Consistent Basis Pursuit (CoBP) for Low-Complexity Signal Estimates in Quantized Compressed Sensing

Laurent Jacques
UCLouvain, Belgium

November 19th, 2015
Joint work with:

Amirafshar
Moshtaghpour

Valerio
Cambareri

Kevin
Degraux

Christophe
De Vleeschouwer

Outline

1. Introduction to CS and QCS
2. Consistent Basis Pursuit for low-complexity signals
3. Quasi-isometric embeddings of low-complexity signals
4. Take-away messages \& open questions

1. Introduction

CS facts

Compressed Sensing...

... in a nutshell:

Generalize Dirac/Nyquist sampling:
1°) ask few (linear) questions
about your informative signal
2°) and recover it differently (non-linearly)"

e.g., sparse, structured, low-rank, ...

1st, CS \ni Generalized Linear Sensing!

M questions
y

Sensing method Signal $\boldsymbol{\Phi} \quad \boldsymbol{x}$

N in this
discrete world

1st, CS \ni Generalized Linear Sensing!

M questions

Sensing method Φ \boldsymbol{x}

Generalized Linear Sensing!

$$
y_{i} \simeq\left\langle\boldsymbol{\varphi}_{i}, \boldsymbol{x}\right\rangle=\boldsymbol{\varphi}_{i}^{T} \boldsymbol{x}
$$

$$
1 \leq i \leq M
$$

e.g., to be realized optically/analogically

Sparsity Prior ($\Psi=\mathrm{Id}$)

2nd, CS э Non-linear reconstruction!

Mmm, M equations, N unknowns?!
Ill-posed problem
You must regularize it!
(intuition: would you know the signal support, much less unknowns)

2nd, CS э Non-linear reconstruction!

Possible reconstruction: (others exist, e.g., greedy)
(Basis Pursuit DeNoise)
[Chen, Donoho, Saunders, 1998]

$$
\hat{\boldsymbol{x}}=\underset{\boldsymbol{u} \in \mathbb{R}^{N}}{\arg \min }\|\boldsymbol{u}\|_{1} \text { s.t. }\|\boldsymbol{y}-\boldsymbol{\Phi} \boldsymbol{u}\| \leq \epsilon
$$

Sparsity promotion: $\|\boldsymbol{u}\|_{1}=\sum_{j}\left|u_{j}\right| \quad$ Level of "noise"
Convexification of ℓ_{0}-norm:
$\|\boldsymbol{u}\|_{0}=|\operatorname{supp} \boldsymbol{u}|=\left|\left\{k: u_{k} \neq 0\right\}\right|$

2nd, CS э Non-linear reconstruction!

BPDN instance optimality:
If $\frac{1}{\sqrt{M}} \boldsymbol{\Phi}$ respects the Restricted Isometry Property (RIP)

$$
(1-\rho)\|\boldsymbol{u}\|^{2} \leq \frac{1}{M}\|\boldsymbol{\Phi} \boldsymbol{u}\|^{2} \leq(1+\rho)\|\boldsymbol{u}\|^{2}
$$

for all $\boldsymbol{u} \in \Sigma_{2 K}:=\left\{\boldsymbol{u}:\|\boldsymbol{u}\|_{0}:=|\operatorname{supp} \boldsymbol{u}| \leq 2 K\right\}$

2nd, CS э Non-linear reconstruction!

BPDN instance optimality:
If $\frac{1}{\sqrt{M}} \boldsymbol{\Phi}$ respects the Restricted Isometry Property (RIP)

$$
(1-\rho)\|\boldsymbol{u}\|^{2} \leq \frac{1}{M}\|\boldsymbol{\Phi} \boldsymbol{u}\|^{2} \leq(1+\rho)\|\boldsymbol{u}\|^{2}
$$

for all $\boldsymbol{u} \in \Sigma_{2 K}:=\left\{\boldsymbol{u}:\|\boldsymbol{u}\|_{0}:=|\operatorname{supp} \boldsymbol{u}| \leq 2 K\right\}$
Then, if $\rho<\sqrt{2}-1$ [Candès, 09],

$$
\text { (with } f \lesssim g \equiv \exists c>0: f \leqslant c g \text {) }
$$

Robustness: vs sparse deviation + noise.

$$
\|\boldsymbol{x}-\hat{\boldsymbol{x}}\| \lesssim \frac{1}{\sqrt{K}}\left\|\boldsymbol{x}-\boldsymbol{x}_{K}\right\|_{1}+\frac{\epsilon}{\sqrt{M}}
$$

$$
e_{0}(K)
$$

2nd, CS э Non-linear reconstruction!

Matrices with RIP?

$\boldsymbol{\Phi} \in \mathbb{R}^{M \times N}$, with $\Phi_{i j} \sim_{\text {iid }} \mathcal{N}(0,1)$ and $M \gtrsim K \log N / K$.

but also:

, Random sub-Gaussian ensembles (e.g., Bernoulli);

- random Fourier/Hadamard ensembles (structured sensing);
, random convolutions, spread-spectrum;
(see, e.g., "A Mathematical Introduction to Compressive Sensing", Rauhut, Foucart, Springer, 2013)

Quantization context

(Restricted to scalar quantization)

Caveat : not covered here:

- Sigma-Delta quantization for CS (see, e.g., Kramer, Saab, Guntürk, Powell, Ward, ...)
- Vector quantization (see, e.g., Goyal, Nguyen, Sun, ...)
- Universal quantization (periodic) (see, e.g., Boufounos, Rane, ...)

Compressive Sampling and Quantization

Compressed sensing theorist says:
"Linearly sample a signal
at a rate function of
its intrinsic dimensionality"

Information theorist and sensor designer say:
"Okay, but I need to quantize/digitize my measurements!"
(e.g., in ADC)

Integration?
QCS theory?
Theoretical Bounds

What is quantization?

Generality:
Intuitively: "Quantization maps a bounded continuous domain to a set of finite elements (or codebook)"

\mathbb{R}^{M}

$$
\mathcal{Q}[x] \in\left\{q_{1}, q_{2}, \cdots\right\}
$$

, Oldest example: rounding off $\lfloor x\rfloor,\lceil x\rceil, \ldots \quad \mathbb{R} \rightarrow \mathbb{Z}$

Scalar quantization

Applied on each component of M-dimensional vectors:

$$
\begin{aligned}
& \mathcal{Q}(\lambda)=q_{i} \\
& \text { ㅁ: Level } \Omega=\left\{q_{i}\right\} \text { (or codebook) •: Thresholds } \mathcal{T}=\left\{t_{i}\right\} \\
& \cdots \cdots \cdot t_{i} \underbrace{\lambda}_{i+1} q_{i}
\end{aligned}
$$

Scalar quantization

Applied on each component of M-dimensional vectors:

$$
\mathcal{Q}(\lambda)=q_{i}
$$

ㅁ: Level $\Omega=\left\{q_{i}\right\}$ (or codebook) \bullet :Thresholds $\mathcal{T}=\left\{t_{i}\right\}$

Example: uniform, resolution $\delta>0$

$$
\begin{aligned}
& q_{k}=(k+1 / 2) \delta \\
& t_{k}=k \delta \\
& \mathcal{Q}(t)=\delta\left(\left\lfloor\frac{t}{\delta}\right\rfloor+\frac{1}{2}\right)
\end{aligned}
$$

... with possible non-uniform adaption (Lloyd-Max)

Quantizing Compressed Sensing?

With no additional noise:

Finite codebook $\Rightarrow \hat{\boldsymbol{x}} \neq \boldsymbol{x}$
i.e., impossibility to encode continuous domain in a finite number of elements.

Quantizing Compressed Sensing?

With no additional noise:

e.g., basis pursuit, greedy methods, ...

