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Motivation: The Big Picture

Signal: x

Output: g(x,y)

Information Scalable Processing:
How to only represent and process information required by g(-,-)?

Main goals:
Rate- and computation-efficient representation

Accurate and efficient computation of g(-,-)
Fruitful interaction of representation and computation



Cloud-based Signal Processing: The Big Picture
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The Big Picture: Distances

‘ Slgnal X

Output: g(x,y)=g(]x-y)

Function computes functions of signal distances,
Auxiliary information: other signals

= Representations of signal distances
Main tool: Embeddings



The Big Picture: Distances

Auxiliary

Output: g(x,y)=g([|x-y[)
Why distances?

Fundamental primitive for a large number of methods
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Embeddings in Words and Pictures

ScRN J (x) EcCRM
Original space e Embedding space
Distance metric: d< Embed in €

Distance metric: dg

An embedding is a function
from an original space to an embedding space
that preserves aspects of the geometry of the original space

Why?
It hopefully makes life simpler in the embedding space



Embeddings In Context

~~  Dimensionality Reduction
Computation Reduction PCA/ICA/NMF/LDA...
Sketching Kernel PCA/LDA/...

\, Johnson-Lindenstrauss Embedding
| Dictionary Learning
Auto-Encoders
{ Manifold Embeddings/ISOMAP

Streaming Algorithms /
LSH/Approximate Nearest Nei
Sparse FFT

Embeddings

o Dynamical Systems

s Attractor Theqry—""
Tucken/MalfoIdEmbeddlngs
Delay-Coordinate Maps

Compressed Sensing
. Restricted Isometries
. Sparse/Model Based Recovery




Applications

E T

Dimensionality Reduction

Kernel Methods
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K-planes

Compressed Sensing
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Not in this tutorial

 Embeddings Using Deep Learning

* Word embeddings

— Term “embedding” is only used
qgualitatively in this literature

— Not many guarantees

— We touch on some of the similarities
and differences

 Embeddings of Dynamical Systems

— Alot of past work and theory; could
be tutorial by itself (e.g., [Eftekhari et al, *17])

— Different focus
— We mention some of the results

Male-Female

.......

llllllllllllllllllll
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Outline

2. Fundamentals of embeddings and embedology
3. Quantized embeddings

12



2. Fundamentals of embeddings
and embedology

The Big Picture
General Embedding Definition
The Johnson-Lindenstrauss Lemma & variants
The restricted isometry property (RIP)
Principles and definition
Market of RIP matrices

RIP of more general signal sets & manifolds

Proving the RIP with JL Lemma



The Big Picture

High dimensional signals in Sciences & Technology

(e.g., images, video, hyperspectral data, dynamic medical data
volumes, data on manifolds, dynamical system ...)

Big Data & high dimension are obstacles for:

acquisition, storage, processing,

data classification, data learning, ...

Possible solution: Dimensionality Reduction

Crucial questions:

Trade-offs btw embedding dimensions,
number of bits, accuracy

DR preserving geometry of individual signal/set of signals

Design of the embedding, e.g., preserve close signals only

14



General Embedding Definition

Embedding space
High-dimensional signals (e.g., low-dimension

in a signal space & small number of bits)

S Mapping g
A s-aN

z /. x’ /. /()
CE‘. ds(x,x’) f(:ll‘)‘ dg\(;f(zc),f(a:’))

distance in & distance in &£

Embedding relation of S in &:
de(f(x), f(x')) =~ g(ds(xz,x')) for all xz, &’ € S.

(possible distortions) (possible distance alteration)

15



Formal definition

Given some “distortions” €,€¢ > 0 and a possible alteration g : Ry — R,

(1 - g(ds(z,z") — ¢ < de(f(@), f(2') < (1+ )g(ds(,a')) + ¢

for all x, 2’ € S, with high probability.

As will be clearer later:

f can be linear, quantized, periodic, non-linear, ...

Tradeoffs expected between ¢, €/, dim S, and dim £.

Random constructions (hence probability)

¢’ can be zero (e.g., for linear f)

g # Id for periodic and non-linear f

Let’s study a few examples ...

16



Johnson-Lindenstrauss embedding (1984)

I © N pOiIltS

Johnson & Lindenstrauss

17



Johnson-Lindenstrauss embedding (1984)

I @) N pOiﬂtS

T, skl R™

L 4 ¥ 4
. ® .
. /@
O ’
‘ O
Q-
(4
4

Johnson & Lindenstrauss

Random linear subspace L C R"

(amongst all possible linear subspaces with dimension m)
18



Johnson-Lindenstrauss embedding (1984)

For any 0 < € < 1, provided
m > 4(e?/2 — €/3) T log N, “the tradeoff”
there is a (linear) map f : R” — R™ such that, for all 1 < 1,7 < N,

(1 =)l — a;[|* < [If (i) = fl2)* < (1 + )|l — .

For instance, with high probability, f =/~ Pru works

with L ~unit. randomly all m-dim. subspaces

Here: ¢ S={z;:1<i<N}CRY, &=R",
e ds = dg = Euclidean distance w1@\2\®N points

® o
. o T3 ¢ n
g Q / (0)
{Q\l)" O I"O O
. e

Remark:

log N ~ “dimension” of {x; : 1 <i < N}

(more on this after)

Random linear subspace L C R™

19



Johnson-Lindenstrauss embedding (variants)

Provided™
m > Ce ?log N,

if ® ¢ R™*™ with ®;; ~iiq N(0,1), then, with probability exceeding
1 — Cexp(—ce*m), for all 1 < 4,7 < N,

(1= O)llzi — 5] < /L |Bwi — By < (14 €) s — 5]
E I.l. .1 JI

e
© = Lkt

N =8

Matrix-vector multiplication:

O(mn) operations (heavy!)

20



Johnson-Lindenstrauss embedding (variants)

Other variants:
Sparse JL (e.g., [Achlioptas, *03]):

(1//3 with p = 1/6,
D ~iig § 0 with p = 2/3
\—1/v/3, with p=1/6.

Structured matrices:

Fast Johnson Lindenstrauss Transform [Ailon, Chazelle, *09]

Walsh /Hadamard Diagonal
(very) sparse JL
F R +1
B AN
x: X .
i
| W =y
nXn nXn

&% Complexity:  O(nlogn + e 2 min(nlog N, log® N))

Remark: FJL ok for de(y,y’) = ly — ¥'|l1 = >_, ly; — y;| (the {1-norm)

21



Restricted Isometry Property (RIP)

= 1st example of embedding of continuous sets

= Preserving geometry of sparse vectors

k-dimensional T X1
subspaces P cR
\ N | /\
[~
4‘.".

\>

ﬁ“
7V




Restricted Isometry Property (RIP)
RIP over X — X = Yor: RIP(Xok, €)

For all &1, x5 € X :={u € R : ||ul|g := |suppu| <

(1 -

K},

6)||x1 — x2|]* < || Px1 — Pas|]? < (14 €|z — x2||*

k-dimensional
subspaces

2\

mn

b c R™Mxn

/\

L2

S
ﬁ“
STV

A R
Y \

S=2L, E=PSCR™, f=D
ds = dg = FEuclidean distance

%m

23



Restricted Isometry Property (RIP)

What about sparsity in a non-trivial basis?

r=WVa = Zfil W, o; with ||allp < k

24



Restricted Isometry Property (RIP)

What about sparsity in a non-trivial basis?

r=WVa = Zf\;l W, o; with ||allp < k

N4

~
Embedding of X, if ® = ®W is RIP(X;, ¢)

25



Market of RIP matrices?

Dense & unstructured sensing matrices (initial constructions):

random sub-Gaussian ensembles (e.g., Gaussian, Bernoulli)

e.g., Gaussian: ® € R™*", with ®;; ~j;q9 N (0,1)
or ®;; ~iq £1 (eq. prob), ---

Sample complexity:
m 2> e *klog(n/k)

Universal sensing matrices:

They can be RIP(W¥X, ¢) for any ONB ¥ € R™"*".

Matrix-vector multiplication:

O(mn) operations (heavy!)



Market of RIP matrices?

o Dense & unstructured sensing matrices (initial constructions):

random sub-Gaussian ensembles (e.g., Gaussian, Bernoulli)

e.g., Gaussian: ® € R™*" with ®;; ~j9 N(0,1) Eﬁl_q .Iﬁ
or ®;; ~iq £1 (eq. prob), ---

o Structured sensing matrices (less memory, fast computations):

random Fourier/Hadamard ensembles (e.g., for CT, MRI, astron.);

e.g., ¥ = Fq, with FF € C"*"
and random 2 C {1,--- ,n}, |2 =m

random convolutions, spread-spectrum (e.g., for imaging),

(see, e.g., |[Foucart, Rauhut, 2013])

27



Market of RIP matrices?

o Dense & unstructured sensing matrices (initial constructions):

random sub-Gaussian ensembles (e.g., Gaussian, Bernoulli)

e.g., Gaussian: ® € R™*", with ®;; ~j;q9 N (0,1)
or ®;; ~iq £1 (eq. prob), ---

o Structured sensing matrices (less memory, fast computations):

random Fourier/Hadamard ensembles (e.g., for CT, MRI, astron.);

e.g., ¥ = Fq, with FF € C"*"
and random 2 C {1,--- ,n}, |2 =m

Magnetic
Resonance Imaging

random convolutions, spread-spectrum (e.g., for imaging), ...

