

Learning to Reconstruct Signals From Binary Measurements

Julián Tachella
CNRS, Physics Laboratory
ENS Lyon, France

Laurent Jacques
INMA/ICTEAM
UCLouvain, Belgium

March 5, 2024

Inverse problems (IP)

$$y = A(x) + \varepsilon$$

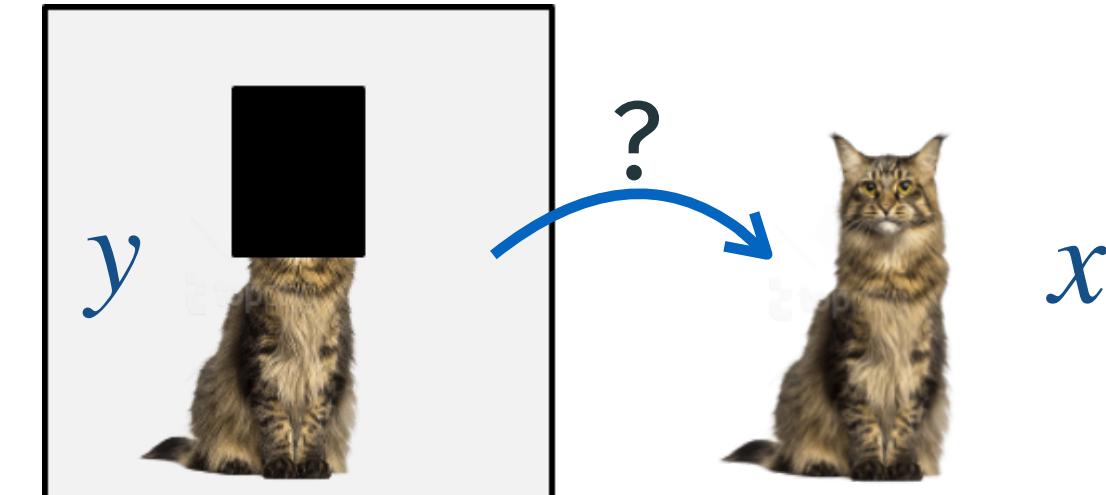
Measurements in \mathbb{R}^m

Measurements operator

Signal in \mathbb{R}^n

noise in \mathbb{R}^m

Image inpainting



Radio Astronomy



MRI

Recommender system

Fruit	User 1	User 2	User 3
banana	★★	?	★
apple	★	★	?
pear	★	★★	★

Inverse problems (IP)