Objective: Minimize $\|\hat{\boldsymbol{x}}-\boldsymbol{x}\|$ given a certain number of: bits, measurements, or bits/meas.

Where to act?
Change CS, Q or decoder? Some of them? all?

Initial Approach for Quantized CS

Former solution (Candès, Tao, ...)

1. (scalar) Quantization is like a noise quantization distortion

$$
\boldsymbol{q}=\mathcal{Q}[\boldsymbol{\Phi} \boldsymbol{x}]=\boldsymbol{\Phi} \boldsymbol{x}+\boldsymbol{n}
$$

$$
\text { with } \mathcal{Q}(t)=\delta\left(\left\lfloor\frac{t}{\delta}\right\rfloor+\frac{1}{2}\right) \quad \text { (componentwise) }
$$

\longrightarrow Bounded:

$$
\|\boldsymbol{n}\|_{\infty}=\|\mathcal{Q}(\boldsymbol{\Phi} \boldsymbol{x})-\boldsymbol{q}\|_{\infty} \leq \delta / 2
$$

Former solution (Candès, Tao, ...)

1. (scalar) Quantization is like a noise

$$
\boldsymbol{q}=\mathcal{Q}[\boldsymbol{\Phi} \boldsymbol{x}]=\boldsymbol{\Phi} \boldsymbol{x}+\boldsymbol{n}
$$

2. CS is robust (e.g., with basis pursuit denoise)

$$
\hat{\boldsymbol{x}}=\underset{\boldsymbol{u} \in \mathbb{R}^{N}}{\operatorname{argmin}}\|\boldsymbol{u}\|_{1} \text { s.t. }\|\boldsymbol{\Phi} \boldsymbol{u}-\boldsymbol{q}\| \leqslant \epsilon \quad \text { (BPDN) }
$$

$\ell_{2}-\ell_{1}$ instance optimality:
If $\|\boldsymbol{n}\| \leqslant \epsilon$ and $\frac{1}{\sqrt{M}} \boldsymbol{\Phi}$ is $\operatorname{RIP}(\delta, 2 K)$ with $\delta \leqslant \sqrt{2}-1$, then

$$
\|\hat{\boldsymbol{x}}-\boldsymbol{x}\| \lesssim \frac{\epsilon}{\sqrt{M}}+e_{0}(K)
$$

with $e_{0}(K)=\left\|\boldsymbol{x}-\boldsymbol{x}_{K}\right\|_{1} / \sqrt{K}$.

Former solution (Candès, Tao, ...)

1. (scalar) Quantization is like a noise

$$
\underset{\sim}{\|\boldsymbol{\Phi} u-\boldsymbol{q}\|_{\infty} \leq \delta / 2} \underset{\ldots}{\ldots}=\boldsymbol{q}[\boldsymbol{\Phi} \boldsymbol{x}]=\boldsymbol{\Phi} \boldsymbol{x}+\boldsymbol{n}
$$

2 CS is robust (e.g., with basis pursuit denoise)

$$
\hat{\boldsymbol{x}}=\underset{\boldsymbol{u} \in \mathbb{R}^{N}}{\operatorname{argmin}}\|\boldsymbol{u}\|_{1} \text { s.t. }\|\boldsymbol{\Phi} \boldsymbol{u}-\boldsymbol{q}\| \leqslant \epsilon \quad(\mathrm{BPDN})
$$

$\dot{\ell}_{2}-\ell_{1}$ instance optimality:
If $\|\boldsymbol{n}\| \leqslant \epsilon$ and $\frac{1}{\sqrt{M}} \boldsymbol{\Phi}$ is $\operatorname{RIP}(\delta, 2 K)$ with $\delta \leqslant \sqrt{2}-1$, then

$$
\|\hat{\boldsymbol{x}}-\boldsymbol{x}\| \lesssim \delta+e_{0}(K)
$$

with $e_{0}(K)=\left\|\boldsymbol{x}-\boldsymbol{x}_{K}\right\|_{1} / \sqrt{K}$.
Deterministic: $\epsilon^{2} \leq M \delta^{2} / 4$
Stochastic: $\epsilon^{2} \leq M \delta^{2} / 12+c \sqrt{M}$ (w.h.p)

Former solution (Candès, Tao, ...)

In short:

$$
\|\hat{\boldsymbol{x}}-\boldsymbol{x}\| \lesssim \delta+e_{0}(K)
$$

But quantization error doesn't decay with $M!?$

Former solution (Candès, Tao, ...)

In short:

$$
\|\hat{\boldsymbol{x}}-\boldsymbol{x}\| \lesssim \delta+e_{0}(K)
$$

But quantization error doesn't decay with $M!?$

Solution: be consistent!

Enforce $\mathcal{Q}[\boldsymbol{\Phi} \hat{\boldsymbol{x}}]=\mathcal{Q}[\boldsymbol{\Phi} \boldsymbol{x}]$!
"consistency condition"

Consistent reconstructions in CS?

Issue: if $\hat{\boldsymbol{x}}$ solution of BPDN (adjusted to QCS)
(i) No Quantization Consistency (QC)!

$$
\|\boldsymbol{\Phi} \hat{\boldsymbol{x}}-\mathcal{Q}[\boldsymbol{\Phi} \boldsymbol{x}]\| \leqslant \epsilon(\delta) \nRightarrow \frac{\mathcal{Q}[\boldsymbol{\Phi} \hat{\boldsymbol{x}}]=Q[\boldsymbol{\Phi} \boldsymbol{x}]}{\Leftrightarrow\|\boldsymbol{\Phi} \hat{\boldsymbol{x}}-\mathcal{Q}[\boldsymbol{\Phi} \boldsymbol{x}]\|_{\infty}} \leq \delta / 2
$$

\Rightarrow Sensing information is not fully exploited!
(ii) ℓ_{2} constraint in BPDN
\approx Gaussian distribution (MAP - cond. log. lik.)

But why looking for consistency?

First: Let T the support of $\boldsymbol{x} \in \mathbb{R}^{N}, \boldsymbol{\Phi} \in \mathbb{R}^{M \times N}$, and $\boldsymbol{y}=\boldsymbol{\Phi} \boldsymbol{x}$.
Proposition (Goyal, Vetterli, Thao, 98) If T is known (with $|T|=K$), the best decoder $\operatorname{Dec}()$ provides a $\hat{\boldsymbol{x}}=\operatorname{Dec}(\boldsymbol{y}, \boldsymbol{\Phi})$ such that:

$$
\operatorname{RMSE}=\left(\mathbb{E}\|\boldsymbol{x}-\hat{\boldsymbol{x}}\|^{2}\right)^{1 / 2} \gtrsim\left(\frac{K}{M}\right) \delta,
$$

where \mathbb{E} is wrt a probability measure on \boldsymbol{x}_{T} in a bounded set $\mathcal{S} \subset \mathbb{R}^{K}$.
V. K Goyal, M. Vetterli, N. T. Thao, "Quantized Overcomplete Expansions in R":

Analysis, Synthesis, and Algorithms", IEEE Tran. IT, 44(1), 1998

But why looking for consistency?

First: Let T the support of $\boldsymbol{x} \in \mathbb{R}^{N}, \boldsymbol{\Phi} \in \mathbb{R}^{M \times N}$, and $\boldsymbol{y}=\boldsymbol{\Phi} \boldsymbol{x}$.
Proposition (Goyal, Vetterli, Thao, 98) If T is known (with $|T|=K$), the best decoder $\operatorname{Dec}()$ provides a $\hat{\boldsymbol{x}}=\operatorname{Dec}(\boldsymbol{y}, \boldsymbol{\Phi})$ such that:

$$
\operatorname{RMSE}=\left(\mathbb{E}\|\boldsymbol{x}-\hat{\boldsymbol{x}}\|^{2}\right)^{1 / 2} \gtrsim\left(\frac{K}{M}\right) \delta,
$$

where \mathbb{E} is wrt a probability measure on \boldsymbol{x}_{T} in a bounded set $\mathcal{S} \subset \mathbb{R}^{K}$.

