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Outline
1. Introduction to CS and QCS 

2. Consistent Basis Pursuit for low-complexity signals 

3. Quasi-isometric embeddings of low-complexity signals 

4. Take-away messages & open questions
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1. Introduction
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CS facts
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Compressed Sensing...

Generalize Dirac/Nyquist sampling:  
1°) ask few (linear) questions  
     about your informative signal  
2°) and recover it differently (non-linearly)”  

... in a nutshell:

2.4. Transformée continue en ondelettes sur la sphère 37

avec ψ̂a(l, m) = ⟨Y m
l |ψa⟩ la transformée en harmonique sphérique12 de ψa = Daψ.

Une condition plus simple à manipuler et presque équivalente à (2.65) est d’imposer
que [Van98]

∫

S2

dµ(θ, ϕ)
ψ(θ, ϕ)

1 + cos θ
= 0, (2.66)

condition homologue à l’annulation de la moyenne des ondelettes planes.
En remarquant que

∫

S2

dµ(θ, ϕ)
Daψ(θ, ϕ)

1 + cos θ
= a

∫

S2

dµ(θ, ϕ)
ψ(θ, ϕ)

1 + cos θ
, (2.67)

la condition (2.66) permet de créer toute une classe d’ondelettes admissibles de la forme

ψ(θ, ϕ) = φ(θ, ϕ) − 1
αDαφ(θ, ϕ), (2.68)

pour une certaine fonction φ ∈ L2(S2).

Fig. 2.3 – L’ondelette DOG pour α = 1.25 dilatée de a = 0.1.

En particulier, pour φ = exp
(
− tan2(1

2θ)
)
, c.-à-d. la projection stéréographique inverse

de la gaussienne sur la sphère, nous obtenons l’ondelette sphérique DOG13

ψ(θ, ϕ) = exp
(
− tan2(1

2θ)
)

− 1
αλ(α, θ)

1
2 exp

(
− 1

α2 tan2(1
2θ)

)
, (2.69)

dont une représentation dilatée d’un facteur a = 0.1 est donnée sur la Figure 2.3.

12Nommée également transformée de Fourier sur S2.
13Pour Difference of Gaussians.

e.g., sparse, structured, low-rank, ...
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1st, CS   Generalized Linear Sensing!
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� x
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1st, CS   Generalized Linear Sensing!3
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2nd, CS   Non-linear reconstruction!3

Mmm, M equations, N unknowns?! 
Ill-posed problem 

You must regularize it!

(intuition: would you know the signal support, 
much less unknowns)
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2nd, CS   Non-linear reconstruction!3

x̂ = arg min
u2RN

kuk1 s.t. ky ��uk  ✏

(Basis Pursuit DeNoise)  
[Chen, Donoho, Saunders, 1998]

Possible reconstruction: (others exist, e.g., greedy)

Level of “noise”kuk1 =
P

j |uj |Sparsity promotion:
Convexification of `0-norm:

kuk0 = |suppu| = |{k : uk 6= 0}|
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(1� ⇢)kuk2  1
M k�uk2  (1 + ⇢)kuk2

10

2nd, CS   Non-linear reconstruction!3

BPDN instance optimality:
If

1p
M
� respects the Restricted Isometry Property (RIP)

for all u 2 ⌃2K := {u : kuk0 := |suppu|  2K}
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Then, if ⇢ <
p
2� 1 [Candès, 09],

11

2nd, CS   Non-linear reconstruction!3

BPDN instance optimality:

Robustness: vs sparse deviation + noise.

kx� x̂k . 1p
K
kx� xKk1 + ✏p

M

(with f . g ⌘ 9c > 0 : f 6 c g)

If

1p
M
� respects the Restricted Isometry Property (RIP)

for all u 2 ⌃2K := {u : kuk0 := |suppu|  2K}

(1� ⇢)kuk2  1
M k�uk2  (1 + ⇢)kuk2

e0(K)

⇢
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2nd, CS   Non-linear reconstruction!3

Matrices with RIP?

� 2 RM⇥N
, with �ij ⇠iid N (0, 1) and M & K logN/K.

