Learning to Reconstruct Signals
From Binary Measurements

Julian Tachella Laurent Jacques
CNRS, Physics Laboratory INMA/ICTEAM
ENS Lyon, France UCLouvain, Belgium

May 21, 2024



Inverse problems (IP)

Image Inpainting
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Recommender system

Ill-posed:

Fruit User1 User2 User3

many x consistent with y (e.g., if m < n) — :
Solution: ? )
Restrict to a set of plausible signals X = x .
Size? < R"?



Solving IP: regularised reconstruction

Idea: use a prior = loss p(x) to promote plausible reconstructions

T € arg min p(x) subject to y ~ A(x)

X

Examples: wavelet/dictionary sparsity, total-variation, ...

Disadvantages:

Loose description of true signal distribution p(x)
Hard to define a good p(x) in real world problems

/‘$ Btw, cat friendly
presentation!




Solving IP: learning approach

Idea:
use training pairs of signals and measurements { (x;, ;) }?;1

learn a parametric inversion functiony — X = f;(x)

NS AT NS5
XERFEA - FREK
AN AN
AR T HAKK

s

where f, : R™ — R"is parameterized as a deep neural network.

Implicitly learn both the prior & distribution, and the reconstruction



Solving IP: learning approach

Advantages:
State-of-the-art reconstructions

“Once trained”, f; is easy/fast to evaluate

Example:

fastMRI

Accelerating MR Imaging with Al

Ground-truth Total variation Deep network
(28.2 dB) (28.2 dB)

> x 8 accelerated MRI [Zbontar et al., 2019]



Solving IP: learning approach

Main disadvantage:

Obtaining training signals {xl-}ﬁil can be expensive/impossible.

For instance:
Biomedical sciences (e.g., CT, MRI)

EHT '22 EHT 24

Astronomical imaging (e.g., EHT)

Reconstruction

Consequence:

Risk to solve expected solution (off-distribution problem) = 1?

Prior or reconstruction, which comes first? ) & "\

Prior

[Wikimedia]



Measurement-Driven Computational Imaging

Unsupervised context:

Can we learn to reconstruct signals
from measurement data alone {yi}é\il?

Linear inverse problems: y = A(x) +€¢ - Yes

If signal set ' is low-dimensional, and, either multiple operators {Ai}liv

or 2 invariant to groups of transformations.
Theory [T., Chen and Davies, JMLR, 2023]

Algorithms [Chen, T., Davies, CVPR, ICCV, NeurlIPS, 2022]

Non-linear inverse problems: y = f o A(x) +€¢ - Today

(with f = sign, binary measurements)



Why binary measurements?

Sensing model Given A = (ay, ...,a,)',a;, € R",
we observe a “signal” x € & C R" with m binary measurements: WM% Mw%

y; = sign(aiTx) c{xl} — y=sign(Ax) e {£1}" %

Contexts
Binary compressive sensing (1-bit CS) - Can we estimate x from y ?

Binary/quantized dimensionality reduction = Do sign(AX’) capture the geometry of 27
Machine learning - Can we classify two signals from their binary measurements?

Interests
Compression at acquisition, for signals or datasets

Interesting questions related to information theory and high-dimensional statistics




Purpose of this talk

Learning to reconstruct from binary measurements?

Theoretical analysis: given N binary observations & G operators

y; = sign(Ag, x;), with 1 <i < N and g; € {1,...,G}

s v , L
Known unknown Estimate of & D {xl-}iil? Estimation error ?

Condition on m & G ? On the sample complexity N ?

Numerical analysis:

linear inverse

binary dataset

0| 1] 1 1
; 1) 1] |0 0
unknown sensing \
signal set device(s) S0 I O O o
O &

self-supervised training

Cost function? Network architecture? Comparison to linear case?



Sensing scenario 1: Multiple Operators

Measurements might be associated to G > 1 forward operators

ArX, Azx;

Examples:
different access ratings for recommendation systems with distinct users

dynamic sensors: {A, : t = nA;}, multi-coil MRI, radio-astronomy ...