Bound achieved for $\boldsymbol{\Phi}_{T}=\mathrm{DFT} \in \mathbb{R}^{M \times K}$ and $\operatorname{Dec}()$ consistent!

V. K Goyal, M. Vetterli, N. T. Thao, "Quantized Overcomplete Expansions in R":

Analysis, Synthesis, and Algorithms", IEEE Tran. IT, 44(1), 1998

But why looking for consistency?

Second,
If $\boldsymbol{\Phi} \in \mathbb{R}^{M \times N}$ is a (random) frame in $\mathbb{R}^{N}(M \geqslant N)$ and $\boldsymbol{y}=\boldsymbol{\Phi} \boldsymbol{x}$,
Then, for $\mathcal{Q}(\boldsymbol{y})=\boldsymbol{y}+\boldsymbol{\xi}$ with $\xi_{i} \sim \mathcal{U}\left(\left[-\frac{1}{2} \delta, \frac{1}{2} \delta\right]\right)$,
and $\hat{\boldsymbol{x}}$ consistent, (achievable with dithering or under HRA)

This is equivalent to compressed sensing when the support of \boldsymbol{x} is known.

But why looking for consistency?

Second,
If $\boldsymbol{\Phi} \in \mathbb{R}^{M \times N}$ is a (random) frame in $\mathbb{R}^{N}(M \geqslant N)$ and $\boldsymbol{y}=\boldsymbol{\Phi} \boldsymbol{x}$,
Then, for $\mathcal{Q}(\boldsymbol{y})=\boldsymbol{y}+\boldsymbol{\xi}$ with $\xi_{i} \sim \mathcal{U}\left(\left[-\frac{1}{2} \delta, \frac{1}{2} \delta\right]\right)$,
and $\hat{\boldsymbol{x}}$ consistent, (achievable with dithering or under HRA)
(i.e., $\mathcal{Q}(\boldsymbol{\Phi} \hat{\boldsymbol{x}})=\mathcal{Q}(\boldsymbol{\Phi} \boldsymbol{x}))$

$$
\left(\mathbb{E}_{\boldsymbol{\Phi}, \boldsymbol{n}}\|\boldsymbol{x}-\hat{\boldsymbol{x}}\|^{2}\right)^{1 / 2} \lesssim\left(\frac{N}{M}\right) \delta,
$$

[Powell, Whitehouse, 2013]
(unit norm frame)

$$
\|\boldsymbol{x}-\hat{\boldsymbol{x}}\| \lesssim\left(\frac{N}{M}\right) \delta \cdot O(\log M, \log N, \log \eta)
$$

or $\left(\frac{K}{M}\right)$ if \boldsymbol{x} is K-sparse with Gaussian sensing matrix. (with some logarithms)

2. Consistent Basis Pursuit for low-complexity signals

Low-complexity signal model

- Low complexity set $\boldsymbol{x}_{0} \in \mathcal{K} \subset \mathbb{R}^{N} \quad \begin{gathered}\text { (more general } \\ \text { than sparsity) }\end{gathered}$ Examples:

$$
\begin{aligned}
& \mathcal{K}=\Sigma_{K}:=\left\{\boldsymbol{u} \in \mathbb{R}^{N}:\|\boldsymbol{u}\|_{0}:=|\operatorname{supp} \boldsymbol{u}| \leqslant K\right\} \\
& \mathcal{K}=\mathcal{C}_{r}:=\left\{\boldsymbol{U} \in \mathbb{R}^{n \times n} \simeq \mathbb{R}^{N}: \operatorname{rank}(\boldsymbol{U}) \leqslant r\right\}
\end{aligned}
$$

Matrix example:
$\boldsymbol{U}=\boldsymbol{R}^{T} \boldsymbol{R} \in \mathcal{C}_{r}$
with $\boldsymbol{R} \in \mathbb{R}^{r \times n},(r \leq n)$
(example: hyperspectral imaging
for linear unmixing)

Low-complexity signal model

- Low complexity set $\boldsymbol{x}_{0} \in \mathcal{K} \subset \mathbb{R}^{N}$

Examples:

$$
\begin{aligned}
& \mathcal{K}=\Sigma_{K}:=\left\{\boldsymbol{u} \in \mathbb{R}^{N}:\|\boldsymbol{u}\|_{0}:=|\operatorname{supp} \boldsymbol{u}| \leqslant K\right\} \\
& \mathcal{K}=\mathcal{C}_{r}:=\left\{\boldsymbol{U} \in \mathbb{R}^{n \times n} \simeq \mathbb{R}^{N}: \operatorname{rank}(\boldsymbol{U}) \leqslant r\right\}
\end{aligned}
$$

Bounded convex hull:

$$
\overline{\mathcal{K}}:=\operatorname{conv}\left(\mathcal{K} \cap \mathbb{B}^{N}\right)
$$

Low-complexity signal model

- Low complexity set $\boldsymbol{x}_{0} \in \mathcal{K} \subset \mathbb{R}^{N}$

Examples:

$$
\begin{aligned}
& \mathcal{K}=\Sigma_{K}:=\left\{\boldsymbol{u} \in \mathbb{R}^{N}:\|\boldsymbol{u}\|_{0}:=|\operatorname{supp} \boldsymbol{u}| \leqslant K\right\} \\
& \mathcal{K}=\mathcal{C}_{r}:=\left\{\boldsymbol{U} \in \mathbb{R}^{n \times n} \simeq \mathbb{R}^{N}: \operatorname{rank}(\boldsymbol{U}) \leqslant r\right\}
\end{aligned}
$$

Bounded convex hull:

$$
\overline{\mathcal{K}}:=\operatorname{conv}\left(\mathcal{K} \cap \mathbb{B}^{N}\right)
$$

Atomic norm: \exists convex norm $\|\cdot\|_{\sharp}$ and a $s>0$ s.t.

$$
\overline{\mathcal{K}} \subset \overline{\mathcal{K}}_{s}:=\left\{\boldsymbol{u} \in \mathbb{R}^{N}:\|\boldsymbol{u}\|_{\sharp} \leqslant s,\|\boldsymbol{u}\|_{2} \leqslant 1\right\}
$$

[Chandrasekaran 2012]

Low-complexity signal model

- Low complexity set $\boldsymbol{x}_{0} \in \mathcal{K} \subset \mathbb{R}^{N}$

Examples:

$$
\begin{aligned}
& \mathcal{K}=\Sigma_{K}:=\left\{\boldsymbol{u} \in \mathbb{R}^{N}:\|\boldsymbol{u}\|_{0}:=|\operatorname{supp} \boldsymbol{u}| \leqslant K\right\} \\
& \mathcal{K}=\mathcal{C}_{r}:=\left\{\boldsymbol{U} \in \mathbb{R}^{n \times n} \simeq \mathbb{R}^{N}: \operatorname{rank}(\boldsymbol{U}) \leqslant r\right\}
\end{aligned}
$$

, Bounded convex hull:

$$
\overline{\mathcal{K}}:=\operatorname{conv}\left(\mathcal{K} \cap \mathbb{B}^{N}\right)
$$

Atomic norm: \exists convex norm $\|\cdot\|_{\sharp}$ and a $s>0$ s.t.

$$
\overline{\mathcal{K}} \subset \overline{\mathcal{K}}_{s}:=\left\{\boldsymbol{u} \in \mathbb{R}^{N}:\|\boldsymbol{u}\|_{\sharp} \leqslant s,\|\boldsymbol{u}\|_{2} \leqslant 1\right\}
$$

[Chandrasekaran 2012] Additionally, this contains "compressible" signals under the initial low-complexity model!