‣ Random sub-Gaussian ensembles (e.g., Bernoulli); 
‣ random Fourier/Hadamard ensembles (structured sensing); 
‣ random convolutions, spread-spectrum; 
‣ ... 

(see, e.g., “A Mathematical Introduction to Compressive Sensing”, Rauhut, Foucart, Springer, 2013) 

but also:
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Quantization context 
(Restricted to scalar quantization)

Caveat : not covered here: 
‣ Sigma-Delta quantization for CS 

(see, e.g., Kramer, Saab, Guntürk, Powell, Ward, ...) 
‣ Vector quantization 

(see, e.g., Goyal, Nguyen, Sun, ...) 
‣ Universal quantization (periodic) 

(see, e.g., Boufounos, Rane, ...)
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Compressed sensing theorist says: 
   “Linearly sample a signal  

at a rate function of  
its intrinsic dimensionality”

Compressive Sampling and Quantization
RM? �

14

01011000111

Information theorist and sensor designer say: 
   “Okay, but I need to quantize/digitize my measurements!” 
   (e.g., in ADC) 

Integration?  
QCS theory? 
Theoretical Bounds
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‣ Generality:  
Intuitively: “Quantization maps a bounded continuous 
domain to a set of finite elements (or codebook)”  

!

!

!

!

!

!

‣ Oldest example: rounding off

What is quantization?

bxc, dxe, . . . R ! Z

RM

codebook

q1
q2

qi

Q[x] � {q1, q2, · · · }

15

Bounded 
domain
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Applied on each component of M - dimensional vectors:

16

Scalar quantization
Pulse Code Modulation - PCM 
Memoryless Scalar Quantization - MSQ

R
ti ti+1

� qi

: Thresholds T = {ti}: Level ⌦ = {qi} (or codebook)

Q(�) = qi
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Applied on each component of M - dimensional vectors:

17

Scalar quantization
Pulse Code Modulation - PCM 
Memoryless Scalar Quantization - MSQ

R
ti ti+1

� qi

: Thresholds T = {ti}: Level ⌦ = {qi} (or codebook)

Q(�) = qi

�

ti ti+1

In

OutQ
qi

Example: uniform,

... with possible non-uniform adaption (Lloyd-Max)

qk = (k + 1/2)�

tk = k�

Q(t) = �(b t
� c+

1
2 )

resolution � > 0



ELEN

Finite codebook ) ˆ

x 6= x

Decoderx CS Q x̂

⌦
codebook

e.g., basis pursuit, 
greedy methods, ...

With no additional noise:

i.e., impossibility to encode continuous domain  
in a finite number of elements.

y = �x q = Q[y]

Quantizing Compressed Sensing?

18

RN
RM

RN
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Finite codebook ) ˆ

x 6= x

Decoderx CS Q x̂

RN
RM

RN

⌦
codebook

e.g., basis pursuit, 
greedy methods, ...

With no additional noise:

y = �x q = Q[y]

19

Objective: Minimize kx̂� xk
Where to act? 

Change CS, Q or decoder?            
Some of them? all?

given a certain number of:  
bits, measurements, or bits/meas.

i.e., impossibility to encode continuous domain  
in a finite number of elements.

Quantizing Compressed Sensing?
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Initial Approach  
for Quantized CS 
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1. (scalar) Quantization is like a noise  
 
 

q = Q
⇥
�x

⇤
= �x + n

Former solution (Candès, Tao, ...)

quantization 
distortion

21

Bounded:

knk1 = kQ(�x)� qk1  �/2

Q(t) = �(b t
� c+

1
2 )with (componentwise)
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1. (scalar) Quantization is like a noise  
 

2. CS is robust (e.g., with basis pursuit denoise) 

x̂ = argmin
u2RN

kuk1 s.t. k�u� qk 6 � (BPDN)

Former solution (Candès, Tao, ...)

`2 � `1 instance optimality:

22

If knk 6 ✏ and 1p
M
� is RIP(�, 2K) with � 6

p
2� 1, then

kx̂� xk . ✏p
M

+ e0(K),

with e0(K) = kx� xKk1/
p
K.

q = Q
⇥
�x

⇤
= �x + n
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1. (scalar) Quantization is like a noise  
 

2. CS is robust (e.g., with basis pursuit denoise) 

q = Q
⇥
�x

⇤
= �x + n

x̂ = argmin
u2RN

kuk1 s.t. k�u� qk 6 � (BPDN)

Former solution (Candès, Tao, ...)