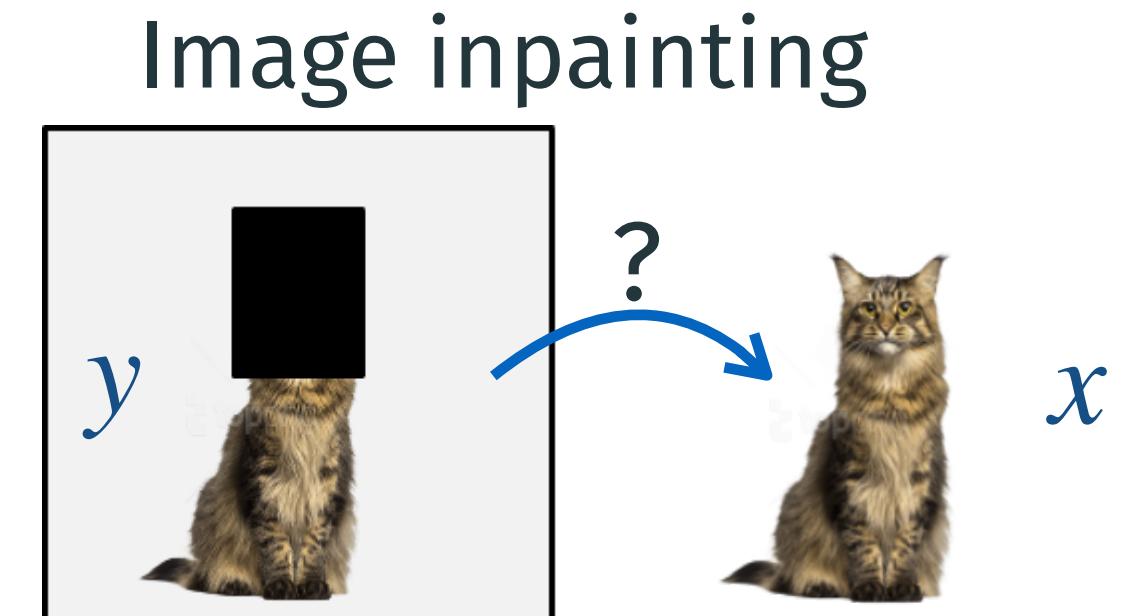
$$y = A(x) + \varepsilon$$

Measurements in \mathbb{R}^m

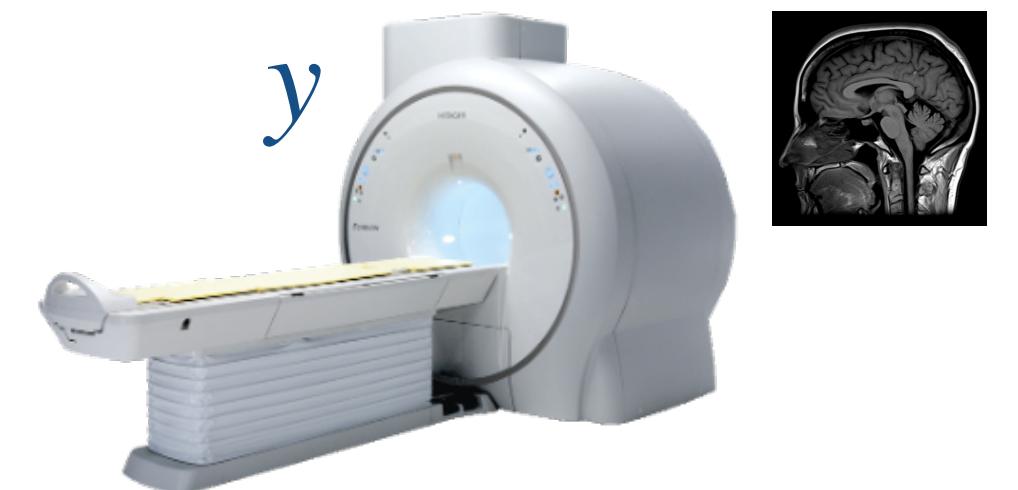
Measurements operator

Signal in \mathbb{R}^n

noise in \mathbb{R}^m



Radio Astronomy



MRI

Ill-posed:

many x consistent with y (e.g., if $m < n$)

Solution:

Restrict to a set of plausible signals $\underline{X \ni x}$
Size?

Recommender system

Fruit	User 1	User 2	User 3
banana	★★	?	★
apple	★	★	?
pear	★	★★	★

Solving IP: regularised reconstruction

Idea: use a *prior* \equiv loss $\rho(x)$ to promote plausible reconstructions

$$\hat{x} \in \arg \min_x \rho(x) \text{ subject to } y \approx A(x)$$

Examples: wavelet/dictionary sparsity, total-variation, ...

Solving IP: regularised reconstruction

Idea: use a *prior* \equiv loss $\rho(x)$ to promote plausible reconstructions

$$\hat{x} \in \arg \min_x \rho(x) \text{ subject to } y \approx A(x)$$

Examples: wavelet/dictionary sparsity, total-variation, ...

Disadvantages:

- › Loose description of true signal distribution
- › Hard to define a good $\rho(x)$ in real world problems