(see, e.g., |[Foucart, Rauhut, 2013])

Sample complexity: m > e~k polylog(dims, e~1, (prob. failure)™1!)

Less universal matrices; but complexity often reduced to O(nlog n)!g’c’ﬁ

28



Market of RIP matrices? [Liutkus et al., 14]

Nature! C) LightOn

Spatial Light Modulator
(for calibration and display)

reconstructed g
: : : object
(l) imaging device I
transmission matrix

|
LY
S, I
N NS 5 3 g | .o
=~.:‘,¢.3U 7 < (ii)
laser y H .‘: s J [reconstruction
4,9‘ ] \ ‘ >,
multiply scattering e
material (calibrated)
speckle pattern 8

sparse object i T :— -------------- :
(III) : multiply scattering media :
| |
| |
Pros: | .
[ ] I I
' :

|
44 79 1 |
= Random “for free | DpEDEEED !
I M < N sensors 1

= massively parallel/super fast
= allows random projections, imaging, classifications, ...
Cons:

= stable on a limited time (about 10’)
= hard to characterize (but not always needed)

29



Beyond sparse signals ...

Two low-complexity (l.c.) signals x,x’ € K (e.g., low-rank data )

30



Beyond sparse signals

Lwo 1OW-COmpleXity (IC) Signals £, 33/ = )C (e.g., low-rank data N

For many random constructions of ® (e.g., Gaussian, Bernoulli, structured)
and “m 2> Cx”, with high probability,

low-complexity set

Geometry of ®(K) P
~ Geometry of K

‘\\ v ]C n
bxr ~ Pxr' S xx~ax \ R
[see, e.g., Johnson, Lindenstrauss, \\
| m>
s() R

Schechtman, Bourgain, Dirksen,
Mendelson, Vershynin, Plan,

Chandrasekaran, Puy, Gribonval, ...]

For all z, 2" € I and 0 < € < 1,
(1=¢e)flz—z'||* < ||Px — z'|* < (1 + ¢)[|lx — ']

31



Beyond sparse signals ...

TWO 1OW—COmpleXity (I.C.) Signals :I:, m/ E ]C (e.g.’ IOW—rank data ;,
For many random constructions of ® (e.g., Gaussian, Bernoulli, structured)

If m 2 e 2w(K)? polylog(dimensions, e !, (prob. of failure)™1),

Y

then ® is RIP(/C, €) with high probability.

32



Beyond sparse signals ...

o0 |
O St B R
A i’i‘*\\

Two low-complexity (l.c.) signals @, x’ € K (e.g., low-rank data )
For many random constructions of ® (e.g., Gaussian, Bernoulli, structured)

If m 2 e 2w(K)? polylog(dimensions, e !, (prob. of failure)™1),

Y

then ® is RIP(/C, €) with high probability.

Let K C R™, g ~N(0,1,),

w(K) = Eg supgex [(2, 9)) We met them
before!
e - Examples: w?(K) < log |K| //
™ w(B") S
Rt w(S} NB") < klog(n/k)
- w* (M, NBE"™) < rn
oS w? (UL K;) <log T + max; w?(K;)

33



RIP for more general spaces

Embedding a manifold (k-dim, smooth & compact):

Tangent
Plane M

dimJ\ k

=& g:_v‘\""‘ R
el QR R G B o™

Examples: sphere (e.g., the Earth), time-delay of a signal, phase valued

data (e.g., in optics), appearance of a parametric image/models, ...

34



RIP for more general spaces

Embedding a manifold (k-dim, smooth & compact):
b c RM*" UL

QTL
Tangent /-\
plane

d./\/l (CU, w,) / M
E s L

4

dim.\ k ZB" de, (, ') f(m)‘

® := Gram-Schmidt(Gaussian matrix)

ortho-projector
( y

Geodesic distance
(shortest path)

Examples: sphere (e.g., the Earth), time-delay of a signal, phase valued

data (e.g., in optics), appearance of a parametric image/models, ...

35



RIP for more general spaces

Embedding a manifold (k-dim, smooth & compact):

mXxXn
Tg?agrfen t " @’.f/‘\ @M
M d'&}i\&&" ) f('r'v/)

dp(x, ") /
E y"‘ - S

. 4
dim.\ k 33‘ de, (x, ")

® := Gram-Schmidt(Gaussian matrix)
(ortho-projector)

Provided that
m 2 e ?klog(n Vol(M) C)

T'hen, w.h.p., , ,
de,(Px, Px') ~. dy, (2, ")

dq)M((I)iU, (I)ZE/) e A (337 33/)

f(a})‘ dg2 ((I).’L', (I)CB/)

[Baraniuk, Wakin, ’06]
[Puy, Davies, Gribonval, ’17]
[Bourgain, Dirksen, Nelson, ’15]

Smoothness &

covering regularity

36



1/2

Exercise: JL involves RIP! (for sparse signals)
Global idea: tightly sample Xj, extends JL lemma by continuity!

37



1/2

Exercise: JL involves RIP! (for sparse signals)
Global idea: tightly sample Xj, extends JL lemma by continuity!

Sparse signals belong to a union of (k-dim) subspaces

2 = UTc{17... NY:|T|=k X, X = {u - SUPpp U = T}

38



1/2

Exercise: JL involves RIP! (for sparse signals)
Global idea: tightly sample Xj, extends JL lemma by continuity!

Sparse signals belong to a union of (k-dim) subspaces

2 = UTc{17... NY:|T|=k X, X = {u - SUPpp U = T}

Each subspace, restricted to a ball, can be covered (i.e., sampled)

radius
(to be fixed later)

radius

Optimal %—covering Gy of 2p:

Ve e ¥rNB",dg € G, 1 s.t. |z —q| <7
. 2 M B"
n-Covering of Xy NB": Gy := Up, 7=k In,1

39
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Exercise: JL involves RIP! (for sparse signals)
Global idea: tightly sample Xj, extends JL lemma by continuity!

Sparse signals belong to a union of (k-dim) subspaces

2 = UTc{l,-.. NY:|T|=k X, X = {u - SUPpp U = T}
Each subspace, restricted to a ball, can be covered (i.e., sampled)

Optimal n-covering G, 7 of Xp:

Ve e ¥rNB",dg € G, 1 s.t. |z —q| <7
. 2 M B"
n-Covering of Xy NB": Gy := Up, 7=k In,1

Covering cardinality is bounded:

Y NB" ~ B = |G, r| < (1+2/n)"

=[G, < () A +2/m)* < (F)F
No more than (Z) supports 1T° } ! (k>

Stirling

(other bounds exist for, e.g., low-rank matrices, and other conic spaces)



2 /2

Exercise: JL involves RIP! (for sparse signals)

Global idea: tightly sample Xj, extends JL lemma by continuity!

Apply JL lemma to the covering:
Given € > 0, provided

m > Ce?log |Gyl ~ Ceklog(2),

if ® € R™*" with ®;,; ~q N(0,1), then, with probability exceeding
1 — Cexp(—ce*m), for all g € G,

(1=ollall < /5 1®qll < (1+e)lal.

41



Exercise: JL involves RIP! (for sparse signals)

Global idea: tightly sample Xj, extends JL lemma by continuity!

Apply JL lemma to the covering:
Given € > 0, provided

m > Ce?log |Gyl ~ Ceklog(2),

if ® € R™*" with ®;,; ~q N(0,1), then, with probability exceeding
1 — Cexp(—ce*m), for all g € G,

(1 - llall < /L l1®q] < (1+ )l

Continuity extension: Let ® = —-&, € % with [lz] = 1 (WLOG),
and g € G, with ||z — ¢q|| <7 & suppx = suppgq.

| @] < [|D'ql + |2 (x — q)l| < (1+€)llqll + \‘P( z—an) lllz — 4l

ZB

<A+l + 1 +e)llg— | + |z — all|® (=)l

X a: q
<(A+e)(1+n) +n|® ( o= q||)H
H/_/
ri) e %, with ||[rP] =1

2 /2
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Exercise: JL involves RIP! (for sparse signals)

Global idea: tightly sample Xj, extends JL lemma by continuity!

Apply JL lemma to the covering:
Given € > 0, provided

m > Ce?log |Gyl ~ Ceklog(2),

if ® € R™*" with ®;,; ~q N(0,1), then, with probability exceeding
1 — Cexp(—ce*m), for all g € G,

(1=ollall < /5 1®qll < (1+e)lal.

Continuity extension: Let ® = —-&, € % with [lz] = 1 (WLOG),
and g € G, with ||z — ¢q|| <7 & suppx = suppgq.

|[@z[ < (1+e)(1+n)+n[2r]

2 /2
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Exercise: JL involves RIP! (for sparse signals)

Global idea: tightly sample Xj, extends JL lemma by continuity!