`2 � `1 instance optimality:

23

If knk 6 ✏ and 1p
M
� is RIP(�, 2K) with � 6

p
2� 1, then

kx̂� xk . ✏p
M

+ e0(K),

with e0(K) = kx� xKk1/
p
K.

kx̂� xk . � + e0(K),

k�u� qk1  �/2

Deterministic: ✏2  M�2/4
Stochastic: ✏2  M�2/12 + c

p
M (w.h.p)
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‣ In short:

Former solution (Candès, Tao, ...)

24

But quantization error doesn’t decay with M !?

kx̂� xk . � + e0(K),
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‣ In short:

Former solution (Candès, Tao, ...)

25

But quantization error doesn’t decay with M !?

Solution: be consistent!

kx̂� xk . � + e0(K),

“consistency condition”

Enforce Q[�ˆ

x] = Q[�x]!
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Issue: if     solution of BPDN (adjusted to QCS)

Consistent reconstructions in CS?

Sensing information is not fully exploited!)

x̂

; Q[�x̂] = Q[�x]k�x̂�Q[�x]k 6 ✏(�)

(from BPDN constraint)

26

No Quantization Consistency (QC) !

�2 constraint in BPDN  
≈ Gaussian distribution (MAP - cond. log. lik.)

(i)

(ii)

, k�x̂�Q[�x]k1  �/2
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But why looking for consistency?

27

V. K Goyal, M. Vetterli, N. T. Thao, “Quantized Overcomplete Expansions in RN: 
Analysis, Synthesis, and Algorithms” , IEEE Tran. IT, 44(1), 1998

Proposition (Goyal, Vetterli, Thao, 98) If T is known (with |T | = K),

the best decoder Dec() provides a x̂ = Dec(y,�) such that:

RMSE = (Ekx� x̂k2)1/2 & (K
M ) �,

where E is wrt a probability measure on xT in a bounded set S ⇢ RK
.

First: Let T the support of x 2 RN
, � 2 RM⇥N

, and y = �x.
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But why looking for consistency?

28

V. K Goyal, M. Vetterli, N. T. Thao, “Quantized Overcomplete Expansions in RN: 
Analysis, Synthesis, and Algorithms” , IEEE Tran. IT, 44(1), 1998

Bound achieved for �T = DFT 2 RM⇥K
and Dec() consistent!

Proposition (Goyal, Vetterli, Thao, 98) If T is known (with |T | = K),

the best decoder Dec() provides a x̂ = Dec(y,�) such that:

RMSE = (Ekx� x̂k2)1/2 & (K
M ) �,

where E is wrt a probability measure on xT in a bounded set S ⇢ RK
.

First: Let T the support of x 2 RN
, � 2 RM⇥N

, and y = �x.
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Second,

(achievable with dithering or under HRA)

If � 2 RM⇥N
is a (random) frame in RN

(M > N) and y = �x,

Then, for Q(y) = y + ⇠ with ⇠i ⇠ U([� 1
2�,

1
2�]),

and

ˆ

x consistent,

29

But why looking for consistency?
M

N

(i.e., Q(�x̂) = Q(�x))

This is equivalent to compressed sensing

when the support of x is known.
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Second,

(achievable with dithering or under HRA)

If � 2 RM⇥N
is a (random) frame in RN

(M > N) and y = �x,

Then, for Q(y) = y + ⇠ with ⇠i ⇠ U([� 1
2�,

1
2�]),

and

ˆ

x consistent,

30

[Powell, Whitehouse, 2013]
(unit norm frame)

(E�,nkx� x̂k2)1/2 . (N
M )�,

But why looking for consistency?
M

N

with Pr > 1� ⌘.

[LJ 2014]
(Gaussian frame)

kx� ˆ

xk . (

N
M )� · O(logM, logN, log ⌘),

or (

K
M ) if x is K-sparse with Gaussian sensing matrix.