Principle (linear case):
Learning ' is possible if operators don’t have the same kernel
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Sensing scenario 1: Multiple Operators

Measurements might be associated to G > 1 forward operators

sign(A;x;) s1gn(A,x,) S1gn(Ax5)

Examples:
Ifferent access ratings for recommendation systems with distinct users
ynamic sensors: {A, : t = nA}, multi-coil MRI, radio-astronomy ...

rinciple (binary case):
Learning ' is possible if operators don’t have the same kernel
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Sensing scenario 2: Single operator & Invariance

Most sighals sets are invariant to groups of transformations:

Vee X, Vge{l,...,G}, ' =T 'zecX

(seometric prior)

Forall g € {1, ..., G} we have (linear case)
Y = Axr = AT, T 'z = Ayx’
7 AY
Ag X

AT, for different g

Implicit access to
multiple operators

A, = AT,

Necessary condition
A is not equivariant:

AT, # T,A
for some Tg.
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Sensing scenario 2: Single operator & Invariance

Most sighals sets are invariant to groups of transformations:

Vee X, Vge{l,...,G}, ' =T 'zecX

(seometric prior)

Forall g € {1, ..., G} we have (binary case)
y = sign(Az) = sign(AT, T, 'z) = sign(Ayz’)
v AY
Ag X

AT, for different g

Implicit access to
multiple operators

A, = AT,

Necessary condition
A is not equivariant:

AT, # T,A
for some Tg.
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Model identification: the problem

Assumption: enough points of X have been observed for all operators.
oo for now (More on this later)

Question: Given the observed sets

[V, :=sign(A,X)}"

g=1
What's the best approximation  of the signal set X ?

meaning?

- From 52", a consistent (ideal) decoder reads:
f(y) € {x € S" Y| sign(Az) = y and z € X'}

consistency approx.
prior

14



Model identification: geometric intuition

Toy example: n = 3, m X n matrix A, has Gaussian iid entries : (Ag)l-j ~q N(0,1)

ol n—1
D, () :=sign(A, -) tessellates S

Growing number of consistency cells as m 1
(bounded by 2™)

15



Model identification: geometric intuition

Toy example: n = 3, m X n matrix A, has Gaussian iid entries : (Ag)l-j ~q N(0,1)

CDg(-) = sign(Ag ) tessellates §"!

consistency cell

Growing number of consistency cells as m 1
(bounded by 2™)

16



Model identification: geometric intuition

Toy example: n = 3, m X n matrix A, has Gaussian iid entries : (Ag)ij ~q N(0,1)

Sn—l N n—1
D, () :=sign(A, -) tessellates S

Growing number of consistency cells as m 1
(bounded by 2™)
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Model identification: geometric intuition

Toy example: n = 3, m X n matrix A, has Gaussian iid entries : (Ag)ij ~q N(0,1)

ol n—1
D, () :=sign(A, -) tessellates S

Growing number of consistency cells as m 1
(bounded by 2™)

Let us define the biggest set binary consistent (wrt A,) with 2 :
X, = O 1(AgX) = {v eS| Ir e X, sign(Ayv) = sign (Ayz)|

> dilation of 2 by the “uncertainty” of sign o A,

18



Model identification: geometric intuition

Toy example:n =3, G =3, m =4, X = blackline

R a o
X X = mgzl‘)c'g
- =
all As

Different dilations of & Intersected dilations

19



Model identification: geometric intuition

Toy example:n =3, G =3, m =4, X = blackline

Identification error (definition)

ldentify signal set up to global erroro = isin a 5-tube v
XCX:={veS"!:|z—v|]|<bze}

Upper/Lower bound on 0? Sample complexity?
20



Lower bound on O (via an oracle standpoint)

Oracle estimation: \We access to G observations of each x € X uspw p——
aoesnon Al
A 0 ol
(sign(Ax), ..., sign(Agx)) < sign(Ax) € {£1}"C, with A=| : | € RO | e
Ag - Lt
%

A

Xoracle — {U c Sn_l | =

X

x € X,sign(Av) = sign(Az) }

e

X oracle X

A —

Xoracle = o1 (AX)

21



Lower bound on O (via an oracle standpoint)

Question: smallest 6 such that X C 5[5 ? (whatever X'’s orientation)

oracle

Theorem: for any set &’ C S, there exists a rotated set 2"’ s.t.

8 > d := diameter largest consistency cell of sign(A )

.7 Largest cell -

Sn—l

Xoracle &

22



Lower bound on O (via an oracle standpoint)

Question: smallest 6 such that X C 5[5 ? (whatever X'’s orientation)

oracle

Theorem: for any set &’ C S, there exists a rotated set 2"’ s.t.