Low-complexity signal model

Measuring the "dimension" of $\mathcal{K} \rightarrow$ Gaussian mean width:

$$
w(\mathcal{K}):=\mathbb{E} \sup _{\boldsymbol{u} \in \mathcal{K}}|\langle\boldsymbol{g}, \boldsymbol{u}\rangle|, \text { with } g_{k} \sim_{\mathrm{iid}} \mathcal{N}(0,1)
$$

$$
\eta=g /\|g\|
$$

with $w(\mathcal{K}) \leqslant w\left(\mathcal{K}^{\prime}\right)$ if $\mathcal{K} \subset \mathcal{K}^{\prime}$

width in direction $\boldsymbol{\eta} \in \mathbb{S}^{N-1}$
[Plan, Vershynin,
Chandrasekaran, ...]

Low-complexity signal model

Measuring the "dimension" of $\mathcal{K} \rightarrow$ Gaussian mean width:

$$
w(\mathcal{K}):=\mathbb{E} \sup _{\boldsymbol{u} \in \mathcal{K}}|\langle\boldsymbol{g}, \boldsymbol{u}\rangle|, \text { with } g_{k} \sim_{\mathrm{iid}} \mathcal{N}(0,1)
$$

$$
\eta=g /\|g\|
$$

width in direction $\boldsymbol{\eta} \in \mathbb{S}^{N-1}$
[Plan, Vershynin,
Chandrasekaran, ...]
with $w(\mathcal{K}) \leqslant w\left(\mathcal{K}^{\prime}\right)$ if $\mathcal{K} \subset \mathcal{K}^{\prime}$
Examples:
$w^{2}\left(\mathcal{S}^{N-1}\right) \leqslant 4 N$
$w^{2}(\mathcal{K}) \leqslant C \log |\mathcal{K}| \quad$ (for finite sets)
$w^{2}\left(\mathcal{K} \cap \mathbb{B}^{N}\right) \leqslant L \quad$ if subspace with $\operatorname{dim} \mathcal{K}=L$
$w^{2}\left(\Sigma_{K} \cap \mathbb{B}^{N}\right) \leqslant w^{2}\left(\bar{\Sigma}_{K}\right) \simeq K \log (2 N / K)$
$w^{2}\left(\mathcal{C}_{r}\right) \leqslant w^{2}\left(\overline{\mathcal{C}}_{r}\right) \leqslant 4 n r$

QCS model

As before: for Gaussian or sub-Gaussian $\boldsymbol{\Phi} \in \mathbb{R}^{M \times N}$
Uniform $(\operatorname{bin} \delta>0)+\underline{\text { dithering }}\left(\xi_{i} \sim_{\text {iid }} \mathcal{U}([0, \delta])\right)$

$$
\boldsymbol{q}=\boldsymbol{A}\left(\boldsymbol{x}_{0}\right):=\mathcal{Q}\left(\boldsymbol{\Phi} \boldsymbol{x}_{0}+\underline{\boldsymbol{\xi}}\right)
$$

QCS model

As before: for Gaussian or sub-Gaussian $\boldsymbol{\Phi} \in \mathbb{R}^{M \times N}$
Uniform (bin $\delta>0)+$ dithering $\left(\xi_{i} \sim_{\text {iid }} \mathcal{U}([0, \delta])\right)$

$$
\boldsymbol{q}=\boldsymbol{A}\left(\boldsymbol{x}_{0}\right):=\mathcal{Q}\left(\boldsymbol{\Phi} \boldsymbol{x}_{0}+\boldsymbol{\xi}\right)
$$

Questions: knowing that $\boldsymbol{x}_{0} \in \mathcal{K} \subset \mathbb{R}^{N}$,

1. Theoretical bound on reconstruction error?
\Leftrightarrow proximity of consistent vectors
2. Reconstruction algorithm?
\Leftrightarrow one solution: CoBP

Proximity of consistent vectors [LJ 2015]

- Gaussian case: $\Phi_{i j} \sim_{\text {iid }} \mathcal{N}(0,1)$

In all generality, provided

$$
M \gtrsim \frac{(1+\delta)^{4}}{\delta^{2} \epsilon^{4}} \underline{w^{2}(\mathcal{K})}
$$

Then, with $\operatorname{Pr} \geqslant 1-2 \exp \left(-\frac{c \epsilon M}{1+\delta}\right)$ and uniformly for all $\boldsymbol{x}_{1}, \boldsymbol{x}_{2} \in \mathcal{K}$, Proximity condition: $\boldsymbol{A}\left(\boldsymbol{x}_{1}\right)=\boldsymbol{A}\left(\boldsymbol{x}_{2}\right) \quad \Rightarrow \quad\left\|\boldsymbol{x}_{1}-\boldsymbol{x}_{2}\right\| \leqslant \epsilon$

$$
\Rightarrow \epsilon=O\left(M^{-1 / 4}\right) \text { for consistent reconstruction } \in \mathcal{K}!
$$

Proximity of consistent vectors [LJ 2015]

- Gaussian case: $\Phi_{i j} \sim_{\text {iid }} \mathcal{N}(0,1)$

In all generality, provided

$$
M \gtrsim \frac{(1+\delta)^{4}}{\delta^{2} \epsilon^{4}}
$$

Then, with $\operatorname{Pr} \geqslant 1-2 \exp \left(-\frac{c \in M}{1+\delta}\right)$ and uniformly for all $\boldsymbol{x}_{1}, \boldsymbol{x}_{2} \in \mathcal{K}$, Proximity condition: $\boldsymbol{A}\left(\boldsymbol{x}_{1}\right)=\boldsymbol{A}\left(\boldsymbol{x}_{2}\right) \quad \Rightarrow \quad\left\|\boldsymbol{x}_{1}-\boldsymbol{x}_{2}\right\| \leqslant \epsilon$

$$
\Rightarrow \epsilon=O\left(M^{-1 / 4}\right) \text { for consistent reconstruction } \in \mathcal{K}!
$$

Interpretation:

Proximity of consistent vectors [LJ 2015]

- Gaussian case: $\Phi_{i j} \sim_{\text {iid }} \mathcal{N}(0,1)$

In all generality, provided

$$
M \gtrsim \frac{(1+\delta)^{4}}{\delta^{2} \epsilon^{4}} \underline{w^{2}(\mathcal{K})}
$$

Then, with $\operatorname{Pr} \geqslant 1-2 \exp \left(-\frac{c \in M}{1+\delta}\right)$ and uniformly for all $\boldsymbol{x}_{1}, \boldsymbol{x}_{2} \in \mathcal{K}$, Proximity condition: $\boldsymbol{A}\left(\boldsymbol{x}_{1}\right)=\boldsymbol{A}\left(\boldsymbol{x}_{2}\right) \quad \Rightarrow \quad\left\|\boldsymbol{x}_{1}-\boldsymbol{x}_{2}\right\| \leqslant \epsilon$

$$
\Rightarrow \epsilon=O\left(M^{-1 / 4}\right) \text { for consistent reconstruction } \in \mathcal{K}!
$$

Interpretation:

Proximity of consistent vectors [LJ 2015]

- Gaussian case: $\Phi_{i j} \sim_{\text {iid }} \mathcal{N}(0,1)$

In all generality, provided

$$
M \gtrsim \frac{(1+\delta)^{4}}{\delta^{2} \epsilon^{4}} \underline{w^{2}(\mathcal{K})}
$$