Apply JL lemma to the covering:
Given € > 0, provided

m > Ce?log |Gyl ~ Ceklog(2),

if ® € R™*" with ®;,; ~q N(0,1), then, with probability exceeding
1 — Cexp(—ce*m), for all g € G,

(1 - llall < /L l1®q] < (1+ )l

Continuity extension: Let ® = —-&, € % with [lz] = 1 (WLOG),
and g € G, with ||z — ¢q|| <7 & suppx = suppgq.

|[@z[ < (1+e)(1+n)+n[2r]

(L+e)(L+n)+n(1+e)(1+n)+n|2T])
e Yy, with ||r? || =1

ZANV/AN

(1+n)

<L+ +n)X5 0 =1 +e

44



Exercise: JL involves RIP! (for sparse signals)

Global idea: tightly sample Xj, extends JL lemma by continuity!

Apply JL lemma to the covering:
Given € > 0, provided

m > Ce?log |Gyl ~ Ceklog(2),

if ® € R™*" with ®;,; ~q N(0,1), then, with probability exceeding
1 — Cexp(—ce*m), for all g € G,

(1=ollall < /5 1®qll < (1+e)lal.

Continuity extension: Let ® = —-&, € % with [lz] = 1 (WLOG),
and g € G, with ||z — ¢q|| <7 & suppx = suppgq.

Setting n = ¢/2 with 0 < e < 1: ||®'z|| < (1 +¢) qu) < (1 + 5e).
Similarly: ||®'x|| > (1 — 5e¢).
A rescaling of € gives the RIP.

2 /2
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Exercise: JL involves RIP! (for sparse signals)

Global idea: tightly sample Xj, extends JL lemma by continuity!

Apply JL lemma to the covering:
Given € > 0, provided

m > Ce?log |Gyl ~ Ceklog(2),

if ® € R™*" with ®;,; ~q N(0,1), then, with probability exceeding
1 — Cexp(—ce*m), for all g € G,

(1=ollall < /5 1®qll < (1+e)lal.

Continuity extension: Let ® = —-&, € % with [lz] = 1 (WLOG),
and g € G, with ||z — ¢q|| <7 & suppx = suppgq.

Setting n = ¢/2 with 0 < e < 1: ||®'z|| < (1 +¢) qu) < (1 + 5e).
Similarly: ||®'x|| > (1 — 5e¢).
A rescaling of € gives the RIP.

Note: RIP can involve JL !! [Krahmer, Ward, “11]

2 /2

46



3. Quantized embeddings

Quantized embeddings with regular, scalar quantizers
The power of dithering

Diversion: Buffon’s needle

Quantized RIP property and Consistency width
Binary embeddings: Constructions and Properties

Universal quantization and locally-preserved geometry

47



(Quantization?

d .’ Bounded |

% domain 4

Qu] = {q17q27 o }

N @)
: 0 ’
N

o 4q;
o

codebook

48



(Quantization?

Simple example: rounding/flooring
QN =46|3] €0Z

for some resolution > 0 and Q(u) = (Q(u1), Q(usz),- - -

Even simpler: 1-bit quantizer

+1

QA =sign A\ € -

-1

Out

Out

In

Non-regular, e.g., square wave (or LSB)

O[] = 3(| 2 mod 2)

Out

11

In

Not covered here: Non-uniform scalar quantizer, vector quantizer, XA

quantizer, noise shaping, ...

(see the works of, e.g., |Gunturk, Lammers, Powell, Saab, Yilmaz, Goyal])

49



Naive quantized JL embedding

S CR"” Mapping E CoL™
S A soex E
J-L Scalar
! embedding — Quantization
/ /
” o L ~ f(x')
P
$‘4(m’ x') Q f(a?) ‘/dc‘l(f(w) f(z'))

50



Naive quantized JL embedding

S CR"® Mapping E C L™
S AT s - E
J-L Scalar
' embedding — Quantization
p /
” o L ~ f(x')
P
m‘4($aw') < / (w)./dg(ﬂw),f(w'»
f — Q O (I)
Let’s use: (deterministic, always true fact)

QN-QN)| S M=N|£(JQAN)-AHQWN)-N) S =N+, VAN ER

WA

Moreover, for B bits quantizer and dynamic range S:

0 = g—g (e.9., S = || Px|o0)

ol



Naive quantized JL embedding [ps, Li, Rane]

For |S| = N points, f provides this quantized embedding in §Z™:

Ve, x' € S
(1 —¢)||x—=a'|| —27F*ts
< [[f(x) — f()]]

< (L+e)flz—a'|[+2778,

log N

Using only m = O(~%~) dimensions!

and B bits per d1mension

(with appropriate normalizations & saturation levels)

D2



Naive quantized JL embedding [ps, Li, Rane]

For |S| = N points, f provides this quantized embedding in §Z™:

Ve, x' € S /
(1—¢)||xz — /|| -2~ =118
< |[f(=) — f(2')] y

< (L+o)z—a|+2 s,

log N

Using only m = O(~%~) dimensions!

and B bits per d1mension

(with appropriate normalizations & saturation levels)

for a constant rate R = mbB!

53



Naive quantized JL embedding [ps, Li, Rane]

For |S| = N points, f provides this quantized embedding in §Z™:

Larger B, less quantization distortion
\V/CB, xS / 2—B+1S
(1-e)e—a/| -2 "*s \
& < @) - f(@)]

o < (Lte)llz—a'|+2 s,
Larger m, less J-L type distortion /
e=0(1/ym) =

log N

Using only m = O(~%~) dimensions!

and B bits per d1mension

(with appropriate normalizations & saturation levels)

for a constant rate R = mbB!

o4



Naive quantized JL embedding [ps, Li, Rane]

For |S| = N points, f provides this quantized embedding in §Z™:

Larger B, less quantization distortion
Ve, ' € S o—B+lg
(1- e - —2 7 +1S \
K < @) - f(@)]

< (Ltoz—a|+2 s,

Larger m, less J-L type distortion /
e=0(1/ym) =

Given total rate R = mB, how to assign B and m?

More m or more B?

Design tradeoflf: Number of projections vs. bits per
projection

95



Exploring the Design Trade-oft

= B
=
= 8
§OT
T =
= 8
—
=
@)
=l
0 =

/

(0))

(for R fixed) 1

elle — '] +27BTLS

1 > 3 4 5 5 7 3

Bits per dimension B = R/m
—_— >

decaying m
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Limitation
Additive distortion not decaying with m

But distortion is required!

Counterexample:

Take ® € {£1}™*" (an admissible JL. embedding)
r=e =(1,0,---,0)" €R"”
x' =e; + Aey with 0 < |A| < 1.

We have: |l —x'||=X>0

However, ®x = (15 col. of ®) € {+1}™
P’ = (15 col. of ® + X x 2794 col. of ) € {£1 £ \}™

Therefore: For the rounding operator Q(-) := |- 4+ 1/2] (if |A\| < 1/2),
or with Q() — Sign ()7 |Plan, Vershynin]

O(®x) = dx = Q(®a') & |f(z)— f(a')] =0

o7



Limitation
Additive distortion not decaying with m

But distortion is required!

Counterexample:

Take ® € {£1}™*" (an admissible JL. embedding)
r=e =(1,0,---,0)" €R"”
x' =e; + Aey with 0 < |A| < 1.

We have: ||z —x'||=A>0 <& |/ (@ )| o ||z — |

However, ®x = (15 col. of ®) € {+1}™

P’ = (15 col. of ® + X x 279 col. of ) € {£1 £ \}™

Therefore: For the rounding operator Q(-) := |- 4+ 1/2
or with Q() — Sign ()7 |Plan, Vershynin]

O(®x) = Bz = Q(®a') & |f(z)— f(a')] =0

(if [A] <1/2),
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The power of dithering (anold trick revisited®)

Inject a pre-quantization, uniform “noise’:
i.e., a dithering & € R™ with &; ~iq U(]0, d])
\ The good boy!

g
AR

*. See, e.g., Gray & Neuhoff in Q theory, and P. Boufounos, A. Powell, ... in CS
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The power of dithering  (a ol trick revisited)

Inject a pre-quantization, uniform “noise’:
i.e., a dithering & € R™ with &; ~iq U(]0, d])

\ The good boy!
QDrM) |A(x) := Q(Px + &)

Motivation? E:Q(u + &) = u

Q() A A A

_H'ﬂ_'* n I /
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The power of dithering  (a ol trick revisited)

Inject a pre-quantization, uniform “noise’:
i.e., a dithering & € R™ with &; ~iq U(]0, d])

\ The good boy!

