l|Pul* < (14 p)ul

for all u € Yo :={u : ||[ul|g := [suppu| < 2K}

Then, if p < v2 — 1 [Candes, 09],

(with f <g = Je>0: f < cg)

Robustness: vs sparse deviation + noise.

o~ &l < il exl+
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2nd, CS > Non-linear reconstruction!

Matrices with RIP?
® c RM*N | with ®;; ~yq N(0,1) and M > Klog N/K.

R
N f -‘

S . .

but also:
Random sub-Gaussian ensembles (e.g., Bernoulli);

random Fourier/Hadamard ensembles (structured sensing);

random convolutions, spread-spectrum;

(see, e.g., “A Mathematical Introduction to Compressive Sensing”, Rauhut, Foucart, Springer, 2013)

UCL 5~ i )
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(Quantization context

(Restricted to scalar quantization)

Claveat : not covered here:
» Sigma-Delta quantization for CS
(see, e.g., Kramer, Saab, Guntiirk, Powell, Ward, ...)
» Vector quantization
(see, e.g., Goyal, Nguyen, Sun, ...)
» Universal quantization (periodic)
(see, e.g., Boufounos, Rane, ...)




Compressive Sampling and Quantization

Compressed sensing theorist says:

“Linearly sample a signal
at a rate function of

1ts intrinsic dimensionality”

Information theorist and sensor designer say:

“Okay, but I need to quantize/digitize my measurements!”
(e.g., in ADC)

Integration?
QCS theory?

Theoretical Bounds




What is quantization?’

Generality:

Intuitively: “Quantization maps a bounded continuous

domain to a set of finite elements (or codebook)”

/" Bounded © ° &
: domain ° © 4 °
o O
codebook

Qlx| € 191,92, -}

Oldest example: rounding off |z|,|z|,... R —>Z

uCL
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Pulse Code Modulation - PCM

Scala,r qua,ntiz a,ti()n Memoryless Scalar Quantization - MSQ

Applied on each component of M- dimensional vectors:

Q(A) = ¢

o : Level Q2 = {q;} (or codebook) e : Thresholds 7 = {t;}

A 4
TEEY EEEEREE --@--@----0--@--}@-0-=---- ®---- %
t; N tit1
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. . Pulse Code Modulation - PCM
Scalar quantlz a,thn Memoryless Scalar Quantization - MSQ

Applied on each component of M- dimensional vectors:

Q(A) = ¢

o : Level Q2 = {q;} (or codebook) e : Thresholds 7 = {t;}

- @ O--0--0----0--@--1@&-0----- ®---- %

O Out , Example: uniform, resolution § > 0
JREC S S ar = (k+1/2)6

--------- ozo> tk — kO

Q(t) =0(1%] + 3)

... with possible non-uniform adaption (Lloyd-Max)

ucL 5, i
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Quantizing Compressed Sensing”’

With no additional noise: e.g., basis pursuit,
RM i greedy methods, ...
RY y = Px q = Qly] RY .
r— |CS|— | Q| -------- > |Decoder| — &

Finite codebook = & # x

1.e., impossibility to encode continuous domain

in a finite number of elements.

18



Quantizing Compressed Sensing”’

With no additional noise: e.g., basis pursuit,
RM i greedy methods, ...
RY y = Px q = Qly] RY .
r— |CS|— | Q| -------- > |Decoder| — &

S € h

Finite codebook = & # x

1.e., impossibility to encode continuous domain

in a finite number of elements.

Objective: Minimize ||& — x||

: : ¢
given a certain number of: Where to act

Change CS, Q or decoder?

bits, measurements, or bits/meas.
Some of them? all?

LCL %1 Victearn ISP



Initial Approach
for Quantized CS



Former solution (Candés, Tao, ...)

(scalar) Quantization is like a noise

quantization

distortion
/

q = Q[(I)a:} =Pxr+n~

with Q(t) — 5(L%J + %) (componentwise)

— Bounded:

N0 = |Q(PT) = qlloc < 0/2

e @ A7 cleam ISP
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Former solution (candes, Tao, ...)

(scalar) Quantization is like a noise

q = Q[(I)a:} =Pxr+n

CS is robust (e.g., with basis pursuit denoise)

& = argmin ||u||; s.t. [|[®Pu —q|| < e (BPDN)
ucRN

{5 — {1 instance optimality:

If ||n| < e and ﬁ@ is RIP(§, 2K) with § < /2 — 1, then

||:B—$H 5 VM !

with eq(K) = ||& — zx |1 /VK.