Then, with $\operatorname{Pr} \geqslant 1-2 \exp \left(-\frac{c \epsilon M}{1+\delta}\right)$ and uniformly for all $\boldsymbol{x}_{1}, \boldsymbol{x}_{2} \in \mathcal{K}$, Proximity condition: $\boldsymbol{A}\left(\boldsymbol{x}_{1}\right)=\boldsymbol{A}\left(\boldsymbol{x}_{2}\right) \quad \Rightarrow \quad\left\|\boldsymbol{x}_{1}-\boldsymbol{x}_{2}\right\| \leqslant \epsilon$

$$
\Rightarrow \epsilon=O\left(M^{-1 / 4}\right) \text { for consistent reconstruction } \in \mathcal{K}!
$$

Interpretation:

Proximity of consistent vectors [LJ 2015]

- Gaussian case: $\Phi_{i j} \sim_{\text {iid }} \mathcal{N}(0,1)$

In all generality, provided

$$
M \gtrsim \frac{(1+\delta)^{4}}{\delta^{2} \underline{\epsilon}^{4}} \underline{w^{2}(\mathcal{K})}
$$

Then, with $\operatorname{Pr} \geqslant 1-2 \exp \left(-\frac{c \epsilon M}{1+\delta}\right)$ and uniformly for all $\boldsymbol{x}_{1}, \boldsymbol{x}_{2} \in \mathcal{K}$, Proximity condition: $\boldsymbol{A}\left(\boldsymbol{x}_{1}\right)=\boldsymbol{A}\left(\boldsymbol{x}_{2}\right) \quad \Rightarrow \quad\left\|\boldsymbol{x}_{1}-\boldsymbol{x}_{2}\right\| \leqslant \epsilon$

$$
\Rightarrow \epsilon=O\left(M^{-1 / 4}\right) \text { for consistent reconstruction } \in \mathcal{K}!
$$

Proximity of consistent vectors [LJ 2015]

' Gaussian case: $\Phi_{i j} \sim_{\text {iid }} \mathcal{N}(0,1)$
In all generality, provided

$$
M \gtrsim \frac{(1+\delta)^{4}}{\delta^{2} \underline{\epsilon}^{4}} \underline{w^{2}(\mathcal{K})}
$$

Then, with $\operatorname{Pr} \geqslant 1-2 \exp \left(-\frac{c \epsilon M}{1+\delta}\right)$ and uniformly for all $\boldsymbol{x}_{1}, \boldsymbol{x}_{2} \in \mathcal{K}$, Proximity condition: $\boldsymbol{A}\left(\boldsymbol{x}_{1}\right)=\boldsymbol{A}\left(\boldsymbol{x}_{2}\right) \quad \Rightarrow \quad\left\|\boldsymbol{x}_{1}-\boldsymbol{x}_{2}\right\| \leqslant \epsilon$

$$
\Rightarrow \epsilon=O\left(M^{-1 / 4}\right) \text { for consistent reconstruction } \in \mathcal{K}!
$$

Interpretation:

Proximity of consistent vectors [LJ 2015]

- Gaussian case: $\Phi_{i j} \sim_{\text {iid }} \mathcal{N}(0,1)$

In all generality, provided

$$
M \gtrsim \frac{(1+\delta)^{4}}{\delta^{2} \epsilon^{4}} \underline{w^{2}(\mathcal{K})}
$$

Then, with $\operatorname{Pr} \geqslant 1-2 \exp \left(-\frac{c \epsilon M}{1+\delta}\right)$ and uniformly for all $\boldsymbol{x}_{1}, \boldsymbol{x}_{2} \in \mathcal{K}$, Proximity condition: $\boldsymbol{A}\left(\boldsymbol{x}_{1}\right)=\boldsymbol{A}\left(\boldsymbol{x}_{2}\right) \quad \Rightarrow \quad\left\|\boldsymbol{x}_{1}-\boldsymbol{x}_{2}\right\| \leqslant \epsilon$

$$
\Rightarrow \epsilon=O\left(M^{-1 / 4}\right) \text { for consistent reconstruction } \in \mathcal{K}!
$$

Special For $\mathcal{K}=\left(\boldsymbol{\Psi} \Sigma_{K}\right) \cap \mathbb{B}^{N}$ and $\boldsymbol{\Psi}$ ONB
case:

$$
M \gtrsim \frac{2+\delta}{\epsilon} K \log \left(\frac{N(2+\delta)^{3 / 2}}{K \delta \epsilon^{3 / 2}}\right)
$$

$$
\Rightarrow \epsilon=O\left(M^{-1}\right)!
$$

Proximity of consistent vectors [LJ 2015]

Sub-Gaussian case: (e.g., iid Bernoulli or bounded $\Phi_{i j}$)
Still ok but, for $K_{0} \gtrsim \kappa(\boldsymbol{\Phi})$ and for all $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}$ in

$$
\underset{K_{0}}{ }:=\left\{\boldsymbol{u} \in \mathbb{R}^{N}: K_{0}\|\boldsymbol{u}\|_{\infty}^{2} \leqslant\|\boldsymbol{u}\|_{2}^{2}\right\} .
$$

Then, with $\operatorname{Pr} \geqslant 1-2 \exp \left(-\frac{c \in M}{1+\delta}\right)$, we have also

$$
\boldsymbol{A}\left(\boldsymbol{x}_{1}\right)=\boldsymbol{A}\left(\boldsymbol{x}_{2}\right) \quad \Rightarrow \quad\left\|\boldsymbol{x}_{1}-\boldsymbol{x}_{2}\right\| \leqslant \epsilon
$$

Proximity of consistent vectors [LJ 2015]

Sub-Gaussian case: (e.g., iid Bernoulli or bounded $\Phi_{i j}$) Still ok but, for $K_{0} \gtrsim \kappa(\boldsymbol{\Phi})$ and for all $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}$ in

$$
\underset{K_{0}}{ }:=\left\{\boldsymbol{u} \in \mathbb{R}^{N}: K_{0}\|\boldsymbol{u}\|_{\infty}^{2} \leqslant\|\boldsymbol{u}\|_{2}^{2}\right\} .
$$

Then, with $\operatorname{Pr} \geqslant 1-2 \exp \left(-\frac{c \in M}{1+\delta}\right)$, we have also

$$
\boldsymbol{A}\left(\boldsymbol{x}_{1}\right)=\boldsymbol{A}\left(\boldsymbol{x}_{2}\right) \quad \Rightarrow \quad\left\|\boldsymbol{x}_{1}-\boldsymbol{x}_{2}\right\| \leqslant \epsilon
$$

\Rightarrow Ok for "not too sparse" signals

(remark: similar and earlier observations in 1-bit CS by Plan \& Vershynin)

Consistent Basis Pursuit (CoBP)

How to reconstruct our low complexity signal?

Consistent Basis Pursuit (CoBP)

Gaussian case:

Actually, not a so new program, see e.g., [Milenkovitch, Dai, JL, Hammond, Fadili, ...]

$$
\boldsymbol{x}^{*}:=\underset{\boldsymbol{u} \in \mathbb{R}^{N}}{\operatorname{argmin}}\|\boldsymbol{u}\|_{\sharp} \text { s.t. } \boldsymbol{A}(\boldsymbol{u})=\boldsymbol{A}\left(\boldsymbol{x}_{0}\right), \underline{\boldsymbol{u} \in \mathbb{B}^{N}} .
$$

Consistent Basis Pursuit (CoBP)

Gaussian case:

$$
\boldsymbol{x}^{*}:=\underset{\boldsymbol{u} \in \mathbb{R}^{N}}{\operatorname{argmin}}\|\boldsymbol{u}\|_{\sharp} \text { s.t. } \boldsymbol{A}(\boldsymbol{u})=\boldsymbol{A}\left(\boldsymbol{x}_{0}\right), \boldsymbol{u} \in \mathbb{B}^{N} .
$$

If \boldsymbol{A} respects "proximity condition" for all $\boldsymbol{x}_{1}, \boldsymbol{x}_{2} \in \overline{\mathcal{K}}_{s} \supset \mathcal{K}$, then, we have for all $\boldsymbol{x}_{0} \in \overline{\mathcal{K}}_{s}$,

$$
\left\|\boldsymbol{x}_{0}-\boldsymbol{x}^{*}\right\|_{2} \leqslant \epsilon .
$$