Motivation? E:Q(u + &) = u
= A(x) =~ ®x if M large

Possibility to define
quantized dimensionality reduction/embedding!
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Quantizing the RIP (approximate consistency)

Alz) == Q(Px + &)
Distance between the two points

]C </ Number of quantization frontiers
7\ A between the two points?
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Quantizing the RIP (approximate consistency)

(thanks to the dithering)

Buffon’s needle problem

http://www.buffon.cnrs.fr

(In 1733)

‘ Length of _ le o $2||

(short diversion)



http://www.buffon.cnrs.fr

http://www.buffon.cnrs.fr

Buffon’s needle problem

|Buffon’s problem 1733, Buffon’s solution 1777]

“I suppose that in a room where the floor is simply divided
by parallel joints one throws a stick (“needle”) in the air,

and that one of the players bets that the stick will not cross
any of the parallels on the floor,

and that the other in contrast bets that the stick will cross

some of these parallels;

one asks for the chances of these two players.”

(short diversion)
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Buffon's needle problem

™
146 Efai !
Sor des carreaux carrgs 1, .
teau doit &me 3 dimngme gt s,
Vie b
comme 1 »Cell-ady
» 4 fd) Mne'““‘h(
d'coviron un anguisme,
Sur des catreaux héxagones, L
carrea doit éere aw dismeure de r;".:‘t
—_——— ”~

Vi vy
comme 1 :

e C'Cﬂ-l-é,,_h',
grand denviron un tretzeine,
Jomees i la folution de phin
suties cas, comme lotfque Tw 4
mp_ulc que Técu ne torebes g
.('”"" Joine ou fur deux, fur wob, &
- ik w'ont tien de plus difbcle que b
précédens ; & dadleurs on joue
®ére ce jew avec dautses condiions g
d"-‘,‘ﬂ! BOUS avons 3 mention,
Mais 6 au fieu de jeter en lsr e
- » Cotume un deu , on jercitis
&h‘“mﬁg\m, comme e

cartée, ou une
une " 3
nir'k‘k probleme demat®

90 ghtul 3 Sjouns b

Jusion par des
comme mous dlor

ofe que dans une tl}\)(tnb?e.
o cft fimplement divife par
o3, 00 jerse on Laif wnc

)
oe un des joucuts pamc

£1cy ot §
e Is logueme we crodesa sucune

el —p
) parquet, & que Fautre ad

N:.[r;‘: ;zmt r:u: ia bagueute crodera
pelques - unes de cos P.n.-hrlei 3 on
?k-mndc ie fore de ces deux jousurs. On
¢ jower ce jeu far wn damier avec sne
Sasille 3 condre ou wnc cpingle fans tte.
®Pout le trouves, i< tire dabord emre
1es deux jonts p;xuc‘-nAB & CD du

L
~CG B
& H

T
a r?"
E yF
=/
4 £
4 D
parquet , deux awres I'g-elcp_;ﬂﬂs

(Courtesy of E. Kowalski's blog)

(short diversion)

%

'---

N g BN BN SN SN S BN BN N = = -

R Sl

with u ~ U(]0, 0

http://www.buffon.cnrs.fr

-t - —---

¥

S

and 6 ~ U(]0, 27
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Buffon's needle problem

Fact 1: ifL<5,IP’:%L (

(short diversion)

http://www.buffon.cnrs.fr

small integral
to solve)

with u ~ U(|0,6]) and 6 ~ U(|0, 27])
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http://www.buffon.cnrs.fr

]
=
—
g)
£
=
. !
@ O
mt
2]
N—"

L

2

Buffon's needle problem

Fact 1: if L <o, P

Has been used for estimating 7 !
(first “Monte Carlo” method)

ﬁﬁw@, ?‘u

ll & a“or. Lﬁ . ,4._

el < b..'

PING TR

h)

7 O Pt L e
SN
..ar&a”?.l, Al
L.W- .’IQ v.v
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(short diversion)


http://www.buffon.cnrs.fr

Buffon's needle problem

Fact 1: ifL<5,IP’:%L

Fact 2: it L > 0, P # %L but

X = =1,
with X = #{N(u,0) NG }.

Proof: cut N in parts smaller than o
and sum expectations!

(short diversion)

http://www.buffon.cnrs.fr

with u ~ U(|0,6]) and 6 ~ U(|0, 27])
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http://www.buffon.cnrs.fr

Buffon's needle problem

Fact 1: ifL<5,IP’:%L

Fact 2: it L > 0, P # %L but

X — 2
X = 21,

with X = #{N(u,0) NG }.

Fact 3: It works for “noodles”

(smooth curves)!

For information only. with u ~ U((0,0]) and 6 ~ U([0, 27])

(short diversion) -


http://www.buffon.cnrs.fr

Buffon's needle problem

Fact 1: ifL<5,IP>:7%L

R

Fact 2: it L > 0, P # %L but

X = =1,
with X = #{N(u,0) NG }.

Fact 3: It works for “noodles”

(smooth curves)!

Fact 4: It extends to N-dim.

(short diversion) (but not necessary)

http://www.buffon.cnrs.fr
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(end of the short diversion)

Quantizing the RIP (approximate consistency)

Alz) := Q(Px + &) # quantization frontiers separating x; and x-
= # separating random hyperplanes oriented

and positioned according to (®, &)

A

= = [|A(x1) — A(x2) |1 = ||zt — 2|

Hope: dithering sufficiently smooths

E(intersections) o length

discontinuities to allow for RIP matrices. http:/ /www.buffon.cnrs. fr
(In 1733)
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QuantiZing the RIP (approximate consistency)

Let K C RY be a structured set (e.g., sparse signals, low-rank matrices).
Let @ be a (¢1,¢2)-RIP(¢, K — K) matrix, i.e.,
(1 —o)llz]]* < 22[|®z|i < (1 +¢)|lz]]*,Vz € K - K,

(e.g., Gaussian random matrix, circulant Gaussian random matrix for K = )
|Dirksen, Jung, Rauhut, 17]
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Quantizing the RIP (approximate consistency)

Let K C RY be a structured set (e.g., sparse signals, low-rank matrices).
Let @ be a (¢1,¢2)-RIP(¢, K — K) matrix, i.e.,
(1 —o)llz]]* < 22[|®z|f < (1 +¢)|lz]*,Vz € K - K,

(e.g., Gaussian random matrix, circulant Gaussian random matrix for K = )
|Dirksen, Jung, Rauhut, 17]

Provided that M 2> ¢ % Cx log(1 + é), (with Cc > 0 an upper bound on w(K)?)
with probability exceeding 1 — C exp(—e*m),

(1 O)le1 — 2o — e < L[ A1) — Aa)1 < (1 +€)l|@r — @al + e,

for all &1, x9 € KN BY.

(3 other variants with ¢5/¢5 and standard RIP)

|LJ, Cambareri, 17]
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Quantizing the RIP (approximate consistency)

Let K C RY be a structured set (e.g., sparse signals, low-rank matrices).
Let @ be a (¢1,¢2)-RIP(¢, K — K) matrix, i.e.,
(1 —o)llz]]* < 22[|®z|f < (1 +¢)|lz]*,Vz € K - K,

(e.g., Gaussian random matrix, circulant Gaussian random matrix for K = )
|Dirksen, Jung, Rauhut, 17]

Provided that M 2> ¢ % Cx log(1 + é), (with Cc > 0 an upper bound on w(K)?)
with probability exceeding 1 — C exp(—e*m),

(1 O)le1 — zaf| — e < L[ A1) — Aa)1 < (1 +€)l|@r — @al + e,

for all &1, xy € KN BY,

(3 other variants with ¢5/¢5 and standard RIP)

Decaying distortion:

e =0O(1/ym)

|LJ, Cambareri, 17]
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Quantizing the RIP (approximate consistency)

Let K C RY be a structured set (e.g., sparse signals, low-rank matrices).
Let @ be a (¢1,¢2)-RIP(¢, K — K) matrix, i.e.,
(1 —o)llz]]* < 22[|®z|f < (1 +¢)|lz]*,Vz € K - K,

(e.g., Gaussian random matrix, circulant Gaussian random matrix for K = )
|Dirksen, Jung, Rauhut, 17]

Provided that M 2> ¢ % Cx log(1 + é), (with Cc > 0 an upper bound on w(K)?)
with probability exceeding 1 — C exp(—e*m),

(1 O)le1 — 2o — e < L[ A1) — Aa)1 < (1 +€)l|@r — @al + e,

for all &1, x5 € KN BY.

(3 other variants with ¢5/¢5 and standard RIP)

Dimensionality reduction!

Classification? [LJ, Cambareri, 17]
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Control of the “consistency width”

A

low complexity set K

(e.g., sparse signals,

>
low-rank matrix,

compressible signals, ...)
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Control of the “consistency width”

Signals u € IC s.t.
Q(p{ u+ &) = cst.

V

0| (pf u+&1)/9)

A

vey
SOV !

"
/

/
/

7



Control of the “consistency width”

Signals u € IC s.t.
Q] u+&1) = cst,
Q(SO;FU + &9) = cst.

}
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Control of the “consistency width”

Signals u € IC s.t.