(i.e., Q(�x̂) = Q(�x))

(with some logarithms)

(uniformly)
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2. Consistent Basis Pursuit 
for low-complexity signals 
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‣ Low complexity set 
‣ Examples:

Low-complexity signal model

32

K = ⌃K := {u 2 RN : kuk0 := | suppu| 6 K}
K = Cr := {U 2 Rn⇥n ' RN : rank(U) 6 r}

x0 2 K ⇢ RN

⌃1

Sparse signal  
in 2-D

Matrix example:

U = RTR 2 Cr
with R 2 Rr⇥n

, (r  n)

(example: hyperspectral imaging  
for linear unmixing)

(more general  
 than sparsity)
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‣ Low complexity set 
‣ Examples: 

!

!

‣ Bounded convex hull:

Low-complexity signal model

33

K = ⌃K := {u 2 RN : kuk0 := | suppu| 6 K}
K = Cr := {U 2 Rn⇥n ' RN : rank(U) 6 r}

K := conv(K \ BN
)

BN
1 = {u : kuk1 6 1}

2-D example

⌃1

x0 2 K ⇢ RN
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‣ Low complexity set 
‣ Examples: 

!

!

‣ Bounded convex hull: 

!

‣ Atomic norm:

Low-complexity signal model

34

K = ⌃K := {u 2 RN : kuk0 := | suppu| 6 K}
K = Cr := {U 2 Rn⇥n ' RN : rank(U) 6 r}

K := conv(K \ BN
)

K ⇢ Ks := {u 2 RN : kuk] 6 s, kuk2 6 1}

x0 2 K ⇢ RN

9 convex norm k · k] and a s > 0 s.t.

[Chandrasekaran 2012]



ELEN

‣ Low complexity set 
‣ Examples: 

!

!

‣ Bounded convex hull: 

!

‣ Atomic norm:

Low-complexity signal model

35

K = ⌃K := {u 2 RN : kuk0 := | suppu| 6 K}
K = Cr := {U 2 Rn⇥n ' RN : rank(U) 6 r}

K := conv(K \ BN
)

K ⇢ Ks := {u 2 RN : kuk] 6 s, kuk2 6 1}

x0 2 K ⇢ RN

9 convex norm k · k] and a s > 0 s.t.

[Chandrasekaran 2012]

k · k] $ k · k1
s =

p
K

Example: for ⌃K

Additionally, this contains “compressible” signals 
under the initial low-complexity model!
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Low-complexity signal model

36

Measuring the “dimension” of K � Gaussian mean width:

w(K) := E sup
u2K

|hg,ui|, with gk ⇠iid N (0, 1)

36

with w(K) 6 w(K0) if K ⇢ K0

[Plan, Vershynin,  
Chandrasekaran, …]

K

⌘

width in direction ⌘ 2 SN�1

u

⌘ = g/kgk
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Low-complexity signal model

37

Measuring the “dimension” of K � Gaussian mean width:

w(K) := E sup
u2K

|hg,ui|, with gk ⇠iid N (0, 1)

37

Examples:

w2
(SN�1

) 6 4N

w2
(K) 6 Clog |K| (for finite sets)

w2
(K \ BN

) 6 L if subspace with dimK = L

w2
(⌃K \ BN

) 6 w2
(⌃K) ' K log(2N/K)

with w(K) 6 w(K0) if K ⇢ K0

[Plan, Vershynin,  
Chandrasekaran, …] w2(Cr) 6 w2(Cr) 6 4nr

K

⌘

width in direction ⌘ 2 SN�1

u

⌘ = g/kgk



ELEN

‣ As before: 

QCS model

38

Uniform (bin � > 0) + dithering (⇠i ⇠iid U([0, �]))

for Gaussian or sub-Gaussian � 2 RM⇥N

q = A(x0) := Q(�x0 + ⇠)q = A(x0) := Q(�x0 + ⇠)
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‣ As before:  
!

!

!

‣ Questions: knowing that                   , 
1. Theoretical bound on reconstruction error?  