8 > d := diameter largest consistency cell of sign(A )

Consequences: we can show the following

1. If rank(A) < n, 3 consistency cells with diameter 2
— Model identification error is trivially large
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Lower bound on O (via an oracle standpoint)

Question: smallest 0 such that 3[01,3016 C 5[5 ? (whatever I’s orientation)

Theorem: for any set &’ C S, there exists a rotated set 2"’ s.t.

8 > d := diameter largest consistency cell of sign(A )

Consequences: we can show the following

1. If rank(A) < n, 3 consistency cells with diameter 2
— Model identification error is trivially large

2. We need at least m > n/G measurements per operator

— No learning of X with G = 1 (w/o invariance)

2n

3. The maximum cell radius > e (counting argument)

Thao & Vetterli (1996, Theorem A.7)

{sign (AX)}| < ("€)2"

—> § cannot decrease faster than o« m~ G~}

24



Upper bound on O (with the help of randomness)

log (S
DeﬁnitiOn: bOXdlm(S) — 11m sup Og ( 76)
e—0T log 1/6

Assumption: The signal set X is low-dimensional
< I has box-counting dimension k < n

Examples: sparse dictionaries, manifold models, etc.

PAC-like result:
If boxdim(Z') < k, giveno > 0,and Ay, ..., A iid m X n Gaussian,

Which conditionsonm 2 ? to get | (X C sl =17

25



Upper bound on O (with the help of randomness)

log (S
DeﬁnitiOn: bOXdlm(S) — 11m sup Og ( 76)
e—0T log 1/6

Assumption: The signal set & is low-dimensional
< I has box-counting dimension k < n

Examples: sparse dictionaries, manifold models, etc.

PAC-like result:
If boxdim(Z') < k, giveno > 0,and Ay, ..., A iid m X n Gaussian,

and if m> C %(k+ %) plog(m,n, G, k, &)

then L[S%CSX(;]ZI—f

26



Upper bound on O (with the help of randomness)

Consequences of this theorem:

1. The identification error of X decreases as

Ql=

n

2. We require at least m > k+ -

measurements per operator

n

3.ForG > p

. error 0 ~ signal recovery error in one-bit compressive sensing
If boxdim(2') < k, and x € & measured as y = sign(Ax), then, w.h.p,

: : k
min |[sign(Ax") — y|| = 0(—)
xX'ex m
[L), ). Laska, P. Boufounos, R. Baraniuk, 2013] [J. Tachella, L}, 2023]
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Sample Complexity bound (again with randomness)

How many distinct binary observations N to hope to estimate X ?

- an upper boundon Nis S := || J;_, sign(4,2) |

If boxdim(Z') < k,and Ay, ..., A; are m X n matrices,

If 2 is a subspace, then § < G2k(';:) < G( 22’” Y [Thao, Vetterli, '96]

If 2 is a union of L subspaces, then § < GL( zim )k

m

>5k

If X general, & iid Gaussian A, ..., A, then § < G( w.h.p.

n
k
- Exponential in the model dim k but not the ambient dimension n !

28



Algorithms

Learning to reconstruct from binary measurements in practice?

fH('9°)

{(yi’Agi)}i‘il — — {X ::fe(yi’Ag,-)}i‘il

QOQOO
S O Q O O O
O O O O O

Goal:

Learning a reconstruction network x = f, (v, A,)
with a self-supervised loss &£ which uses only {(y,, Agi) }‘;\;1

Warning: No clear link with the theory (yet)

29



Multi-operator case

Self-supervised training loss: given a reconstruction model f,

arg m@in Lyic(0)

with:

Lyic (6’) L= foil log [1 + eXP ( — yz’AgZ- f@ (?/z’; Ag@))} (Logistic loss)

- promotes measurement consistency : y; & sign(Agifg(yl-, Agi))

Problem: f,(y, Ag) = A;y = A (AgA )~y is solution

8 8

> but f, acts independently for each A,
- no gain in increasing G !