LCL %‘1 Victeam ISP



Former solution (Candés, Tao, ...)

(scalar) Quantization is like a noise

g = Q[(I)a:} =Pxr+n

< CS is robust (e.g., with basis pursuit denoise)

argmin ||u/|; s.t. [[®u —q|| <e (BPDN)
uceRN

T

¢s — {1 instance optimality:

Ifa||n|| < e and ﬁ@ is RIP(§, 2K) with § < /2 — 1, then

|z —xl| S 0+ eo(K),

with GO(K) — ||w — mKHl/VK- Deterministic: €2 < M§?/4
Stochastic: €2 < M§%/12 + v M (w.h.p)

ucL 5, i
) &M ISP .




Former solution (candes, Tao, ...)

In short:

Hi—QE‘H 5 0 6O(K)7

But quantization error doesn’t decay with M !7

e @ Vldeam lS P 24



Former solution (candes, Tao, ...)

In short:

|z —zl| S 0+ eo(K),

But quantization error doesn’t decay with M !7

Solution: be consistent!

Enforce Q|®x] = O|Px|!

“consistency condition”

e éﬂ Vldeam lS P 25



Consistent reconstructions in

Issue: if & solution of BPDN (adjusted to QCS)

(1) No Quantization Consistency (QC) !
| @z — Q[Pz]|| < €(0) % Q|Px| = Q

CS7

higd

(from BPDN constraint) & ||[ex — Q

Px|oc < 0/2

—> Sensing information is not fully exploited!

(ii) 05 constraint in BPDN

~ Gaussian distribution (MAP - cond. log. lik.)

e %’1 A7 cleam ISP
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But why looking for consistency?

First: Let T the support of £ € RY, & ¢ RM*N and y = ®=.

Proposition (Goyal, Vetterli, Thao, 98) IfT is known (with |T| = K ),
the best decoder Dec() provides a & = Dec(y, ®) such that:

RMSE = (Ellz — &[*)"/* 2 (47) 6,

Y

where E is wrt a probability measure on T in a bounded set S C R .

V. K Goyal, M. Vetterli, N. T. Thao, “Quantized Overcomplete Expansions in RN:
Analysis, Synthesis, and Algorithms” | IEEE Tran. IT, 44(1), 1998




But why looking for consistency?

First: Let T the support of £ € RY, & ¢ RM*N and y = ®=.

Proposition (Goyal, Vetterli, Thao, 98) IfT is known (with |T| = K ),
the best decoder Dec() provides a & = Dec(y, ®) such that:
RMSE = (E[z — 2[*)'/* 2 (57) 4.

Y

where E is wrt a probability measure on T in a bounded set S C R .

Bound achieved for ®1 = DFT € R*** and Dec() consistent!

V. K Goyal, M. Vetterli, N. T. Thao, “Quantized Overcomplete Expansions in RN:
Analysis, Synthesis, and Algorithms” | IEEE Tran. IT, 44(1), 1998




But why looking for consistency?

Second,
If ® ¢ RM*N is a (random) frame in RY (M > N) and y =

Then, for Q(y) = y + &£ with & ~ U([—%5a %5])7

and & Consistent, (achievable with dithering or under HRA)

(ie., Q(®3) = O(Px))

This is equivalent to compressed sensing
when the support of & is known.

ucL 5, i
) &M ISP »



But why looking for consistency?

Second,
If ® ¢ RM*N is a (random) frame in RY (M > N) and y = ®=,

Then, for Q(y) = y + &£ with & ~ U([—%5a %5])7

and & Consistent, (achievable with dithering or under HRA)

(ie., Q(®%) = O(Pz))

n ~11211/2 N :
Eenllz—2[7)" 3 (57)0,  Foweh Bitchows 200
|z —z|| < (£5)d- O(log M, log N,logn), [LJ 2014]

(uniformly) .'?’ with Pr > 1 — 7. (Ganssian frame)
|
or (£) if x is K-sparse with Gaussian sensing matrix.