Alu) = Q(du+€) =y
for some y € 0ZM Consistency
cell in IC
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Control of the “consistency width”

Consistency T
cell in IC 1
o' 2 (I) — :
x
|1 — 2l] < e(M) / P

Definition: “Consistency width” e(M) :=
Largest distance between 2 points from any consistency cell.

(= worst case error of algorithms with a consistent solution)
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Control of the “consistency width”

Consistency T
cell in IC 1
o’2 (I) — :
1 — 2ol < e(M) 0‘“"1/' ol
e(M

For @ a random (Gaussian matrix, with high probability,

LJ, 16], [LJ, 17
(M) < Ce s A—1/a [ s [ ]

with ¢ = 1 (for, e.g., sparse signals, low-rank matrices), or ¢ = 4 for convex sets.

Open problem:

Extension to RIP matrices?
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Out
:D_“ Vour +1

Why 1-bit? !

S S

Binary embeddings

In

25 T Theoretical slope = 1/3 b/dB
980 SO G 00 W [ ® Flash
23 1 N\ \ \ Actual Slope ® Folding
o % \\. =1/2.3 b/dB A Half-Flash
21 1 N\ X Pipelined
_ o .- N\ X SAR
< 19+ \\ ® Sigma-Delta
s 171 e .Q\ Unknown
S H ®eei® o YR GOBIK® B
2 1571 o i
= MOCHBIEX WA MK X SN
2 137 A\
= - X=X EOSRITERORKCORAICOERE
S 111 X N
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[FIG1] Stated number of bits versus sampling rate.

[From “Analog-to-digital converters” B. Le, T.W. Rondeau, J.H. Reed, and C.W.Bostian, |IEEE Sig. Proc. Magazine, Nov 2005]
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Binary embeddings

+1

Out

Why 1-bit?
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0 SO D e ., ® Flash
03 4 ‘.‘- \ Actual Slope ® Folding
& & N ‘ \ = 1/2.3 b/dB A Half-Flash
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10log(fs) (dBsps)
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[FIG1] Stated number of bits versus sampling rate.

In

[From “Analog-to-digital converters” B. Le, T.W. Rondeau, J.H. Reed, and C.W.Bostian, |IEEE Sig. Proc. Magazine, Nov 2005]

83



Binary embeddings

Why 1-bit?
Embedding in which distances?

= sign
L
Binary
vector M B
E/_/
\'/ M -bits!
Hamming Angular

distance distance



Binary embeddings

Why 1-bit?
Embedding in which distances?

dp(u,v) = &% > (u; ®v;)  (norm. Hamming)

dang (2, 8) = + arccos({x, s)) (norm. angle)

Lost norm
Binary
vector
Hamming Angular

distance distance .



Binary embeddings

Why 1-bit?
Embedding in which distances?

dp(u,v) = & > . (u; ®v;) (norm. Hamming)

dang (2, 8) = + arccos({x, s)) (norm. angle)

Fact: le.g., Goemans, Williamson, ’95]

Let & ~ NMXN(0,1), A(:) = sign (® ) € {-1,1}M and € > 0.
For any x,s € SV~ we have

< Po [ | der (A(x), A(s)) — dang(@,8)| < €] > 12672,

________ Thanks to A(.), Hamming distance

concentrates around vector angles!
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Binary e-stable embedding

Kind of “binary restricted (quasi) isometry”:

A mapping A : RY — {£1}M is a binary e-stable embedding (BeSE) of
order K for sparse vectors if

dang (T, 8) — e < dp(A(x), A(S)) < dang(x,8) + €

for all £, s € SV~ with = + s K-sparse.

Boolean Cube

Binary Mapping
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Binary e-stable embedding

Kind of “binary restricted (quasi) isometry”:

A mapping A : RY — {£1}M is a binary e-stable embedding (BeSE) of
order K for sparse vectors if

dang (T, 8) — e < dp(A(x), A(S)) < dang(x,8) + €

for all £, s € SV~ with = + s K-sparse.

Binarized gaussian random projections

Let @ ~ NMXN((0, 1), fix 0<n<1lande>0. If

Do

M > 4(K log(N) + 2K log(22) +log(2)),

then ® is a BeSE with Pr > 1 — 7.

1 M =0(¢?KlogN) F

ILJ, J. Laska, PB, R. Baraniuk, ’13]
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Beyond strict sparsity ... [Plan, Vershynin, 1]

Proposition Let ® ~ NMXN(0,1) and K c RY. Then, for some C,c > 0, if
M > Ce %w*(K),
then, with Pr > 1 — €_C€2M, we have

dang (T, 8) —€ < dyg(A(x), A(s)) < dang(x,8) —€, Va,seKk.

Random hyperplane tessellations
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Beyond strict sparsity ... [Plan, Vershynin, 1]

Proposition Let ® ~ NMXN(0,1) and K c RY. Then, for some C,c > 0, if

M > Ce®w*(K),

not as optimal but

. 2 '
then, with Pr >1—e M we have stronger result!

dang (T, 8) —€ < dyg(A(x), A(s)) < dang(x,8) —€, Va,seKk.

Generalize BeSE to more general sets!
e.g., to non-conic sets such as:

Set of compressible signals:

A
Cr ={u € RV : |[uf2/[lul; < VK} D g g

with w?(Ck) < cKlog N/K. -

U(l) U(z)
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Beyond the Gaussian Domination

Beware the counter example! (e.g., binary matrix)

Several constructions for finite sets

€.g., |[F. Yu et al, ’15]|S. Oymak, ’16][S. Dirksen, A. Stollenwerk, ’16]
|S. Dirksen, S. Mendelson, ’18]

Circulant Gaussian Hadamard

Selection matrix |g; g2 -+ ¢gn
1 0 O 01192 93 - 41
— [0 0 1 0 diag(ay, - ,an) ,by)
gn 91 " gn-1
m X N n XnNn nXxXn n Xn nXxXn

with g;, a;, b; ~iiq ./\/'(()7 1)_ spreading” part

If log N < €2(logn)~'n'/3 and m > e 3log N,
Then, f(-) = sign (®-) is a e-binary embedding (i.e., respect BeSE)
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Beyond the Gaussian Domination

Beware the counter example! (e.g., binary matrix)

Several constructions for finite sets

€.g., |[F. Yu et al, ’15]|S. Oymak, ’16][S. Dirksen, A. Stollenwerk, ’16]
|S. Dirksen, S. Mendelson, ’18]

+ other constructions (e.g., Fast JL transform with Gaussian)

For most, an upper bound on N or log N (with N the number of vectors)
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Beyond the Gaussian Domination
For low-complexity vectors: The mapping
f(+) = sign (® - +§), with & ~iia N (0, R).
allows for dense non-Gaussian matrix (e.g., Bernoulli)

S. Dirksen, S. Mendelson, ’18
Vo, x' € conv(K), ||z — '|| > €, [S. Dirksen, endelson, ’18]

|z — 2’|

R Y

|z — 2’|

AT < dy(f(@), (@) < ¢ Vlog(eRe)

w.h.p., provided m > Re™ > log(R/e)w?(K).

Valid for any bounded, low-complexity set!
= asymmetric bounds

= restriction to well separated vectors
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Binary Embedding for Deep Learning

R. Giryes, G. Sapiro and A.M. Bronstein,

“Deep Neural Networks with Random Gaussian Weights: A Universal Classification Strategy?”
IEEE Transactions on Signal Processing, vol. 64, no. 13, pp. 3444-3457, Jul. 2016.

Strong distances
shrinking (small angle)

7 Weak distances
shrinking

/‘
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Binary Embedding for Deep Learning

R. Giryes, G. Sapiro and A.M. Bronstein,

“Deep Neural Networks with Random Gaussian Weights: A Universal Classification Strategy?”
IEEE Transactions on Signal Processing, vol. 64, no. 13, pp. 3444-3457, Jul. 2016.

Strong distances
shrinking (small angle)

7 Weak distances
shrinking
4

Ve,s € K
dang(w7 3) — €S dH(A(w)vA(S)) < dang(w? 3) T € ~

|z — s|| if Z(x,s) small.

v

= gllz— sl —e< Z=lp(®x) — p(@s)|| <l — 5| + e
95
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Universally quantized embedding

What can a bit tell us?

3 bit quantization
Intervals

1st bit (MSB)

3rd bit (LSB)




Universally quantized embedding

Can we intelligently
isolate this information

in the distance map g(-)?




Rate-Efficient Scalar Quantization
Solution: Modify the quantizer!

Non-monotonic quantizer: Multiple intervals quantize to same value
(Focus on 1-bit quantizer today)

Aij ~iia. N(0,07) w; ~iid. U([0, Al)
Measurements > Dither

N,

=& 5@; ). a= QA (Ax+w)

scalar quantizer scaling/precision parameter
(non-monotonic) (A=A, same for all measurements) 93



Measurement

Behavior




Rate-Efficient Scalar Quantization
Solution: Modify the quantizer!