Solving IP: learning approach

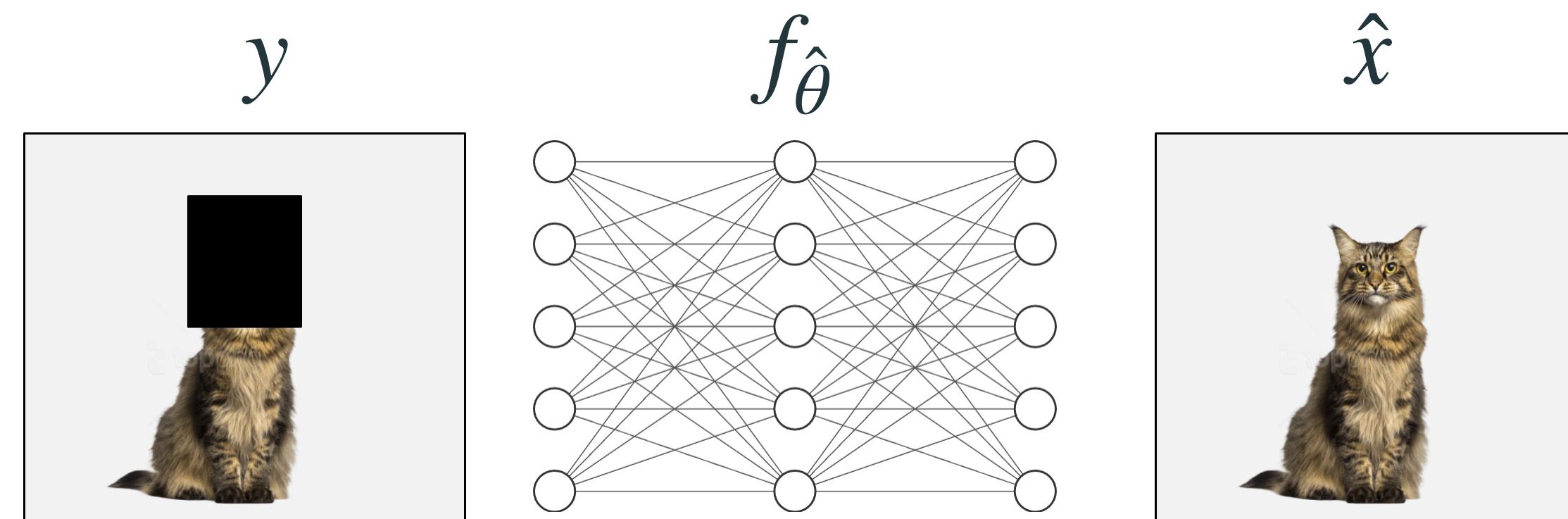
Idea:

- ▶ use training pairs of **signals** and **measurements** $\{(x_i, y_i)\}_{i=1}^N$
- ▶ learn a parametric inversion function $y \rightarrow \hat{x} = f_{\hat{\theta}}(x)$

Solving IP: learning approach

Idea:

- ▶ use training pairs of **signals** and **measurements** $\{(x_i, y_i)\}_{i=1}^N$
- ▶ learn a parametric inversion function $y \rightarrow \hat{x} = f_{\hat{\theta}}(y)$



$$\hat{\theta} \in \arg \min_{\theta} \sum_{i=1}^N \|x_i - f_{\theta}(y_i)\|^2$$

where $f_{\theta} : \mathbb{R}^m \rightarrow \mathbb{R}^n$ is parameterized as a deep neural network.