(with some logarithms)

LCL %1 Victearn ISP
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2. Consistent Basis Pursuit

for low-complexity signals
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Low-complexity signal model

(more general

Low complexity set xg € IC C RN than sparsity)

Examples:
K=Yk :={ucR":|ul|o:=|suppu| < K}
K=C,:={UeR"™ ~R" :rank(U) < r}

A

Sparse signal Matrix example:
in 2-D
U=R'ReC,
— with R € R™*™ (r < n)
(example: hyperspectral imaging
A 2 for linear unmixing)
.................... > 1

uCL
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Low-complexity signal model

Low complexity set g € K C RY

Examples:

K=Yk :={ucR":|ul|o:=|suppu| < K}
K=C.:={U € R""" ~ RV - rank(U) <

Bounded convex hull:

KC := conv(K N

uCL

e @ v RIES ISP

3N

r}

.. 2-D example

By = {u: flully <1}

33



Low-complexity signal model

Low complexity set g € K C RY
Examples:
K=Yk :={ueR":|ulo:=|suppu| < K}
K=C,:={UeR"™ ~R" :rank(U) < r}

Bounded convex hull:

K := conv(K N BY)

Atomic norm: 3 convex norm || - ||z and a s > 0 s.t.

KcK,:= {u € RN . |ully < s,||lull2 <1}

|Chandrasekaran 2012]

e @ A7 cleam ISP
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Low-complexity signal model

Low complexity set g € K C RY

Examples:
K=Yk :={ucR":|ul|o:=|suppu| < K}
K=C.:={U € R""" ~ RV - rank(U) <

A

- Example: for 2
S -l < (-

s=VK
N

Bounded convex hull:

K := conv(K NBY)

Atomic norm: 3 convex norm | - ||y and a s > 0 s.t.

KR i={u e R : July < s, Jula < 1)

[Chandrasekaran 2012] Additionally, this contains “compressible” signals

under the initial low-complexity model!

UCL /5 | »
g ) M ISP 35



Low-complexity signal model

Measuring the “dimension” of ' — Gaussian mean width:

w(K) :=E Slé% (g, u)|, with g ~iiq N(0,1)

n=g/lgl with w(K) < w(K') if K C K/

width in direction n € SV 1!

|[Plan, Vershynin,
Chandrasekaran, ...]

@) /<A ISP ¢ 36



Low-complexity signal model

Measuring the “dimension” of ' — Gaussian mean width:

w(K) :=E Slé% (g, u)|, with g ~iiq N(0,1)

n=g/lgl with w(K) < w(K') if K C K/

- . Examples:
w* (SN < 4N
_ | w*(K) < Clog|K| (for finite sets)

width in direction i € S7 w*(KNBY) < L if subspace with dim K = L
w* (X NBY) < w? (k) ~ Klog(2N/K)

|[Plan, Vershynin, B
| w?(C,) < w?(C,) < 4nr

Chandrasekaran, ...

UCL /5 i ;



QCS model
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QCS model

As before: for Gaussian or sub-Gaussian & € RM*&

Questions: knowing that &y € K C RY,

Theoretical bound on reconstruction error?

& proximity of consistent vectors

Reconstruction algorithm?

& one solution: CoBP

39



Proximity of consistent vectors L2015

Gaussian case: ®;; ~yq N(0,1)

In all generality, provided

M > (1—|—5) g )

Then, with Pr > 1 — 2 exp(— Cl‘:f\g ) and uniformly for all @1, 22 € IC,

Proximity condition: A(ZBl) — A(Q?Q) — le — QTQH < €

= ¢ = O(M~1/%) for consistent reconstruction € K!

LCL@ victearn ISP
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Proximity of consistent vectors L2015

Gaussian case: ®;; ~yq N(0,1)

In all generality, provided

M > (1+5) g >

Then, with Pr > 1 — 2 exp(— Cl‘:f\g ) and uniformly for all @1, 22 € IC,

Proximity condition: A(ZBl) — A(wz) — le — QTQH < €

= ¢ = O(M~1/%) for consistent reconstruction € K!

A

Interpretation: low complexity set IC

ucL 4 | .
=) Icteamn ISP



Proximity of consistent vectors L2015

Gaussian case: ®;; ~yq N(0,1)

In all generality, provided

M > (1—|—5) g )

Then, with Pr > 1 — 2 exp(— Cl‘:f\g ) and uniformly for all @1, 22 € IC,

Proximity condition: A(ZBl) — A(Q?Q) — H:v1 — QTQH < €

= ¢ = O(M~1/%) for consistent reconstruction € K!

Interpretation:

¥1

y
1

UCL /3 ' ‘
vt @ oicteam ISP



Proximity of consistent vectors L2015

Gaussian case: ®;; ~yq N(0,1)

In all generality, provided

M > (1—|—5) g )

Then, with Pr > 1 — 2 exp(— Cl‘:f\g ) and uniformly for all @1, 22 € IC,

Proximity condition: A(ZBl) — A(wz) — le — QTQH < €

= ¢ = O(M~1/%) for consistent reconstruction € K!