2. Reconstruction algorithm? 

QCS model

39

Uniform (bin � > 0) + dithering (⇠i ⇠iid U([0, �]))

x0 2 K ⇢ RN

for Gaussian or sub-Gaussian � 2 RM⇥N

q = A(x0) := Q(�x0 + ⇠)q = A(x0) := Q(�x0 + ⇠)

, proximity of consistent vectors

, one solution: CoBP
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Proximity of consistent vectors
‣ Gaussian case:

40

M & (1+�)4

�2✏4 w2(K)

A(x1) = A(x2) ) kx1 � x2k 6 ✏

Then, with Pr > 1� 2 exp(� c✏M
1+� ) and uniformly for all x1,x2 2 K,

�ij ⇠iid N (0, 1)

In all generality, provided

) ✏ = O(M�1/4
) for consistent reconstruction 2 K!

[LJ 2015]

Proximity condition:
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Proximity of consistent vectors
‣ Gaussian case:

41

M & (1+�)4

�2✏4 w2(K)

A(x1) = A(x2) ) kx1 � x2k 6 ✏

Then, with Pr > 1� 2 exp(� c✏M
1+� ) and uniformly for all x1,x2 2 K,

�ij ⇠iid N (0, 1)

In all generality, provided

) ✏ = O(M�1/4
) for consistent reconstruction 2 K!

[LJ 2015]

Interpretation: low complexity set K

K

Proximity condition:
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Proximity of consistent vectors
‣ Gaussian case:

42

M & (1+�)4

�2✏4 w2(K)

A(x1) = A(x2) ) kx1 � x2k 6 ✏

Then, with Pr > 1� 2 exp(� c✏M
1+� ) and uniformly for all x1,x2 2 K,

�ij ⇠iid N (0, 1)

In all generality, provided

) ✏ = O(M�1/4
) for consistent reconstruction 2 K!

[LJ 2015]

Interpretation: '1

Proximity condition:



ELEN

Proximity of consistent vectors
‣ Gaussian case:

43

M & (1+�)4

�2✏4 w2(K)

A(x1) = A(x2) ) kx1 � x2k 6 ✏

Then, with Pr > 1� 2 exp(� c✏M
1+� ) and uniformly for all x1,x2 2 K,

�ij ⇠iid N (0, 1)

In all generality, provided

) ✏ = O(M�1/4
) for consistent reconstruction 2 K!

[LJ 2015]

Interpretation: '1

'2

Proximity condition:



ELEN

Proximity of consistent vectors
‣ Gaussian case:

44

M & (1+�)4

�2✏4 w2(K)

A(x1) = A(x2) ) kx1 � x2k 6 ✏

Then, with Pr > 1� 2 exp(� c✏M
1+� ) and uniformly for all x1,x2 2 K,

�ij ⇠iid N (0, 1)

In all generality, provided

) ✏ = O(M�1/4
) for consistent reconstruction 2 K!

[LJ 2015]

Interpretation:
✏(M)

x1

x2

consistency cell

for large M

Proximity condition:
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Proximity of consistent vectors
‣ Gaussian case:

45

M & (1+�)4

�2✏4 w2(K)

A(x1) = A(x2) ) kx1 � x2k 6 ✏

Then, with Pr > 1� 2 exp(� c✏M
1+� ) and uniformly for all x1,x2 2 K,

�ij ⇠iid N (0, 1)

In all generality, provided

) ✏ = O(M�1/4
) for consistent reconstruction 2 K!

[LJ 2015]

Interpretation:
✏(M)

x1

x2

consistency cell `1-ball in high dimension

and don’t forget

Proximity condition:
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Proximity of consistent vectors
‣ Gaussian case:

46

M & (1+�)4

�2✏4 w2(K)

A(x1) = A(x2) ) kx1 � x2k 6 ✏

Then, with Pr > 1� 2 exp(� c✏M
1+� ) and uniformly for all x1,x2 2 K,

�ij ⇠iid N (0, 1)

In all generality, provided

For K = ( ⌃K) \ BN and  ONB

M & 2+�
✏ K log(N(2+�)3/2

K�✏3/2
)

Special 
case:

) ✏ = O(M�1/4
) for consistent reconstruction 2 K!

[LJ 2015]

Proximity condition:

) ✏ = O(M�1)!
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Proximity of consistent vectors
‣ Sub-Gaussian case: (e.g., iid Bernoulli or bounded     )

47

�ij

[LJ 2015]

“Amgis” ;-)

Still ok but, for K0 & (�) and for all x1,x2 in

⌃K0 := {u 2 RN
: K0kuk21 6 kuk22}.