Consistent Basis Pursuit (CoBP)

Gaussian case:

$$
\boldsymbol{x}^{*}:=\underset{\boldsymbol{u} \in \mathbb{R}^{N}}{\operatorname{argmin}}\|\boldsymbol{u}\|_{\sharp} \text { s.t. } \boldsymbol{A}(\boldsymbol{u})=\boldsymbol{A}\left(\boldsymbol{x}_{0}\right), \boldsymbol{u} \in \mathbb{B}^{N} .
$$

If \boldsymbol{A} respects "proximity condition" for all $\boldsymbol{x}_{1}, \boldsymbol{x}_{2} \in \overline{\mathcal{K}}_{s} \supset \mathcal{K}$, then, we have for all $\boldsymbol{x}_{0} \in \overline{\mathcal{K}}_{s}$,

$$
\left\|\boldsymbol{x}_{0}-\boldsymbol{x}^{*}\right\|_{2} \leqslant \epsilon .
$$

$$
\operatorname{Pr} \geqslant 1-2 \exp \left(-c M^{3 / 4} / \sqrt{\delta}\right)
$$

Corollary: With high probability on Gaussian $\boldsymbol{\Phi}$ and uniform $\boldsymbol{\xi}$, $\forall \boldsymbol{x}_{0} \in \overline{\mathcal{K}}_{s}$,

$$
\left\|\boldsymbol{x}_{0}-\boldsymbol{x}^{*}\right\|_{2}=O\left(\frac{2+\delta}{\sqrt{\delta}}\left(\frac{w\left(\overline{\mathcal{K}}_{s}\right)^{2}}{M}\right)^{1 / 4}\right)
$$

i.e., $\left\|\boldsymbol{x}_{0}-\boldsymbol{x}^{*}\right\|_{2}=O\left(M^{-1 / 4}\right)$ if only M varies.

Consistent Basis Pursuit (CoBP)

sub-Gaussian case:

$$
\boldsymbol{x}^{*}:=\underset{\boldsymbol{u} \in \mathbb{R}^{N}}{\operatorname{argmin}}\|\boldsymbol{u}\|_{\sharp} \text { s.t. }\left\{\begin{array}{l}
\boldsymbol{A}(\boldsymbol{u})=\boldsymbol{A}\left(\boldsymbol{x}_{0}\right), \\
\boldsymbol{u} \in \underline{\mathbb{B}^{N} \cap \lambda \mathbb{B}_{\infty}^{N}},
\end{array}\right.
$$

to take care of signal "peaky-ness"

Consistent Basis Pursuit (CoBP)

sub-Gaussian case:

$$
\boldsymbol{x}^{*}:=\underset{\boldsymbol{u} \in \mathbb{R}^{N}}{\operatorname{argmin}}\|\boldsymbol{u}\|_{\sharp} \text { s.t. }\left\{\begin{array}{l}
\boldsymbol{A}(\boldsymbol{u})=\boldsymbol{A}\left(\boldsymbol{x}_{0}\right), \\
\boldsymbol{u} \in \mathbb{B}^{N} \cap \lambda \mathbb{B}_{\infty}^{N}
\end{array}\right.
$$

Proposition: With high probability on sub-Gaussian $\boldsymbol{\Phi}$ and uniform $\boldsymbol{\xi}$, $\forall \boldsymbol{x}_{0} \in \overline{\mathcal{K}}_{s} \cap \lambda \mathbb{B}_{\infty}^{N}$,

$$
\left\|\boldsymbol{x}_{0}-\boldsymbol{x}^{*}\right\|_{2}=O\left(\frac{2+\delta}{\sqrt{\delta}}\left(\frac{w\left(\overline{\mathcal{K}}_{s}\right)^{2}}{M}\right)^{1 / 4}+\frac{\kappa(\boldsymbol{\Phi}) \lambda}{\boldsymbol{\top}}\right)
$$

i.e., $\left\|\boldsymbol{x}_{0}-\boldsymbol{x}^{*}\right\|_{2}=O\left(M^{-1 / 4}+\lambda\right)$ if only M varies.
(possible) price to pay for sub-Gaussianity

Consistent Basis Pursuit (CoBP)

sub-Gaussian case:

$$
\boldsymbol{x}^{*}:=\underset{\boldsymbol{u} \in \mathbb{R}^{N}}{\operatorname{argmin}}\|\boldsymbol{u}\|_{\sharp} \text { s.t. }\left\{\begin{array}{l}
\boldsymbol{A}(\boldsymbol{u})=\boldsymbol{A}\left(\boldsymbol{x}_{0}\right), \\
\boldsymbol{u} \in \mathbb{B}^{N} \cap \lambda \mathbb{B}_{\infty}^{N}
\end{array}\right.
$$

Proposition: With high probability on sub-Gaussian $\boldsymbol{\Phi}$ and uniform $\boldsymbol{\xi}$, $\forall \boldsymbol{x}_{0} \in \overline{\mathcal{K}}_{s} \cap \lambda \mathbb{B}_{\infty}^{N}$,

$$
\left\|\boldsymbol{x}_{0}-\boldsymbol{x}^{*}\right\|_{2}=O\left(\frac{2+\delta}{\sqrt{\delta}}\left(\frac{w\left(\overline{\mathcal{K}}_{s}\right)^{2}}{M}\right)^{1 / 4}+\underline{\kappa(\boldsymbol{\Phi}) \lambda}\right)
$$

i.e., $\left\|\boldsymbol{x}_{0}-\boldsymbol{x}^{*}\right\|_{2}=O\left(M^{-1 / 4}+\lambda\right)$ if only M varies.

Is it bad? If you think so, then sample signals with

$$
\Phi \rightarrow \Phi \boldsymbol{F}
$$

with, e.g., $\boldsymbol{F}=$ Fourier or Hadamard.
\rightarrow Kind of "Spread the samples" trick ;-)

Experiments: implementation

Solving CoBP: Convex Optimization

$$
\begin{aligned}
& \boldsymbol{x}^{*}:=\underset{\boldsymbol{u} \in \mathbb{R}^{N}}{\operatorname{argmin}}\|\boldsymbol{u}\|_{\sharp} \text { s.t. } \boldsymbol{A}(\boldsymbol{u})=\boldsymbol{A}\left(\boldsymbol{x}_{0}\right), \boldsymbol{u} \in \mathbb{B}^{N} . \\
& \Leftrightarrow \underset{\boldsymbol{u} \in \mathbb{R}^{N}}{\operatorname{argmin}}\|\boldsymbol{u}\|_{\sharp}+\imath_{\text {consist. }}(\boldsymbol{u})+\imath_{\mathbb{B}^{N}}(\boldsymbol{u})
\end{aligned}
$$

- Many toolboxes available
- We used a proximal algorithm, i.e.,

Parallel Proximal Algorithm (PPXA)

- \& the UNLocBoX toolbox (https://lts2.epfl.ch/ unlocbox)

Experiments: 1

K-sparse signals with
Gaussian sensing
$N=2048, K=16$, $B=3, M / K \in[8,128]$ 20 trials per points

Experiments: 1

K-sparse signals with
Gaussian sensing
$N=2048, K=16$,
$B=3, M / K \in[8,128]$ 20 trials per points

Experiments: 2

- Bernoulli vs Gauss(ian) sensing:

$$
\begin{aligned}
& N=1024, K \in[1,64] \\
& B=4, M / K=16 \\
& 20 \text { trials per points }
\end{aligned}
$$