Interpretation:

¥1

P2

UCL /5 i ;
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Proximity of consistent vectors L2015

Gaussian case: ®;; ~yq N(0,1)
In all generality, provided

M > (1+5) g >

Then, with Pr > 1 — 2 exp(— Cl‘:f\g ) and uniformly for all @1, 22 € IC,

Proximity condition: A(wl) — A(CEQ) — ||CE1 — wQH < €

= ¢ = O(M /%) for consistent reconstruction € K!

. for large M
Interpretation:

)

consistency cell

LCL@ <7ictearn ELEN ISP i
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Proximity of consistent vectors L2015

Gaussian case: ®;; ~yq N(0,1)

In all generality, provided

N> (1+5) g >

Then, with Pr > 1 — 2 exp(— Cfi‘g ) and uniformly for all @1, 22 € IC,

Proximity condition: A(wl) — A(CEQ) — ||CB1 — wQH < €

= ¢ = O(M %) for consistent reconstruction c K!

and don t forget

Interpretation:
o2
L1

consistency cell

/1-ball in high dimension

w=@l) /M ELEN ISP Ciroup
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Proximity of consistent vectors L2015

Gaussian case: ®;; ~yq N(0,1)

In all generality, provided

M > (1—|—5) g )

Then, with Pr > 1 — 2 exp(— Cl‘:f\g ) and uniformly for all @1, 22 € IC,

Proximity condition: A(ZBl) — A(wz) — le — QTQH < €

= ¢ = O(M~1/%) for consistent reconstruction € K!

Special For K = (\I!ZK) NBY and ¥ ONB

case: 3/9
240 N (246)
M 2 ==K log( =5 a2
= e=0(M™1)
LCL% Victearn ISP



Proximity of consistent vectors (L2015

Sub-(Gaussian case: (e.g., iid Bernoulli or bounded D, ;)
Still ok but, for Ky 2 x(®) and for all 1, x5 in

Ly = {u € RY : Kollu|l% < [lul3}-
“Amgis’ ;-)

Then, with Pr > 1 — Qexp(—clirj‘g ), we have also

A1) = A(z2) = |1 —@2f <€




Proximity of consistent vectors L2015

Sub-(Gaussian case: (e.g., iid Bernoulli or bounded D, ;)
Still ok but, for Ky 2 x(®) and for all 1, x5 in

Ly = {u € RY : Kollu|l% < [lul3}-
“Amgis’ ;-)

Then, with Pr > 1 — Qexp(—cl‘:f‘g ), we have also

A1) = A(z2) = |1 —@2f <€

= Ok for “not too sparse” signals

Kind of “Peak to average ratio”

VR XY L

(remark: similar and earlier observations in 1-bit CS by Plan & Vershynin)

LCL ﬁ victearn ISP
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Consistent Basis Pursuit (CoBP)

How to reconstruct

our low complexity signal?

Universie @ A7 Icteam l S l ’



Consistent Basis Pursuit (CoBP)

. Actually, not a so new program, see e.g.,
G&USSI&H CasC: Milenkovitch, Dai, JL, Hammond, Fadili, ...]

B

r* := argmin ||ul)y s.t. A(u) = A(xg), u € B,

ucRN
™~ except for this -

50



Consistent Basis Pursuit (CoBP)

(zaussian case:

r* := argmin ||ul)y s.t. A(u) = A(xg), u € B".
ucRN

If A respects “proximity condition” for all &1, x5 € K. DK,
then, we have for all g € g,

HCL‘O — CU*HQ < €.




Consistent Basis Pursuit (CoBP)

(zaussian case:

r* := argmin ||ul)y s.t. A(u) = A(xg), u € B".
ucRN

If A respects “proximity condition” for all &1, x5 € K. DK,
then, we have for all g € g,

HCL‘O — CU*HQ < €.

Pr > 1 — 2exp(—cM3/*//6)

Corollary: With high probability on Gaussian ® and uniform &,
Vo € ICq,

* 'wzs 2
|@o — a*||2 = O (2 (W54,

i.e., Lo — x*||2 = O(M~1/4) if only M varies.