30



Multi-operator case

Self-supervised training loss: given a reconstruction model f,

arg m@in Lyic(0) +Lcc(6)

with:

Lyic ((9) L= foil log [1 + exXp ( — yz’AgZ- f@ (?/z’; Agz))} (Logistic loss)

- promotes measurement consistency : y; & sign(Agifg(yl-, Agi))

ﬁCC( ) Zz_ Zs 1 HfQ( SfH yza ) S) _fQ(yivAgfi)

- promotes cross-operator consistency, e.g., prevents MC sol f, (v, A,) = A;y

|

RemarRs:
Network-agnostic scheme (applicable to any existing deep model)

We called this “Self-Supervised learning loss for training reconstruction
networks from Binary Measurement data alone” (SSBM)

31



Single operator with equivariance

Self-supervised training loss: given a reconstruction model f,

arg m@in ,CMc((Q) _l_»CEq(@)

with:

Lyic (6’) L= foil log [1 + exXp ( — yz’AgZ- f@ (?/z’; Ag@))} (Logistic loss)

- promotes measurement consistency : y; & sign(A, fy(y; A,))

Lrq(0) =200 S0 1 fo (AT, fo(yi, A), AT,) — Ty fo(ys, A)
> promotes equivariance of fye A: (fe A)T,) = T,(foA)( )

|

RemarRs:

Network-agnostic scheme (applicable to any existing deep model)

We called this “Self-Supervised learning loss for training reconstruction
networks from Binary Measurement data alone” (SSBM)

32



Experiments

Operators |
G C 64 6464 64 C C
{Ag} _, With Gaussian iid entries
= =) - |—>P—
Network
_ l 128 128 128
Jo(y,A) = gge A (Y) |_I I"I
where g, 1s a U-net CNN
64 128
l' 256 256 256
I-. .-;. w) 3x3 Conv + BN + RelLu
Comparison with iy B whex ook
x2 Max Pooling
. . T c o -—_ 3x3 Up-Conv + BN + Relu
Linear inverse A ' y; (no training) = 12 = 11 Gon

Binary IHT (BIHT) with wavelets (no training)
Fully supervised loss

SSBM (proposed)

33



MNIST dataset

Multiple operators (G = 10), images have n = 784 pixels.

25 L | ! ! ' ! | ! | ! ! H | ! ! ! ! 1 | 30 ! ! I
s Sradinl — T
——BIHT - : i _.-
20r Supervised s X = ogm . _
m z m ! ———am =n/G "’
Z Z I -
) 7)) i
O 15+ - O 20 I
l_ 0
10 | : T !
[
5 N R 1 . 1 . : . . a1 l 10 P - L I | : | : ! | ! ! T |
0.06 0.13 0.26 0.51 1.001.28 0.06 0.13 0.26 0.51 1.001.28
m/n m/n

Test PSNR := ij\zl PSNR (27, fo (sign (A4, x)), Ag,)), x; € “test set”
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Fashion MNIST dataset

Multiple operators (G=10), with m=300, images have n=784 pixels.

linear ,'_ / "-;*f P
inverse el TR

- EEIM L
— B ]
— B IS ]
- P IS )
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CelebA dataset

Multiple operators (G=10) with m=9830, images have n=49152 pixels.

linear g :
inverse
BIHT || ‘r_'*
proposed -
=

ground
truth

supervised H

36



Conclusion and take-away messages

New unsupervised learning framework for binary data

Theory: we have studied several conditions for learning X, e.g.,
Lower and upper bounds on its identification error 0
Required number of measurements N

Practice: Deep learning approach
Self-supervised loss which can be applied to any model

Ongoing/future work

Other non-linear inverse problems (such as saturation, or phase retrieval | Ax \2)
Upper bounds for the invariant case?

Noise/dither ? y = sign(Ax + €)

37



Thank you!

Chen, Tachella and Davies, “Robust Equivariant Imaging: a fully unsupervised framework for learning to image from noisy
and partial measurements”, CVPR 2022 (Oral)
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Chen, Tachella and Davies, “Equivariant Imaging: Learning Beyond the Range Space”, ICCV 2021 (Oral)

Tachella, Chen and Davies, “Unsupervised Learning From Incomplete Measurements for Inverse Problems”, NeurlPS 2022.
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Tachella, Chen and Davies, “Sensing Theorems for Unsupervised Learning in Inverse Problems”, JMLR 2023.

Chen, Davies, Eerhardt, Schonlieb, Ferry and Tachella, “Imaging with Equivariant Deep Learning”, IEEE SPM 2023.
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Tachella and Jacques, “Learning to Reconstruct Signals from Binary Measurements”, TMLR+ICLR’24, 2023

... and others on demand