Implicitly learn both the prior & distribution, and the reconstruction

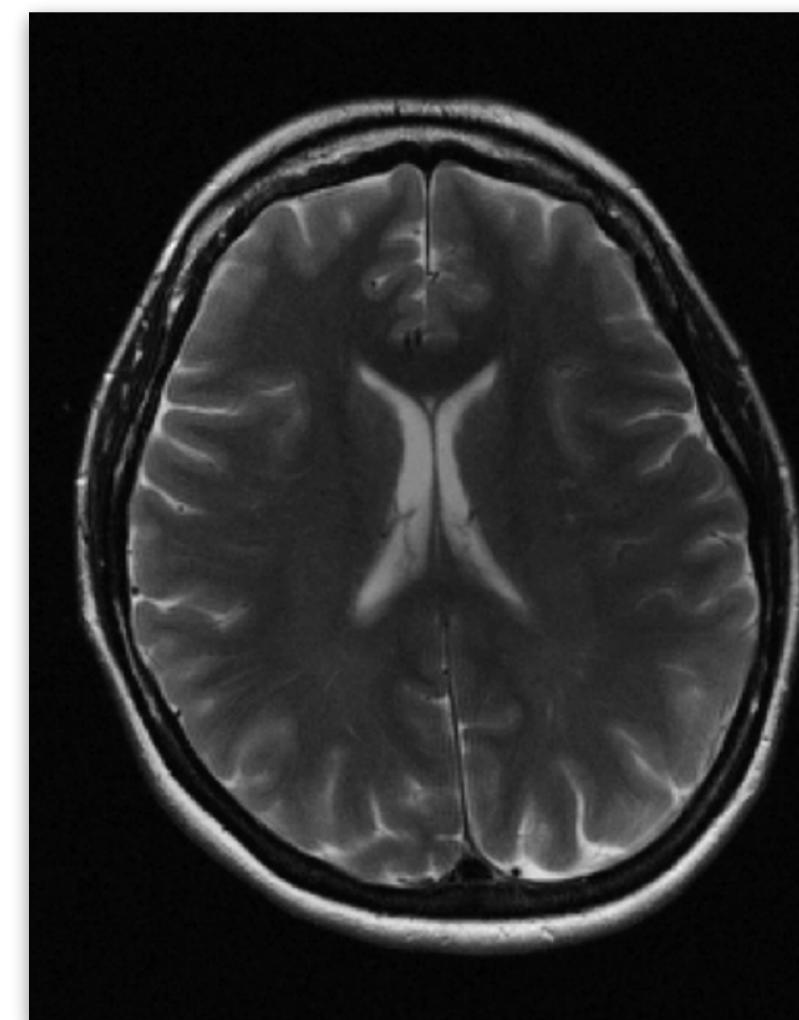
Solving IP: learning approach

Advantages:

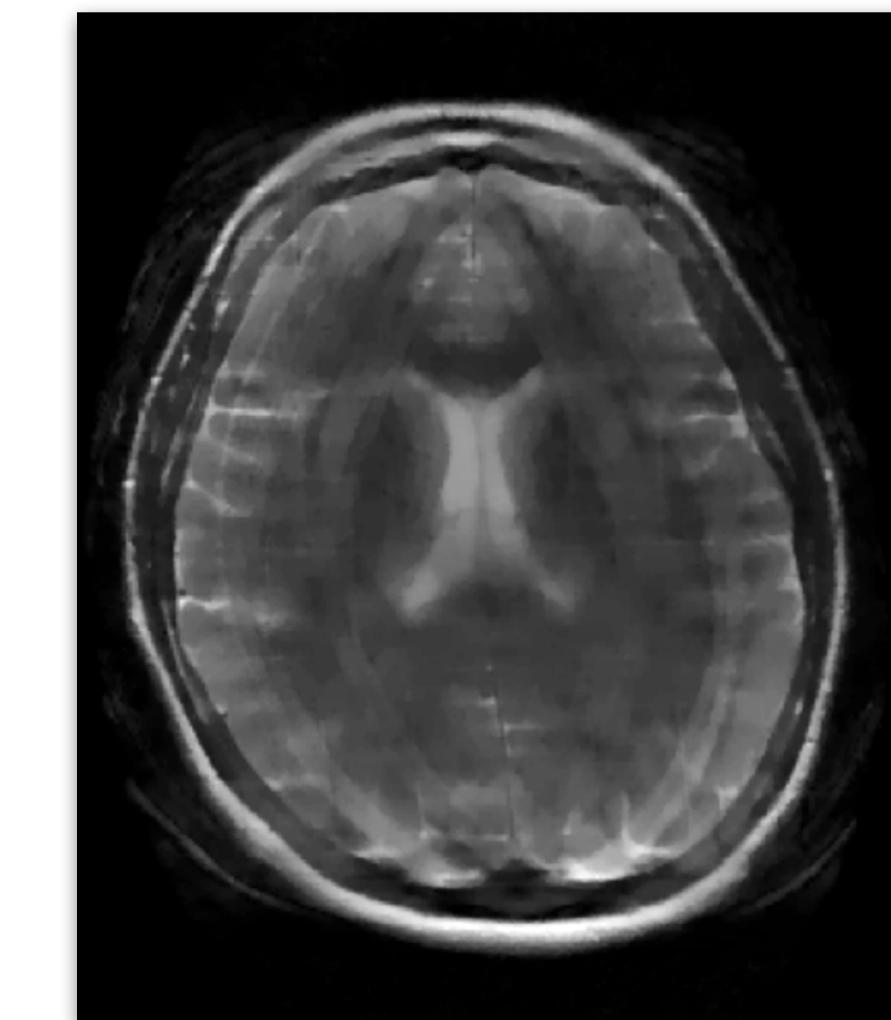
- ▶ State-of-the-art reconstructions
- ▶ “Once trained”, $f_{\hat{\theta}}$ is easy/fast to evaluate