Non-monotonic quantizer: Multiple intervals quantize to same value
(Focus on 1-bit quantizer today)

Quantizer design fits the analysis framework

n ={Q (2 wm)  a— QA YAx+w)

y = h(Ax + w)
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Embedding Properties

Signal space Embedding space g
S Mapping c {0, 1}M
lo-distance Hamming
| m distance
- /
z /. x’ /. /()
CB‘ ds(fB,.’B,) f(.’L‘)‘ dé’(f(w)vf(w ))
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Embedding Properties

Signal space Embedding space g
S Mapping c {0, 1}M
{>-distance /\ Hamming
| f .S 3 £ distance
T e ! (@
/' i M = log(N) /. ( ?
7® ds(zx, ') f(w)' de(f(x), f(x'))

flx):= QA Az +w)), Aij ~iia N(0,0%), w; ~i.q. U0, A])
Forall x, ' € S :={x; : 1 <i < N}, with d := || — &/||,

9(d) =0 < du(f(z), f(=')) < g(d) +, w.h.p,

with 9 fipags
= (2¢+1)°0c
g( ) qu 0 7-‘-2(22_'_1)2 eXp ( YN )
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Error Behavior

g(d) =6 < du(f(z), f(x')) < g(d) + 0.

+00 6_(77(2\77%2002 2 od

Estimate ambiguity: d — < d < dH- —

Properties (slope) controlled by choice of A
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Error Behavior

g(d) =6 < du(f(z), f(x')) < g(d) + 0.

“Linear” region: ¢, < d, slope controlled by A

N 210, M=212 N=210’ M=28

o
(00)
o
(00)

O

0.5
Signal Distance

Normalized Hamming Distance

“Flat” region: no distance information
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Error Behavior

g(d) =6 < du(f(z), f(x')) < g(d) + 0.

Large A: small slope, more ambiguity, preserves larger distances

N=210, M=212 N=210’ M=28

. 0 0.5 1
Z Signal Distance Signal Distance

Small A: large slope, less ambiguity, preserves smaller distances
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Coffee/Tea break
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Outline

1. Introduction

2. Fundamentals of embeddings and embedology

3. Quantized embeddings
Coffee/Tea break

Embedding Design

Embeddings of Alternative Metrics

oS OB

Learning Embeddings

~

Conclusions and open problems
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GENERAL EMBEDDING DESIGN



Generalized Embedding Maps (s, rane '134]

SCRN ) WCRM
Original space e Embedding space
Distance metric: ds Embed in %/

Distance metric: dy

1.2

S
a 10|
&
i1
B 08 F
A

%‘3 0.6 |

= 04l
Q

Q0
£ 02}
=

0.0 '

| | | | | | OO | | |
0.0 0. 1.0 15 20 25 30 35 4.0 0.0 0.5 1.0 1.5 2.0

Signal ¢2 Distance Signal /5 Distance
(a) Johnson-Lindenstrauss Embedding (b) Universal Quantized Embedding

Can we construct a general distance map?

Can we characterize a general distance map?
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Generalized Embedding Maps (s, rane '134]
ScRN ) WCRM

Original space e Embedding space
Distance metric: ds Embed in %/

Distance metric: dy

Assume we can construct a distance map g(-)

Forall x,yin s:

g<dS<X7 X/)) ~ dW(f(X)7 f(X/))
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Generalized Embedding Maps (s, rane '134]

SCRN ) WCRM
Original space e Embedding space
Distance metric: ds Embed in %/

Distance metric: dy

Assume we can construct a distance map g(-)

Forall x,yin s:
(1 —¢€)g(ds(x,x")) —0 <

dW(f(X)v f(X/))
< (14 €)g(ds(x,x")) + 0
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Embedding Analysis 5, rane 134

Forall x,yin s:
(1 —¢€)g(ds(x,x")) —d <
dW(f(X)v f(X/))
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Embedding Analysis 5, rane 134

Forall x,yin s:

0 de(f(X), f(X/)

ds(x,x') = ds| <

Accuracy depends on slope! o



Embedding Analysis 5, rane 134

Forall x,yin s:
(1 —¢€)g(ds(x,x")) —d <
dW(f(X)v f(X/))

Can we achieve any distance map g( - )?

No: g( - )must be sub-additive (g(x+y) S g + g(»)
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Embedding Design 5, rane 13b]
Q: Can we design embeddings?
A: Yes. We start with a random matrix A & R,MXN
a periodic function h(t) = h(t + 1)

and random i.i.d., uniform dither w € [0, 1)
y = h(Ax + w)

Fourier series coefficients of h(-) : Hj

Also, assume bounded: h = sup h(t) — irtlf h(t)
t
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Distance Map

RMXN f

I.I.d., Gaussian, variance o2
w € |0,1) i.i.d, uniform

h(t) =h(t+1) h =suph(t) — irtlfh(t)

Fourier series coefficients of h(-) : Hj

A €|

Resulting distance map:

g(d) =2 |Hy| (1 — e—%“’d’f)Q)
k

Theorem (Embedding Design) [B, Rane ‘13b]

Consider a set S of ) points in RY, measured using y = h(Ax + w), with A, w,
and h(t) as above. With failure probability Pr < ZQQe_QM;‘SL_‘* the following holds

1 9
g([lx —x'[[2) =6 < 7 1y = y'lls < g(llx —x||2) +6

for all pairs x,x" € & and corresponding measurements y,y’.
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Example: Universal Quantization

117



Embedding Properties s rane 13

SCcRN J(x) WCRM
Original space e Embedding space

Distance metric: ¢, Embed in {0,1}¥
Hamming distance

P points in RV , _
M=0(logP) dimensions

Forall x,yin s:

g(d) =6 <dg (f(z) — f(y) < g(d)+

e ()

= (r(i+3)
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Error Behavior s, rane 133

g(d) =6 <dg (f(z) — f(y) < g(d)+

~

Distance estimate: d = g_l (dH (f(iU)a f(y)))

~ 0 ~ 0
Estimate ambiguity: d — < d < dHA —

Properties (slope) controlled by choice of A 119



Other Examples

1- e — e —
1_
£ 0- o4 Iduudt_ - juuudL -
—1 4
1 1 1 1 1 _1-I I-----I I----_I
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0

Embedding /3 Distances

0.0 1 1 1 0-0 1 1 1
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
Signal /5 Distances Signal /5 Distances
(a) Contmuous Embedding (b) Quantized Embedding
h(t) = (Sm(27rt) + sin(207t)) h(t) = 4 (sign(sin(27t)) + sign(sin(207t)))
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Example Distance Ambiguity

1.2 | | |
1.0
0.8
0.6
0.4
0.2

OO | | |
0.0 0.9 1.0 1.5 2.0

Signal /5 Distances

Embedding /5 Distances
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Embedding Design: Comments

ScRN f(x) W RM
g ——
Embedding space
Original space Embed in %
Distance metric: ds< Distance metric: dy,

9(ds(x,x")) = dw(f(x), f(x))

Can this design achieve all possible g()?
— Probably not! e.g., cannot use it for g(d)=d. General design still open problem.

Quantization analysis from first part still applicable
— In many cases, however, we can directly analyze a periodic quantized A()

Theorem for embedding of point clouds; can easily extend to infinite bounded sets
— E.g., manifolds, bounded sparse signals, etc.

Using different pdf to generate A provides more flexibility
— E.g., if drawn from Cauchy distribution, the embedding preserves ¢, distance into ¢,

— More generally, a-stable distributions can be used to embed arbitrary ¢, into ¢,
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EMBEDDINGS AND ALTERNATIVE METRICS

¢, Distances

e Angles/Inner Products
e Kernel Inner Products

 Lsh And Near Neighbors
e Classification



EMBEDDINGS AND ALTERNATIVE METRICS

¢, Distances



¢, Distance Embedding

SCRN fx) YCRM
Original space ~ A Embedding space
Distance metric: ¢, Embed in R¥
P points in RN Distance metric: ¢,

Is a J-L style ¢, embedding possible (i.e., g(d)=d)?
General Iy N 0! [Brinkman and Charikar '05]

Existing constructions:
looser guarantees on one side; error additive, not multiplicative pnayk oo

However, in some cases we can trick it

Approach: Map ¢, to ¢, and use ¢, embeddings

*Note: embedding design from previous section can also be used to map ¢, to ¢,, but cannot implement g(d)=d



¢, Distance Preservation

Assumption: integer (discrete) entries, bounded by L

Solution: perform L-times dimension expansion

[

Each coefficient x, expanded to L dimensions:
sequence of x, ones followed by L-x, zeros

1 1

-EEREREN

-
-

* (N-1)L+1

3 1 1 lo

L
~ =~ / -/
X — X Tn — Xp, x, — X,

2
AEAN
=
o O
o O

L

2 — 23] = (%0 — X, ll2 = Ix —X'[l1 =[x = %[5

Is dimensionality expansion a problem?
No if J-L is used! M=0O(log P), no dependence on N, or L 126



Other Distances

J (x)

Original space Embedding space
Distance metric: ds Embed in %/

Distance metric: dy

 General strategy: map original distance to a space we know how to deal with
— Often followed by a second (J-L style) dimensionality reduction in this space
* For the Edit Distance, Earth Mover’s Distance (EMD), Shift metric:

— Typlcal constructions map to 61 [Charikar et al. ‘02, '04,'06; Ostrovsky, Rabani '05; Cormode, Mutukrishnan
'07; Andoni et al. '07;...]