Experiments: 3

Low-rank matrix and QCS (with $\boldsymbol{A}(\cdot):=\mathcal{Q}(\boldsymbol{\Phi} \cdot)$)

$$
\boldsymbol{X}^{*}:=\underset{\boldsymbol{U} \in \mathbb{R}^{n \times n}}{\operatorname{argmin}}\|\boldsymbol{U}\|_{*} \text { s.t. } \boldsymbol{A}(\operatorname{vec}(\boldsymbol{U}))=\boldsymbol{A}\left(\operatorname{vec}\left(\boldsymbol{X}_{0}\right)\right), \operatorname{vec}(\boldsymbol{U}) \in \mathbb{B}^{N} .
$$

Experiments: 3

, Low-rank matrix and QCS (with $\boldsymbol{A}(\cdot):=\mathcal{Q}(\boldsymbol{\Phi} \cdot)$)

$$
\boldsymbol{X}^{*}:=\underset{\boldsymbol{U} \in \mathbb{R}^{n \times n}}{\operatorname{argmin}}\|\boldsymbol{U}\|_{*} \text { s.t. } \boldsymbol{A}(\operatorname{vec}(\boldsymbol{U}))=\boldsymbol{A}\left(\operatorname{vec}\left(\boldsymbol{X}_{0}\right)\right), \operatorname{vec}(\boldsymbol{U}) \in \mathbb{B}^{N} .
$$

Original
$N=1024=n^{2}(n=32)$,
rank $r=1, \quad B=\mathbf{2}$
Complexity $<P=64$,
$M=16 P=N$

CoBP
SNR 11 dB

BPDN
SNR 6.9 dB
3. Quasi-isometric embeddings (or "how to quantize the RIP")

Quantizing the RIP?

Restricted isometry Property (RIP): $\begin{gathered}\text { (as an embedding } \\ \text { preserving distances) }\end{gathered}$

$$
(1-\rho)\|\boldsymbol{u}-\boldsymbol{v}\|^{2} \leq \frac{1}{M}\|\boldsymbol{\Phi} \boldsymbol{u}-\boldsymbol{\Phi} \boldsymbol{v}\|^{2} \leq(1+\rho)\|\boldsymbol{u}-\boldsymbol{v}\|^{2}
$$

for all $\boldsymbol{u}, \boldsymbol{v} \in \Sigma_{K}:=\left\{\boldsymbol{u}:\|\boldsymbol{u}\|_{0}:=|\operatorname{supp} \boldsymbol{u}| \leq K\right\}$

Quantizing the RIP?

Restricted isometry Property (RIP):
$(1-\rho)\|\boldsymbol{u}-\boldsymbol{v}\|^{2} \leq \frac{1}{M}\|\boldsymbol{\Phi} \boldsymbol{u}-\boldsymbol{\Phi} \boldsymbol{v}\|^{2} \leq(1+\rho)\|\boldsymbol{u}-\boldsymbol{v}\|^{2}$
Inserting quantization?
for all $\boldsymbol{u}, \boldsymbol{v} \in \Sigma_{K}:=\left\{\boldsymbol{u}:\|\boldsymbol{u}\|_{0}:=|\operatorname{supp} \boldsymbol{u}| \leq K\right\}$
Why quantizing the RIP?

- since we can ;-)
- for future algorithm guarantees
- for nearest neighbors applications
* or "signal processing" in quantized CS domain

Quantizing the RIP?

Let's retake: for $\mathcal{Q}(\cdot)=\delta\lfloor\cdot / \delta\rfloor \in \delta \mathbb{Z}$

$$
\boldsymbol{\psi}(\boldsymbol{u}):=\mathcal{Q}(\mathbf{\Phi} \boldsymbol{u}+\boldsymbol{\xi}), \text { with } \boldsymbol{\psi}_{j}(\boldsymbol{u}):=\mathcal{Q}\left(\boldsymbol{\varphi}_{j}^{T} \boldsymbol{u}+\xi_{j}\right)
$$

with $\boldsymbol{\Phi}_{j i} \sim_{\mathrm{iid}} \mathcal{N}(0,1)$ and $\xi_{j} \sim_{\mathrm{iid}} \mathcal{U}([0, \delta])$.

Quantizing the RIP?

, Let's retake: for $\mathcal{Q}(\cdot)=\delta\lfloor\cdot / \delta\rfloor \in \delta \mathbb{Z}$

$$
\begin{aligned}
& \boldsymbol{\psi}(\boldsymbol{u}):=\mathcal{Q}(\boldsymbol{\Phi} \boldsymbol{u}+\boldsymbol{\xi}), \text { with } \boldsymbol{\psi}_{j}(\boldsymbol{u}):=\mathcal{Q}\left(\boldsymbol{\varphi}_{j}^{T} \boldsymbol{u}+\xi_{j}\right) \\
& \text { with } \boldsymbol{\Phi}_{j i} \sim_{\mathrm{iid}} \mathcal{N}(0,1) \text { and } \xi_{j} \sim_{\mathrm{iid}} \mathcal{U}([0, \delta]) .
\end{aligned}
$$

Naive way: since $|a-b|-\delta \leq|\mathcal{Q}(a)-\mathcal{Q}(b)| \leq|a-b|+\delta, \quad \forall a, b \in \mathbb{R}$

$$
(1-\rho)\|\boldsymbol{u}-\boldsymbol{v}\|-\delta \leq \frac{1}{\sqrt{M}}\|\boldsymbol{\psi}(\boldsymbol{u})-\boldsymbol{\psi}(\boldsymbol{v})\| \leq(1+\rho)\|\boldsymbol{u}-\boldsymbol{v}\|+\delta,
$$

whenever $\frac{1}{\sqrt{M}} \boldsymbol{\Phi}$ is RIP.

Quantizing the RIP?

- Let's retake: for $\mathcal{Q}(\cdot)=\delta[\cdot / \delta\rfloor \in \delta \mathbb{Z}$

$$
\boldsymbol{\psi}(\boldsymbol{u}):=\mathcal{Q}(\boldsymbol{\Phi} \boldsymbol{u}+\boldsymbol{\xi}), \text { with } \boldsymbol{\psi}_{j}(\boldsymbol{u}):=\mathcal{Q}\left(\boldsymbol{\varphi}_{j}^{T} \boldsymbol{u}+\xi_{j}\right)
$$

with $\boldsymbol{\Phi}_{j i} \sim_{\text {iid }} \mathcal{N}(0,1)$ and $\xi_{j} \sim_{\text {iid }} \mathcal{U}([0, \delta])$.
' Naive way: since $|a-b|-\delta \leq|\mathcal{Q}(a)-\mathcal{Q}(b)| \leq|a-b|+\delta, \quad \forall a, b \in \mathbb{R}$

With $\rho=O(\sqrt{K / M})$.
(decaying, good!)

Quantizing the RIP?

Let's retake: for $\mathcal{Q}(\cdot)=\delta\lfloor\cdot / \delta\rfloor \in \delta \mathbb{Z}$

$$
\boldsymbol{\psi}(\boldsymbol{u}):=\mathcal{Q}(\boldsymbol{\Phi} \boldsymbol{u}+\boldsymbol{\xi}), \text { with } \boldsymbol{\psi}_{j}(\boldsymbol{u}):=\mathcal{Q}\left(\boldsymbol{\varphi}_{j}^{T} \boldsymbol{u}+\xi_{j}\right)
$$

with $\boldsymbol{\Phi}_{j i} \sim_{\text {iid }} \mathcal{N}(0,1)$ and $\xi_{j} \sim_{\text {iid }} \mathcal{U}([0, \delta])$.

Solution:

1. Let's use another distance $\left(\ell_{1}\right)$:

$$
\frac{1}{M}\|\boldsymbol{\psi}(\boldsymbol{u})-\boldsymbol{\psi}(\boldsymbol{v})\|_{1}=\frac{1}{M} \sum_{j}\left|\boldsymbol{\psi}_{j}(\boldsymbol{u})-\boldsymbol{\psi}_{j}(\boldsymbol{v})\right|
$$

2. Let's study how it concentrates!

Quantizing the RIP?