52



Consistent Basis Pursuit (CoBP)

sub-Gaussian case:

A(u) = A(zo),
u € BY N ABY,

x* := argmin ||ul|y s.t.
uceRN

P
to take care of signal “peaky-ness” I
* &

e @ A7 cleam ISP



Consistent Basis Pursuit (CoBP)

sub-Gaussian case:

X

R A(u) = A(zo),
x* := argmin ||ul|y s.t. N N
uceRN u e BN )\BOO,

Proposition: With high probability on sub-Gaussian ¢ and unitorm &,
Vg € Ks N )\Bévo,

b S w Es 2
| — 2% || = O(Z (X5) V4 + 5(@)N),
/V
i.e., |zo — x*||2 = O(M~Y* 4 )\) if only M varies.
/V

(possible) price to pay for sub-Gaussianity

LCL %1 Victearn ISP
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Consistent Basis Pursuit (CoBP)

sub-Gaussian case:

X

R A(u) = A(zo),
x* := argmin ||ul|y s.t. N N
uceRN u e BN )\BOO,

Proposition: With high probability on sub-Gaussian ¢ and unitorm &,
Vg € Ks N )\Bévo,

b S wzs 2
| — 2*[|2 = O(ZE (X5) V4 + w(@)N),

i.e., |zo — x*||2 = O(M~Y* 4 )\) if only M varies.

Is it bad? If you think so, then sample signals with
D - PF

with, e.g., F' = Fourier or Hadamard.
—> Kind of “Spread the samples” trick ;-)

LCL %1 Victearn ISP
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Experiments: implementation

Solving CoBP: Convex Optimization

r* := argmin ||lully s.t. A(u) = A(xp), u € B".
ueRN

< argmin HuHﬁ T Zconsist.(u) + IgN (’U,)
ucRN

Many toolboxes available

We used a proximal algorithm, i.e.,
Parallel Proximal Algorithm (PPXA)

& the UNLocBoX toolbox https://lts2.epfl.ch/

unlocbox)

Universie @ A7 Icteam l S l ’
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https://lts2.epfl.ch/unlocbox

Experiments: 1

K-sparse signals with

(Gaussian sensing

N = 2048, K = 16,
B=3, M/K € [8,128]
20 trials per points

log, El|xg — x*||

3 3.5 4 4.5 5 5.5 6 6.5 7
log, M/K

LCL@ victearn ELEN ISP i



Experiments: 1

K-sparse signals with

(Gaussian sensing

N = 2048, K = 16,
B=3, M/K € [8,128]
20 trials per points

log, El|xg — x*||

3 3.5 4 4.5 5 5.5 6 6.5 7
log, M/K

LCL@ <7ictearn ELEN ISP i



Experiments: 2

Bernoulli vs Gauss(ian) sensing:

0

e coor )| N =1024, K € [1,64],
- -l- - CoBP (Bern.) | B — 4, M/K — 16
—P— CoBP (Gauss.) 20 trials per points

-0.5

¥ -1f
8
|
(-}
S -1.5 f
a2
oD
o 27

-2.5 r

UCL 3+ | :
%ﬁi vlcteam lSI) { 59



Experiments: 3

Low-rank matrix and QCS (with A() := Q(®))

X* := argmin |U||, s.t. A(vec(U)) = A(vec(Xy)), vec(U) € BY.
UERan

e @ A7 cleam ISP



Experiments: 3

» Low-rank matrix and QCS (with A() == Q(®"))

X* := argmin [|U||, s.t. A(vec(U)) = A(vec(Xy)), vec(U) € BY.
UcRnXn

Original CoBP BPDN
SNR 11 dB SNR 6.9 dB

N = 1024 = n? (n = 32),
rank r=1, B = 2
Complexity < P = 64,
M =16P =N

vt@® </ ELEN ISP Chroup 61
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3. Quasi-isometric embeddings
(or “how to quantize the RIP”)

iIcteam ISP



Quantizing the RIP?

Restricted isometry Property (RIP):

(as an embedding
preserving distances)

(1= p)llu—v|* < 57l|Pu— 2v|* < (1+p)|lu— vl

N, N

. Inserting quantization?

for all w,v € Y :={u : ||ul|p := [suppu| < K}

@) /<A ISP ¢ 63



Quantizing the RIP?

Restricted isometry Property (RIP):

(as an embedding
preserving distances)

(1= p)llu—v|* < 57l|Pu— 2v|* < (1+p)|lu— vl

~,

. Inserting quantization?

for all w,v € Y :={u : ||ul|p := [suppu| < K}

Why quantizing the RIP?
since we can ;-)

for future algorithm guarantees

for nearest neighbors applications

or “signal processing” in quantized CS domain

Universie %’1 \v7 Icteam l S P
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Quantizing the RIP?