— May use ¢;—{, mapping subsequently
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Other Spaces And Functions

J (x)

Original space e Embedding space

Distance metric: ds Embed in %/
Distance metric: dy

* Dynamical Systems and Tucken Embeddings [Eftekhari et al. '17]

— Embeddings that preserve information about the trajectory of a dynamical
system

— Embeddings preserve attractors of the dynamical system

— Key result: delay-coordinate map (i.e., time samples of some states of the
dynamical system for a fixed time window)
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EMBEDDINGS AND ALTERNATIVE METRICS

e Angles/Inner Products
e Kernel Inner Products



Angle/Inner Product Embeddings
If distances are preserved, we expect angles to be preserved as well!
: Ix —x'II5 = [Ix]13 + IX]15 — 2(x, x')

1 1 (x,x")
0 d, (X,X') := —60 = —arccos ,
T 7 [l 21[x71]

Given a J-L embedding, w/ ambiguity 6, can easily show
‘ (f(x), f(x)) — (x, X'>‘ <& (IIxll5 + 11x'113)

< olIx[lolIx’ll,

With a bit more care: |(f(x), f(x)) — (x,x)

[Davenport, B, Wakin, Baraniuk ’10]

If x, x’ are sparse and have the same support (JL-RIP):

[Haupt, Nowak ’07]

d , !
|3 < L (fx), f(x)) <1433
v d, (x,x)) v

130



Recall: Binary Stable Embedding

f(x) = sign(AXx)

SCcRN 7c{0,1}M
Original space P _
Distance metric: angle Embedding space
(normalized inner product) Embed in {0,1}¥
, Distance metric: normalized
d,(x,x") = l arccos (X, X) hamming distance

u [l 11Xl

For all K-sparse x, x’ in R»:
dL (Xa X,) -0 S dH (f(X)a f(X,)> S dL (Xa X,) — 0

1 1
using M =0 <§ <K log N + K log E>> measurements

Binary Stable Embeddings are angle embeddings

131



Phase Instead of Sign 13

Main idea: phase in C generalizes sign in R

Q: How to obtain phase from real signals?

A: Measure with complex measurement matrix
AeCMN z=Ax,y=2(z) = L(Ax)

If A random, i.i.d. complex normal, phase difference preserves angles

B{| ()|} =B {je (o) |} = maotx)

m

Resulting embedding guarantee:

1 1 :
7 2 |40 | - | <0

using O(log L) or O(KlogN/K) measurements

Bottom line: Phase preserves angles, like signs do!
(with similar additive ambiguity) 132



Quantization
AeCMN z=Ax,y= 2>z = L(AX)

A i.i.d. Gausian = phase unformly distributed: Y, ™~ U(07 27T)

Optimal scalar quantizer uniform, finite range: A = 5B

(using B bits per measurement)

AeCWN z=Ax,y=0 (L(Z)) = Q <L(Ax)>
|

1 Z 1 - /

Total rate R=MB using M measurements
Trade-off embedding error VS. quantization error

colf)  smot-o(y
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Comparison w/ BeSE

N=1024, M=32

A

D

CC) 0.87 oo .o:. ot

© ;e

-'(T) \'ff‘rv».'x

N 0.6 s -

c) - ) °

C >

504 =

O

-CEJ bl

G 02| ==+ | - Binary embedding
= - Angle embedding
0 0.5 1

Signal Distance

o

o

o

Embedding Distance

O

N=1024, M=256

A

8/

6,

4

2 : :
- Binary embedding
- Angle embedding

0.5
Signal Distance

Phase Angle Embedding is tighter (as expected: it is analog)
For smaller angles, tighter embedding (suggests theory gap)

1
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Quantization Effects

D

© 0.8

o

7))

0 0.6

(@)

-

S0.4 |

q) r

-g - o s

G 0-2 - Binary embedding
- Angle embedding

0

0.5
Signal Distance

Embedding Distance

O
S

o o
> o

O

N

- 1 bits/meas
- 2 bits/meas

0.5
Signal Distance

1
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Quantization Effects

- 1 bits/meas
- 4 bits/meas

0.5
Signal Distance

)

’
) )

© 0.8 © 0.8
@ g

1%z n

% 0.6 0 0.6
S S
S0.4 | S0.4/
b = bs
0ol U Enol.
5 0-2 - Binary embedding, W 0.2

N | - Angle embedding

0

0.5
Signal Distance

1

1
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Quantization Effects

D

© 0.8

o

7))

0 0.6

(@)

-

S04

O

£

G 0-2 - Binary embedding
- Angle embedding

0

05
Signal Distance

1

Embedding Distance

O
S

o "o
O

O
A

- 4 bits/meas
- 6 bits/meas

05
Signal Distance

Benefit of increasing B is marginal

1
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(Shift-Invariant) Inner Product Kernels (s vansour, Rane '16]

Can embeddings preserve kernel inner products? K(x,X') = {(¢(x), p(x))

Yes. Using the same design as before

Let f(x) = h(Ax + e) as before, with y = f(x). The kernel function

1

K(x,x') = my y’ (1)

is shift invariant and approximates the radial basis function

Kxx) ~ 5~ g(x—x), §)

with g(d), as before.

Special case: h(r)=cos(t) = Random Fourier Features

(first instance of Kernel inner product embeddings)
[Rahimi, Recht '07]

In other words: computing the standard inner product of the embedding is
equivalent to computing the Kernel inner product on the data.
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EMBEDDINGS AND ALTERNATIVE METRICS

 Lsh And Near Neighbors



Locality Sensitive Hashing (LSH) [indyk Motwani ‘98]

J (x)
Original space

Distance metric: ¢,
P points in RN

Embedding space
Embed in {0,1}M

! Small M
. Discrete space

With High
Probability (whp)

Goal: Speeding up Nearest Neighbor Search

Idea: each signal in the space, compute a binary quantity with few bits, i.e., a “hash”

Typical language in this literature: signals are hashed into “buckets”
— When looking for near neighbors of a signal, compute it's hash and look only in that bucket

If two signals have the same hash, then they are similar with high probability

— The guarantee only goes one way: two signals might be similar but have very different
hashes. On the other hand, if they have the same hash they probably they are similar.

— Hash “distance” may not have any meaning
— Might not find nearest neighbor, but will find a near one (approximate nearest neighbors)
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Locality Sensitive Hashing (indyk Motwani, Andoni, et al

Simplest (and most popular) approach

J(x) = sign(Ax)

« Not optimal hash, but simple to compute
- Optimal LSH based on Leech lattice
« Assumes normalized signals
« Happens to also provide more information
- Based on BeSE guarantees: embeds angles
iInto Hamming distance
- However, embedding not very accurate (very
few measurements)

Algorithm:
Randomized signal hash £RN —N such that: * Preparation: Hash all your signals into buckets.
Each bucket has a list of signal with this hash
d(x,y)<r = flx)=f(y) with high probability - Execution: Given signal x and it’s hash,
d(x,y) = cr = f(x) #Ay) with high probability determine corresponding bucket. Signals in that

bucket are approximate near neighbors of x.

No guarantee for r < d(x,y) <cr
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EMBEDDINGS AND ALTERNATIVE METRICS

e Classification
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Classification

ScRN
Original space
Distance metric: ¢,
P points in RN
Linearly separable

Embedding space
Distance metric: ¢,

Points still linearly separable

« Goal: Dimensionality reduction that respects linear boundaries/classification
 Main approach: Random projections, i.e., JL-style embeddings

 Fundamental Question: Given the geometry and separation of clusters, how much can we
reduce dimension?

— Secondary question: Can we quantize the projection and still preserve linear separability?
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Linear Classification Big Picture

Separating hyperplane
K C R" dataset o
Ci C Kclasses, i =1,2,...

RN
K
\

Classify|C; U Co]

(e.g., LDA, SVM, PCA,
K-Means, K-NN, ...)
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Linear Separability After Embedding
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The (Linear) Rare Eclipse Problem

Problem (Rare Eclipse Problem (Bandeira et al. '14)).

Let C;,Co C R" : C; N Cy = 0 be closed convex sets, &~ N™*"(0, 1).
Given n € (0, 1), find the smallest m so that

po = Pgs®C1NPC, =0] >1—n.

Bandeira, Mixon, Recht '14 [BMR '14]

146



The (Linear) Rare Eclipse Problem

BMR ’'14: “Gordon’s escape through a mesh” theorem

Proposition (Corollary 3.1in BMR ’14)- (& really tight |Amelunxen et al, 13|)

Given n € (0,1), if m > (ws + \/2 0g 2)? + 1 then pp > 17

Bandeira, Mixon, Recht '14 [BMR '14]
Example:
Ce .=(Cl — C?
R+C@
R
! r=7T1+72 2
= [ = MZ e
N
N/ C°© J— —
w2@ — “dimension” of C®
2
< T
‘ ~ Te2 "
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Quantization: The Rare Eclipse Problem “on Tiles”

A(@) = Q(®a + &)

with ® Gaussian random matrix,

Q(N\) = d|3]. & ~U([0,9]).