Example:

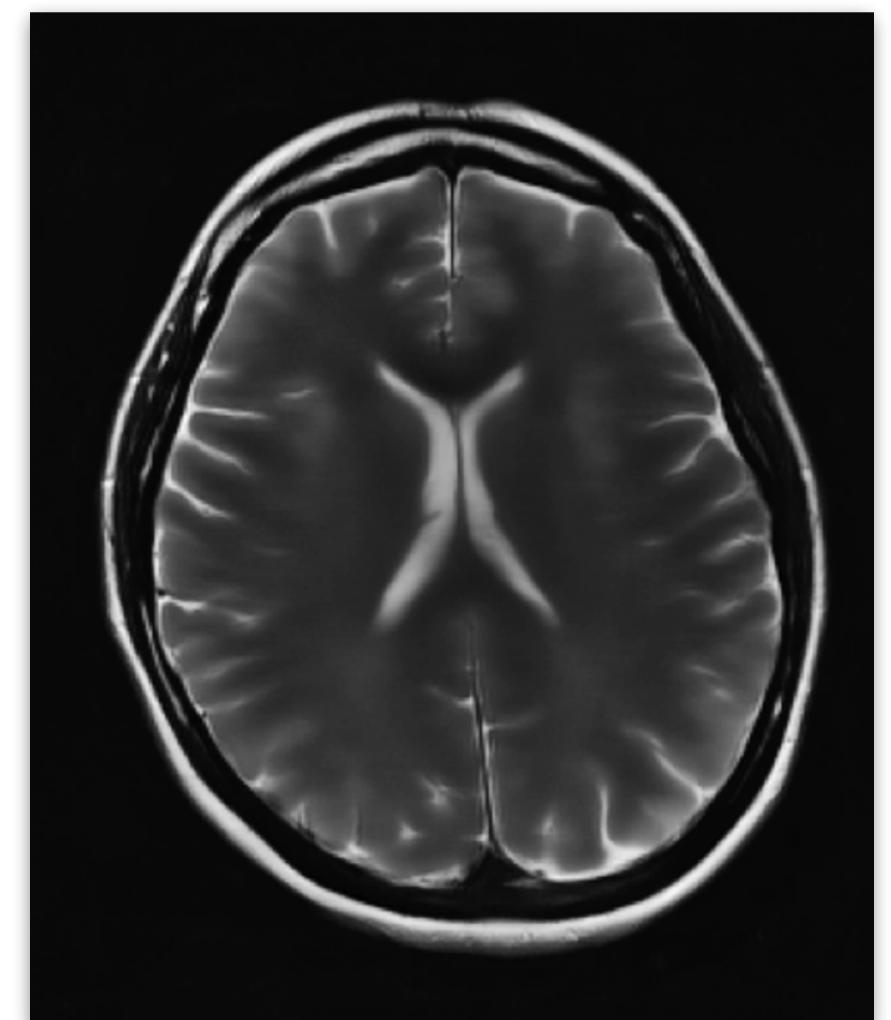
fastMRI
Accelerating MR Imaging with AI



Ground-truth



Total variation
(28.2 dB)



Deep network
(28.2 dB)

→ $\times 8$ accelerated MRI [Zbontar et al., 2019]