A(x1) = A(x2) ) kx1 � x2k 6 ✏

Then, with Pr > 1� 2 exp(� c✏M
1+� ) and uniformly for all x1,x2 2 K,

, we have also
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Proximity of consistent vectors
‣ Sub-Gaussian case: (e.g., iid Bernoulli or bounded     )

48

�ij

) Ok for “not too sparse” signals

[LJ 2015]

(remark : similar and earlier observations in 1-bit CS by Plan & Vershynin)

“Amgis” ;-)

1/
p
K0

s.t. kuk = 1

Kind of “Peak to average ratio”

Still ok but, for K0 & (�) and for all x1,x2 in

⌃K0 := {u 2 RN
: K0kuk21 6 kuk22}.

A(x1) = A(x2) ) kx1 � x2k 6 ✏

Then, with Pr > 1� 2 exp(� c✏M
1+� ) and uniformly for all x1,x2 2 K,

, we have also
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Consistent Basis Pursuit (CoBP)

49

How to reconstruct 
our low complexity signal?
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‣ Gaussian case: 

Consistent Basis Pursuit (CoBP)

50

x

⇤ := argmin
u2RN

kuk] s.t. A(u) = A(x0), u 2 BN .

except for this

Actually, not a so new program, see e.g.,  
[Milenkovitch, Dai, JL, Hammond, Fadili, …]
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‣ Gaussian case: 

Consistent Basis Pursuit (CoBP)

51

x

⇤ := argmin
u2RN

kuk] s.t. A(u) = A(x0), u 2 BN .

IfA respects “proximity condition” for all x1,x2 2 Ks � K,

then, we have for all x0 2 Ks,

kx0 � x

⇤k2 6 ✏.

IfA respects “proximity condition” for all x1,x2 2 Ks � K,

then, we have for all x0 2 Ks,

kx0 � x

⇤k2 6 ✏.
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‣ Gaussian case: 

Consistent Basis Pursuit (CoBP)

52

x

⇤ := argmin
u2RN

kuk] s.t. A(u) = A(x0), u 2 BN .

Corollary: With high probability on Gaussian � and uniform ⇠,

8x0 2 Ks,

kx0 � x

⇤k2 = O
�
2+�p

�
(

w(Ks)
2

M )

1/4
�
,

i.e., kx0 � x

⇤k2 = O
�
M�1/4

�
if only M varies.

Pr > 1� 2 exp(�cM3/4/
p
�)

Corollary: With high probability on Gaussian � and uniform ⇠,

8x0 2 Ks,

kx0 � x

⇤k2 = O
�
2+�p

�
(

w(Ks)
2

M )

1/4
�
,

i.e., kx0 � x

⇤k2 = O
�
M�1/4

�
if only M varies.

IfA respects “proximity condition” for all x1,x2 2 Ks � K,

then, we have for all x0 2 Ks,

kx0 � x

⇤k2 6 ✏.

IfA respects “proximity condition” for all x1,x2 2 Ks � K,

then, we have for all x0 2 Ks,

kx0 � x

⇤k2 6 ✏.
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‣ sub-Gaussian case:

Consistent Basis Pursuit (CoBP)

53

x

⇤ := argmin
u2RN

kuk] s.t.

(
A(u) = A(x0),

u 2 BN \ �BN
1,

to take care of signal “peaky-ness”
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‣ sub-Gaussian case:

Proposition: With high probability on sub-Gaussian � and uniform ⇠,

8x0 2 Ks \ �BN
1,

kx0 � x

⇤k2 = O
�
2+�p

�
(

w(Ks)
2

M )

1/4
+ (�)�

�
,

i.e., kx0 � x

⇤k2 = O
�
M�1/4

+ �
�
if only M varies.

Consistent Basis Pursuit (CoBP)

54

x

⇤ := argmin
u2RN

kuk] s.t.