C1, Co, m and 0 such that
PIA(CI) NACy) = 0] > 17 ?

Idea: use the QRIP, i.e.,

a5 lA@) = A@2)|l1 ~ [z — a2

w.h.p.
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The Rare Eclipse Problem “on Tiles”

« Combining (P1), (P2) and (P3) (+ massage) gives

Given ¢ := min,cc® ||z]| and wn = w((RLC7) NS*1).

Provided
L. rm | —2 l
m 2 (w@+n ) (1—|—log(1 | (m) - W5 logn)’
we have linear  quantiz. proof artifact? linear

PIAC) NACs) = 0] > 1 -1

Example:

2 52

> |
= MZ (e T gel=r2) "

B Note: § > o is allowed (dithering effect!)
@y Note bis: m > n not specially bad (§Z™).
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Simulations: Digit dataset (from scikit learn)

10 handwritten digits, 8x8 pixels (n=64), samples/class = 12.
Training/Test sets = 50%/50%. o= min  min |u—v||

1,7:177 weC;,veC;
Classification: 5-NN Classifier.

Probability of error

L -

0 =0

0.7 -

0.6 -

oE - ~ 3 bits/meas.)

0.4 -
0 = 0 (linear)
PCA

14 bits/meas.)

(

(~ 5 bits/meas.)
03 - (
(

14 bits/meas.)
02

0.1 1

0.0 -

-8 -7 -6 -5 -4 -3 -2 -1 0
log=m/n

Try some code out here: github.com/VC86 /MLSPbox
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LEARNING EMBEDDINGS



Embedding Learning ObjECtives [Hegde et. al. '15], [Sadeghian et. al. ’13]

ScRN f(x) JWCRM
ge—
Embedding space
Original space Embed in %
Distance metric: ds< Distance metric: dy,

General objective: learn f{x) to optimize embedding aspects from sample data
— Mostly to reduce the dimension M

Very general problem

— What distance metrics to consider?

— What functions to restrict it to?

— Is it possible to learn selective distortions?

Today: J-L style embeddings
— Linear embeddings (i.e., f{x)=Ax)
— (, distance metric

— Some discussion on selective distortion

Note: in the deep learning/ artificial neural networks literature the term “embedding learning” is
very commonly used. This is a quite imprecise qualitative use of the term. To our knowledge

there is no work establishina auarantees in preservina aeometric aspects of the oriainal space.
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Embedding Learning Preparation

ScRN (X) — AX WCRM
Embedding space
Original space Embed in %
Distance metric: ¢, Distance metric: ¢,
Secant set:
o ] X. — X.
Training set: R s=14v,= i A XpX € Z
< ={x; € RN | = I,....,L} lIx; — Xj||2

(hormalized differences of all pairs)

Key realization: Preserving distances in training set is
equivalent to preserving norms of the secant set:

2
|HAX,-—AXJ-H — HXZ-—X-HZ Sé”xi—x.Hz
) il j

2
v - ke _
equal to 1 by construction
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Embedding Learning Objectives

SCRN f(x) — AX P Training set:

Z={x;eRV,i=1,.. L)}
Secant set:
— Vl]= . l’ Eg
||X'—X'||2

(normalized differences of all pairs)

Learning: Find A that satisfies

2
— 1
2

| Av; |- | vi |} <6 = <5
I ETE

H AVlj

Trick: ||Av||5 = v/ ATAv = v/ Py,

where P = AT A is symmetric positive semi-definite, and rank(P) = rank(A).

Given v, v/Pv islinearin P

Optimization:
 Embedding accuracy o (should be small)
« Dimension of A =rank(A) = rank(P) = M (should also be small)
« Different formulations lead to different optimization problems
— Fix rank and optimize 0, or fix 0 and optimize rank
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Embedding Learning Objectives

SCcRN (X) — AX TN Training set:

Z={x;eRV,i=1,.. L)}
Secant set:
— Vl]= . l’ Eg
||X'—X'||2

(normalized differences of all pairs)

‘||AV||2— 36(:)‘VTPV—1‘§6,P=PT>O
Ideal Optimization Problem Alternative formulation
P—arg min rank(P) P—arg min @ Pv;i —1
PT P?O PT:PEO
subject to |V§Pv;; — 1| < 6 for all i # ;. subject to rank(P) < M and ||P||. < b
Convex [ relaxation Final Step
~ Obtain A using the SVD of P
P=arg min ||P|, R
PT=P~0 P =UzU’

subject to v/, Pv;;—1| < 6 foralli+# j. — A = 3127
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Embedding Learning Objectives

SCcRN (X) — AX TN Training set:

Z={x;eRV,i=1,.. L)}
Secant set:
— Vl]= . l’ Eg
||X'—X'||2

(normalized differences of all pairs)

avll;-

<5 = ‘VTPV—I‘ <5, P=P' >0

Generalization:
 Embedding accuracy o holds only for training sample
* For signals similar to the ones in the training set, guarantee can be generalized
— Exploits continuity of the linear embedding map

For any z s.t. ||z — x||, < €]|x,|| for all x in the training set,
resulting isometry bound IS [Sadeghian et. al. *13]
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Learning Embeddings For Classification [egdeet. al. '15]

Training set:
ScRN f(x) = Ax WM NQ.
_p——— Z={xeRi=1,..,L}

+ class labels for each x;

Secant set:

Ix; = x4l

(normalized differences of all pairs)

Intuition:
If x;, X; in the same class, we should not let their distance increase much
(but ok if they come closer to each other)

If x;, X; in different class, we should not let their distance decrease much
(but ok if they go farther from each other)

Resulting Optimization:

P=arg min |[P|.
PT=P-0

subject to Vl-Tiji i > 1—o0 forall i # j in different classes.

VZTJ-PV,'J' < 14 0 for all i # j in the same class.
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SUMMARY AND CONCLUSIONS



Recap

2. Fundamentals of embeddings and embedology
» Dimensionality reduction method
« Main goal: preserves distances
» Typical approach: randomization
3. Quantized embeddings
* Quantization does not hurt that much
« Careful quantization design can serve as a compression approach
4. Embedding Design
 |tis possible to design embeddings for selective distortions
* Optimal embeddings are not known
5. Embeddings of Alternative Metrics
* We can embed distances, angles, kernels, or anything else you might like

« Hashing approaches can speed up computation (also have connections with quantized
embeddings)

 Embeddings can be designed to preserve some property (e.g. separation of classes)
6. Learning Embeddings

« Of course it is possible to learn embeddings from data

« Simple optimization problem

« Carefully setting up the optimization allows for out-of-sample guarantees.
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Conclusions

SCRN f(X) 2CRM

Embedding space
Original space Embed in %
Distance metric: ds< Distance metric: dy,

 Dimensionality reduction is a very rich a rich subject
— Embeddings is just a small part

 Randomized embeddings provide “universal” approach to dimensionality reduction

— Sometimes not the most efficient approach if the objective is strictly to reduce
the number of dimensions

— However, they provide computational advantages as they don’'t depend on the
data to design

— A number of data-dependent dimensionality reduction techniques (e.g., PCA)
make explicit or implicit assumptions on the data in order to provide guarantees

— Randomization offers significant theoretical advantages and allows for strong
guarantees, irrespective of the dataset
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Toolkits?

 Most Embedding computation is trivial
— Matlab:
A=randn [M, N];
V=A*X;
— Python:
import numpy as np
import numpy.random as rnd
A = rnd.randn (M, N)
y = A.dot (x)
* For that reason, not many toolkits exist for randomized embeddings
— Some
« LSH is a bit more intricate
— Need to keep track of hashing tables efficiently
— Most toolkits focus on that; the hashing part is also trivial to implement

— There are several hashing approaches, with different advantages/
disadvantages

— Several tools to keep track of (http://ann-benchmarks.com provides
benchmarking and a list of a number of popular libraries)

161


http://ann-benchmarks.com

Open Problems

Overall, there has been a flurry of theory recently

— Still there are quite a few research avenues

Generally the question of embedding design is not well understood
— What are desirable embedding properties for each application?

— |Is there a general embedding map that can implement arbitrary
distortions?

— What is the optimal embedding design given a desired distortion?
Quantization and LSH

— There is a strong connection between embedding quantization and LSH
— This connection has not been explored

Learning embeddings

Very little work in the area

Can we
Can we
Can we

earn non-linear embeddings?
earn quantized embeddings?
earn embeddings for other distances and/or distance maps?

Neural Networks/Deep Learning
— What are Deep Networks embedding?
— What kind of theoretical guarantees can we provide?
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Thank you for your attention.
Questions?

More info and resources:
boufounos.com/embeddings

petros@boufounos.com laurent.jacques@uclouvain.be
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