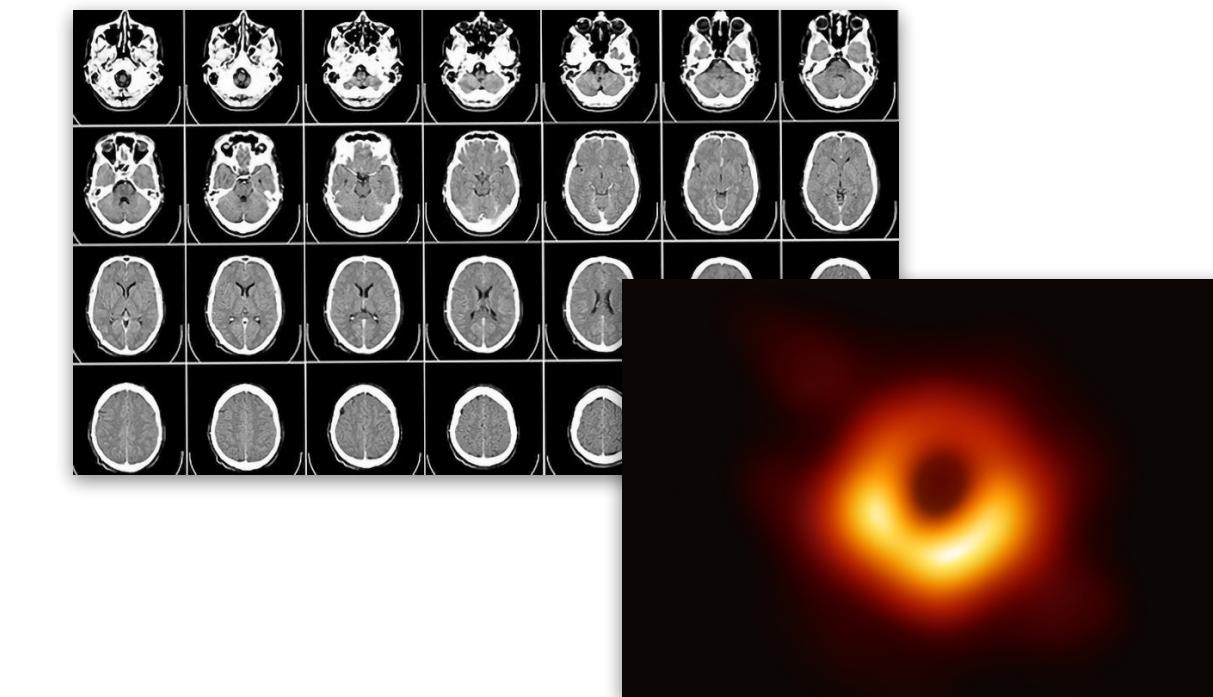
Solving IP: learning approach

Main disadvantage:

Obtaining training signals $\{x_i\}_{i=1}^N$ can be expensive/impossible.

For instance:

- ▶ Biomedical sciences (e.g., CT, MRI)
- ▶ Astronomical imaging (e.g., EHT)



Consequence:

- ▶ Risk to solve expected solution (off-distribution problem)