(
A(u) = A(x0),

u 2 BN \ �BN
1,

(possible) price to pay for sub-Gaussianity
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Proposition: With high probability on sub-Gaussian � and uniform ⇠,

8x0 2 Ks \ �BN
1,

kx0 � x

⇤k2 = O
�
2+�p

�
(

w(Ks)
2

M )

1/4
+ (�)�

�
,

i.e., kx0 � x

⇤k2 = O
�
M�1/4

+ �
�
if only M varies.

‣ sub-Gaussian case:

Consistent Basis Pursuit (CoBP)

55

x

⇤ := argmin
u2RN

kuk] s.t.

(
A(u) = A(x0),

u 2 BN \ �BN
1,

Is it bad? If you think so, then sample signals with

� ! �F

with, e.g., F = Fourier or Hadamard.

Kind of “Spread the samples” trick ;-)
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Experiments: implementation
‣ Solving CoBP: Convex Optimization 

!

!

!

!

‣ Many toolboxes available 
‣ We used a proximal algorithm, i.e.,  

Parallel Proximal Algorithm (PPXA) 
‣ & the UNLocBoX toolbox (https://lts2.epfl.ch/

unlocbox) 

56

x

⇤ := argmin
u2RN

kuk] s.t. A(u) = A(x
0

), u 2 BN .

, argmin
u2RN

kuk] + ı
consist.(u) + ıBN (u)

https://lts2.epfl.ch/unlocbox
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Experiments: 1
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N = 2048, K = 16,

B = 3, M/K 2 [8, 128]
20 trials per points

K-sparse signals with 
Gaussian sensing
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Experiments: 1
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‣ Bernoulli vs Gauss(ian) sensing:

59

Experiments: 2
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‣ Low-rank matrix and QCS

60

Experiments: 3

X⇤ := argmin
U2Rn⇥n

kUk⇤ s.t. A(vec(U)) = A(vec(X0)), vec(U) 2 BN .

(with A(·) := Q(� ·))
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‣ Low-rank matrix and QCS

61

Experiments: 3

X⇤ := argmin
U2Rn⇥n

kUk⇤ s.t. A(vec(U)) = A(vec(X0)), vec(U) 2 BN .

Original CoBP 
SNR 11 dB

BPDN 
SNR 6.9 dB

N = 1024 = n2
(n = 32),

rank r = 1,

Complexity < P = 64,

M = 16P = N

(with A(·) := Q(� ·))

B = 2
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3. Quasi-isometric embeddings 
(or “how to quantize the RIP”) 
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Restricted isometry Property (RIP):

63

Quantizing the RIP?

Inserting quantization?

(1� ⇢)ku� vk2  1
M k�u��vk2  (1 + ⇢)ku� vk2

for all u,v 2 ⌃K := {u : kuk0 := |suppu|  K}

(as an embedding 
preserving distances)
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Why quantizing the RIP? 
‣ since we can ;-) 
‣ for future algorithm guarantees 
‣ for nearest neighbors applications 
‣ or “signal processing” in quantized CS domain

Restricted isometry Property (RIP):

64

Quantizing the RIP?

Inserting quantization?

(1� ⇢)ku� vk2  1
M k�u��vk2  (1 + ⇢)ku� vk2

for all u,v 2 ⌃K := {u : kuk0 := |suppu|  K}

(as an embedding 
preserving distances)
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‣ Let’s retake: for Q(·) = �b·/�c 2 �Z

Quantizing the RIP?

 (u) := Q(�u+ ⇠), with  j(u) := Q('T
j u+ ⇠j)

with �ji ⇠iid N (0, 1) and ⇠j ⇠iid U([0, �]).
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‣ Let’s retake: 
!

!

!

‣ Naive way: since

for Q(·) = �b·/�c 2 �Z

Quantizing the RIP?

|a� b|� �  |Q(a)�Q(b)|  |a� b|+ �, 8 a, b 2 R

whenever 1p
M
� is RIP.

(1� ⇢) ku� vk � �  1p
M

k (u)� (v)k  (1 + ⇢) ku� vk+ �,

 (u) := Q(�u+ ⇠), with  j(u) := Q('T
j u+ ⇠j)

with �ji ⇠iid N (0, 1) and ⇠j ⇠iid U([0, �]).
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‣ Let’s retake: 
!

!

!