Let’s retake: for Q(-) =4|-/d| € 6Z

Y(u) = Q(Pu + &), with ¢j(u) = Q(gofu + &)
with (I)ji ~iid N(O, ) and fj ~iid Z/[([O, 5])

Universne @ A7 icteam l S l ’ 65



Quantizing the RIP?

Let’s retake: for Q(-) =4|-/d| € 6Z

Y(u) = Q(Pu +§), with ¥,(u) := Q(p; u +§;)
with (I)ji ~iid N(O, ) and fj ~iid Z/[([O, 5])

Naive way: since |a —b| -3 <|Q(a) — Q)| <|a—b| +J, Va,becR

I=pllu—v|-0 < =) —p@)| < (1+p)u—2v|+4,

whenever ﬁfb 1s RIP.
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Quantizing the RIP?

Let’s retake: for Q(-) =4|-/d| € 6Z

Y(u) = Q(Pu + &), with ij(u) = Q(go;ru + &)
with (I)ji ~iid N(O, ) and fj ~iid Z/[([O, 5])

Naive way: since |a —b| -3 <|Q(a) — Q)| <|a—b| +J, Va,becR

multiplicative error additive error
With p = O(\/K/M). (constant, weird!?)

(decaying, good!)
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Quantizing the RIP?

Let’s retake: for Q(-) =4|-/d| € 6Z

Y(u) = Q(Pu + &), with ¢j(u) = Q(gofu + &)
with (I)ji ~iid N(O, ) and fj ~iid Z/[([O, 5])

Solution:

Let’s use another distance (£1):

719 (w) = ()1 = 7 355 [, (w) — 9, (v)

Let’s study how it concentrates!
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Quantizing the RIP?

Let’s retake: for Q(-) =4|-/d| € 6Z

Y(u) = Q(Pu +§), with ¥,(u) := Q(p; u +§;)
with (I)ji ~iid N(O, ) and fj ~iid Z/[([O, 5])

Quantized Gaussian Quasi-Isometric Embedding [LJ, 2015|

Given an error 0 < e < 1, and K C R¥ . For K = AX g NBY
If M 1is such that and A CQ)NB N
M > 6_5w(IC)2, M Z € KlOgm

then, for some ¢ > 0 and for all w,v € IC, and w.h.p., we have

(2 llu—vl|—cde < & [p(w)—p@)| < (\/2+¢) [u- vl +es

e

all distortions decay with M!
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Quantizing the RIP?

Let’s retake: for Q(-) =6|-/6] € 6Z
Y(u) = Q(Pu +§), with ¥,(u) := Q(p; u +§;)
With?ﬁ?; rvﬁ&@and fj ~iid Z/[([O, 5])

OK for sub-Gaussian?

(e.g., Bernoulli)
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Quantizing the RIP?

Let’s retake: for Q(-) =6|-/6] € 6Z
Y(u) = Q(Pu +§), with ¥,(u) := Q(p; u +§;)
With?ﬁ?; rvﬁ&@and fj ~iid Z/[([O, 5])

Quantized sub-Gaussian Quasi-Isometric Embedding |LJ, 2015]

Given an error 0 < € < 1, and KK C RV. For K = AXx NBY
If M 1is such that and A ONB
M > e *w(K)?, M 2 e 2K log =2

then, w.h.p, for some c > 0 and for all u,v € K with u—v € Ck,, we have

(2= lu—vl—cde < & |[ww)—p() 1 < (/2+ets) [u—v]+cse

high Kj, less sparse but lower distortion!

But you can use the “spread the samples” trick!
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To conclude ...
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Take away messages

Associating CS and Quantization

provides many interesting questions:
geometrically (high dim. convex geom.)
numerically (not totally covered here)

with impacts in CS sensor design

LCL %‘1 Victeam ISP
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Take away messages

Associating CS and Quantization

provides many interesting questions:
geometrically (high dim. convex geom.)
numerically (not totally covered here)
with impacts in CS sensor design

Beyond CS, quantifying random projections
leads to interesting embedding problems

possible impacts in dimensionality reductions
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P7?
Open questions

CoBP robustness vs pre-quantisation noise?
Do quasi-isometric embedding help?

Quasi-isometric embedding for Hilbert spaces?

Embeddings with other quantisation schemes?

(link with machine learning?)

Classification/clustering in the quantized domain?
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Thank you for the invitation!
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