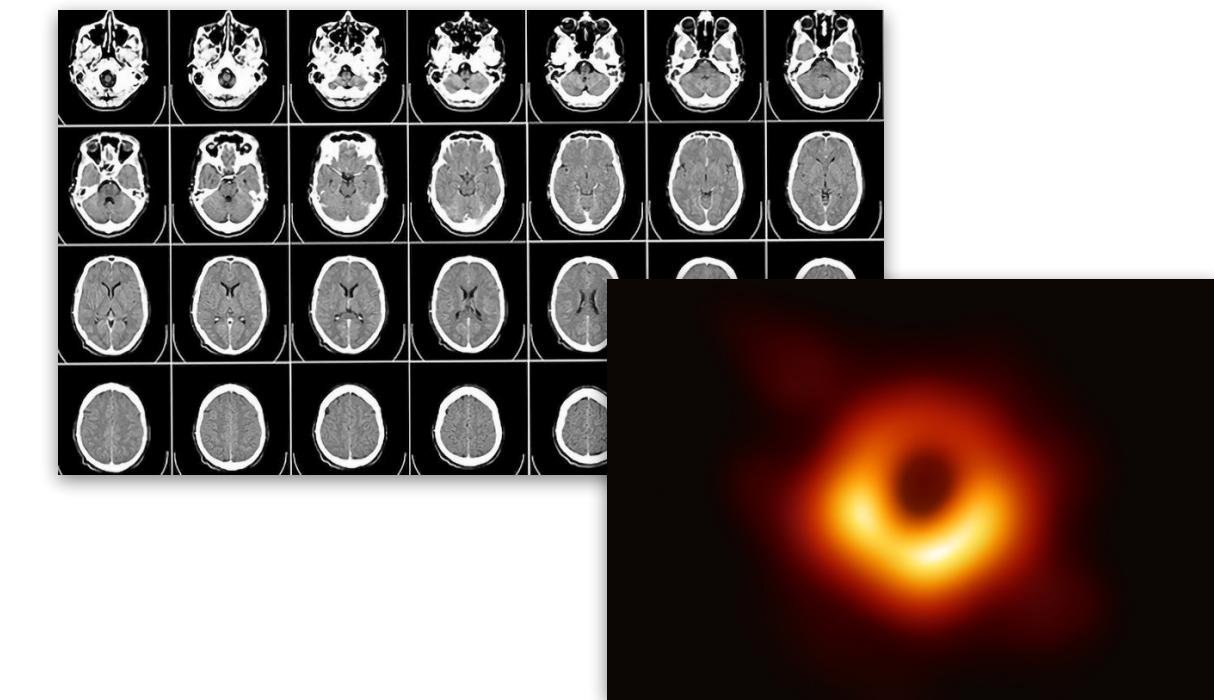
Solving IP: learning approach

Main disadvantage:

Obtaining training signals $\{x_i\}_{i=1}^N$ can be expensive/impossible.

For instance:

- ▶ Biomedical sciences (e.g., CT, MRI)
- ▶ Astronomical imaging (e.g., EHT)

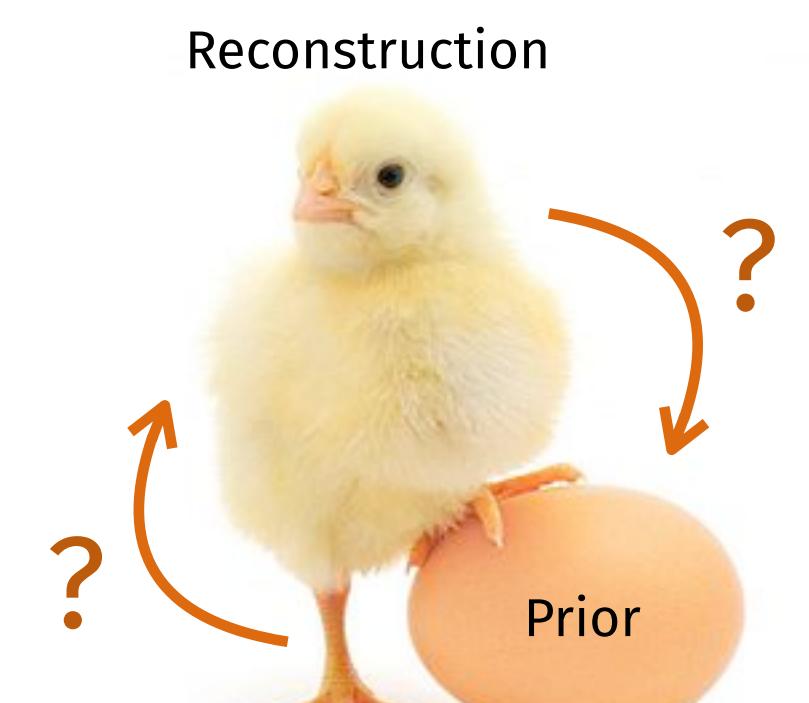


Consequence:

- ▶ Risk to solve expected solution (off-distribution problem)

Conundrum:

Prior or reconstruction, which comes first?



[Wikimedia]

Measurement-Driven Computational Imaging

Unsupervised context:

Can we learn to reconstruct signals
from measurement data alone $\{y_i\}_{i=1}^N$?

Linear inverse problems: $y = A(x) + \epsilon \rightarrow \text{Yes}$

If signal set \mathcal{X} is **low-dimensional**, and, either **multiple operators** $\{A_i\}_{i=1}^G$,
or \mathcal{X} **invariant to groups of transformations**.