, Let's retake: for $\mathcal{Q}(\cdot)=\delta\lfloor\cdot / \delta\rfloor \in \delta \mathbb{Z}$

$$
\boldsymbol{\psi}(\boldsymbol{u}):=\mathcal{Q}(\boldsymbol{\Phi} \boldsymbol{u}+\boldsymbol{\xi}), \text { with } \boldsymbol{\psi}_{j}(\boldsymbol{u}):=\mathcal{Q}\left(\boldsymbol{\varphi}_{j}^{T} \boldsymbol{u}+\xi_{j}\right)
$$

with $\boldsymbol{\Phi}_{j i} \sim_{\mathrm{iid}} \mathcal{N}(0,1)$ and $\xi_{j} \sim_{\mathrm{iid}} \mathcal{U}([0, \delta])$.
Quantized Gaussian Quasi-Isometric Embedding [LJ, 2015]
Given an error $0<\epsilon<1$, and $\mathcal{K} \subset \mathbb{R}^{N}$.
If M is such that

$$
M \gtrsim \epsilon^{-5} w(\mathcal{K})^{2},
$$

For $\mathcal{K}=\boldsymbol{A} \Sigma_{K} \cap \mathbb{B}^{N}$ and \boldsymbol{A} ONB $M \gtrsim \epsilon^{-2} K \log \frac{N}{K \delta \epsilon^{3 / 2}}$
then, for some $c>0$ and for all $\boldsymbol{u}, \boldsymbol{v} \in \mathcal{K}$, and w.h.p., we have
$\left(\sqrt{\frac{2}{\pi}}-\epsilon\right)\|\boldsymbol{u}-\boldsymbol{v}\|-c \delta \epsilon \leq \frac{1}{M}\|\boldsymbol{\psi}(\boldsymbol{u})-\boldsymbol{\psi}(\boldsymbol{v})\|_{1} \leq\left(\sqrt{\frac{2}{\pi}}+\epsilon\right)\|\boldsymbol{u}-\boldsymbol{v}\|+c \delta \epsilon$,
all distortions decay with M !

Quantizing the RIP?

Let's retake: for $\mathcal{Q}(\cdot)=\delta\lfloor\cdot / \delta\rfloor \in \delta \mathbb{Z}$

$$
\boldsymbol{\psi}(\boldsymbol{u}):=\mathcal{Q}(\mathbf{\Phi} \boldsymbol{u}+\boldsymbol{\xi}), \text { with } \boldsymbol{\psi}_{j}(\boldsymbol{u}):=\mathcal{Q}\left(\boldsymbol{\varphi}_{j}^{T} \boldsymbol{u}+\xi_{j}\right)
$$

with $\boldsymbol{\Phi}_{j i}(0,1)$ and $\xi_{j} \sim_{\mathrm{iid}} \mathcal{U}([0, \delta])$.
OK for sub-Gaussian?
(e.g., Bernoulli)

Quantizing the RIP?

, Let's retake: for $\mathcal{Q}(\cdot)=\delta\lfloor\cdot / \delta\rfloor \in \delta \mathbb{Z}$

$$
\begin{aligned}
& \boldsymbol{\psi}(\boldsymbol{u}):=\mathcal{Q}(\boldsymbol{\Phi} \boldsymbol{u}+\boldsymbol{\xi}), \text { with } \boldsymbol{\psi}_{j}(\boldsymbol{u}):=\mathcal{Q}\left(\boldsymbol{\varphi}_{j}^{T} \boldsymbol{u}+\xi_{j}\right) \\
& \text { with } \boldsymbol{\Phi}_{j i}(0,1) \text { and } \xi_{j} \sim_{\mathrm{iid}} \mathcal{U}([0, \delta]) .
\end{aligned}
$$

Quantized sub-Gaussian Quasi-Isometric Embedding [LJ, 2015]

| Given an error $0<\epsilon<1$, and $\mathcal{K} \subset \mathbb{R}^{N}$. | For $\mathcal{K}=\boldsymbol{A} \Sigma_{K} \cap \mathbb{B}^{N}$ |
| :--- | :--- | If M is such that

$$
M \gtrsim \epsilon^{-5} w(\mathcal{K})^{2},
$$

and \boldsymbol{A} ONB

$$
M \gtrsim \epsilon^{-2} K \log \frac{N}{K \delta \epsilon^{3 / 2}}
$$

then, w.h.p, for some $c>0$ and for all $\boldsymbol{u}, \boldsymbol{v} \in \mathcal{K}$ with $\boldsymbol{u}-\boldsymbol{v} \in C_{K_{0}}$, we have
$\left(\sqrt{\frac{2}{\pi}}-\epsilon-\frac{\kappa}{\sqrt{K_{0}}}\right)\|\boldsymbol{u}-\boldsymbol{v}\|-c \delta \epsilon \leq \frac{1}{M}\|\boldsymbol{\psi}(\boldsymbol{u})-\boldsymbol{\psi}(\boldsymbol{v})\|_{1} \leq\left(\sqrt{\frac{2}{\pi}}+\epsilon+\frac{\kappa}{\sqrt{K_{0}}}\right)\|\boldsymbol{u}-\boldsymbol{v}\|+c \delta \epsilon$.
high K_{0}, less sparse but lower distortion!
But you can use the "spread the samples" trick!

To conclude

Take away messages

Associating CS and Quantization provides many interesting questions:
, geometrically (high dim. convex geom.)
, numerically (not totally covered here)
, with impacts in CS sensor design

Take away messages

Associating CS and Quantization provides many interesting questions:
, geometrically (high dim. convex geom.)
, numerically (not totally covered here)

- with impacts in CS sensor design
, Beyond CS, quantifying random projections
, leads to interesting embedding problems
, possible impacts in dimensionality reductions

Open questions

, CoBP robustness vs pre-quantisation noise?

Do quasi-isometric embedding help?

- Quasi-isometric embedding for Hilbert spaces?
, Embeddings with other quantisation schemes?
(link with machine learning?)
- Classification/clustering in the quantized domain?

Thank you for the invitation!

A. Moshtaghpour, LJ, V. Cambareri, K. Degraux and C. De Vleeschouwer. "Consistent Basis Pursuit for Signal and Matrix Estimates in Quantized Compressed Sensing", IEEE Signal Processing Letters, vol. 23, no. 1, p. 25-29, january 2016.
P. T. Boufounos, LJ, F. Krahmer and R. Saab, "Quantization and Compressive Sensing", arXiv: 1405.1194, 2014 (to appear in Springer book "Compressed Sensing and Its Applications")

LJ, J. N. Laska, P. T. Boufounos, and R. G. Baraniuk, "Robust 1-Bit Compressive Sensing via Binary Stable Embeddings of Sparse Vectors", IEEE TIT, 59(4), pp. 2082-2102, 2013.
A. Powell, J. Whitehouse, "Error bounds for consistent reconstruction: random polytopes and coverage processes", to appear in FoCM, arXiv: 1405.7094
S. Dirksen, G. Lecué, H. Rauhut, "On the gap between RIP-properties and sparse recovery conditions", arXiv: 1504.05073

LJ, "Error Decay of (almost) Consistent Signal Estimations from Quantized Random Gaussian Projections", submitted to TIT, arXiv: 1406.0022

LJ, "A Quantized Johnson Lindenstrauss Lemma: The Finding of Buffon's Needle", submitted to TIT, arXiv: 1309.1507

LJ, "Small width, low distortions: quasi-isometric embeddings with quantized sub-Gaussian random projections", Submitted to TIT, arXiv: 1504.06170

+ references inside the presentation