‣ Naive way: since

for Q(·) = �b·/�c 2 �Z

Quantizing the RIP?

|a� b|� �  |Q(a)�Q(b)|  |a� b|+ �, 8 a, b 2 R

(1� ⇢) ku� vk � �  1p
M

k (u)� (v)k  (1 + ⇢) ku� vk+ �,

multiplicative error additive error

(decaying, good!)
(constant, weird!?)With ⇢ = O(

p
K/M).

 (u) := Q(�u+ ⇠), with  j(u) := Q('T
j u+ ⇠j)

with �ji ⇠iid N (0, 1) and ⇠j ⇠iid U([0, �]).
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‣ Let’s retake: 
!

!

!

‣ Solution:  
1.   

2. Let’s study how it concentrates!

for Q(·) = �b·/�c 2 �Z

Quantizing the RIP?

Let’s use another distance (`1):

1
M k (u)� (v)k1 =

1
M

P
j | j(u)� j(v)|

 (u) := Q(�u+ ⇠), with  j(u) := Q('T
j u+ ⇠j)

with �ji ⇠iid N (0, 1) and ⇠j ⇠iid U([0, �]).
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‣ Let’s retake: for Q(·) = �b·/�c 2 �Z

Quantizing the RIP?

Quantized Gaussian Quasi-Isometric Embedding [LJ, 2015]

 all distortions decay with M !

 (u) := Q(�u+ ⇠), with  j(u) := Q('T
j u+ ⇠j)

with �ji ⇠iid N (0, 1) and ⇠j ⇠iid U([0, �]).

Given an error 0 < ✏ < 1, and K ⇢ RN
.

If M is such that

M & ✏�5w(K)2,

then, for some c > 0 and for all u,v 2 K, and w.h.p., we have

(
q

2
⇡ �✏) ku�vk�c�✏  1

M k (u)� (v)k1  (
q

2
⇡ +✏) ku�vk+c�✏,

For K = A⌃K \ BN

and A ONB
M & ✏�2K log N

K�✏3/2
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‣ Let’s retake: for Q(·) = �b·/�c 2 �Z

OK for sub-Gaussian?  
(e.g., Bernoulli)

Quantizing the RIP?

 (u) := Q(�u+ ⇠), with  j(u) := Q('T
j u+ ⇠j)

with �ji ⇠iid N (0, 1) and ⇠j ⇠iid U([0, �]).
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Given an error 0 < ✏ < 1, and K ⇢ RN
.

If M is such that

M & ✏�5w(K)2,

then, w.h.p, for some c > 0 and for all u,v 2 K with u�v 2 CK0 , we have

(
q

2
⇡�✏� p

K0
) ku�vk�c�✏  1

M k (u)� (v)k1  (
q

2
⇡+✏+ p

K0
) ku�vk+c�✏.
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‣ Let’s retake: for Q(·) = �b·/�c 2 �Z

Quantizing the RIP?

Quantized sub-Gaussian Quasi-Isometric Embedding [LJ, 2015]

high K0, less sparse but lower distortion!

For K = A⌃K \ BN

and A ONB
M & ✏�2K log N

K�✏3/2

 (u) := Q(�u+ ⇠), with  j(u) := Q('T
j u+ ⇠j)

with �ji ⇠iid N (0, 1) and ⇠j ⇠iid U([0, �]).

But you can use the “spread the samples” trick!
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To conclude ...
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Take away messages
‣ Associating CS and Quantization  

provides many interesting questions: 
‣ geometrically (high dim. convex geom.) 
‣ numerically (not totally covered here) 
‣ with impacts in CS sensor design
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ELEN

Take away messages
‣ Associating CS and Quantization  

provides many interesting questions: 
‣ geometrically (high dim. convex geom.) 
‣ numerically (not totally covered here) 
‣ with impacts in CS sensor design 

‣ Beyond CS, quantifying random projections  
‣ leads to interesting embedding problems 
‣ possible impacts in dimensionality reductions

74
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‣ CoBP robustness vs pre-quantisation noise? 
    Do quasi-isometric embedding help?    

‣ Quasi-isometric embedding for Hilbert spaces?  

‣ Embeddings with other quantisation schemes?  
(link with machine learning?) 

‣ Classification/clustering in the quantized domain?

Open questions

75
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