- Theory [T., Chen and Davies, JMLR, 2023]
- Algorithms [Chen, T., Davies, CVPR, ICCV, NeurIPS, 2022]

Measurement-Driven Computational Imaging

Unsupervised context:

Can we learn to reconstruct signals
from measurement data alone $\{y_i\}_{i=1}^N$?

Linear inverse problems: $y = A(x) + \epsilon \rightarrow \text{Yes}$

If signal set \mathcal{X} is **low-dimensional**, and, either **multiple operators** $\{A_i\}_{i=1}^G$,
or \mathcal{X} **invariant to groups of transformations**.

- Theory [T., Chen and Davies, JMLR, 2023]
- Algorithms [Chen, T., Davies, CVPR, ICCV, NeurIPS, 2022]

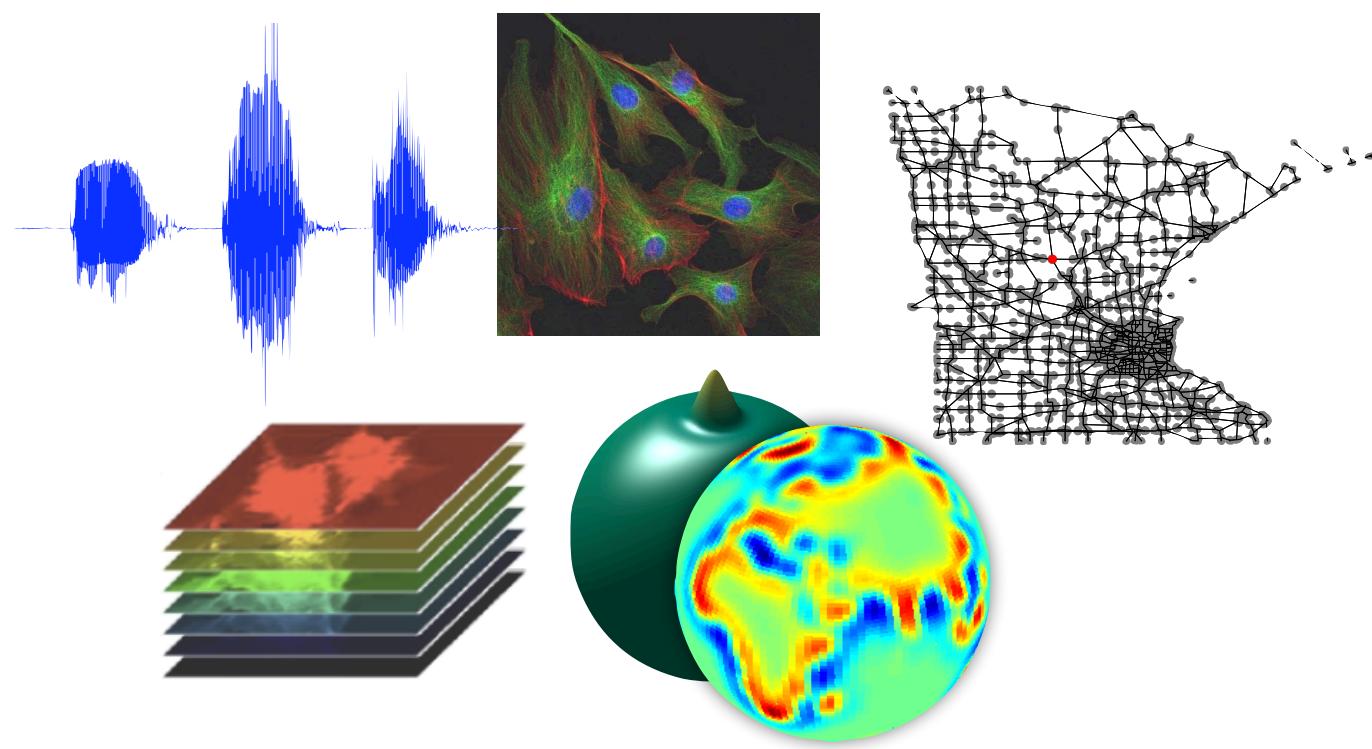
Non-linear inverse problems: $y = f \circ A(x) + \epsilon \rightarrow \text{Today}$

(with $f = \text{sign}$, binary measurements)

Why binary measurements?

Sensing model Given $A = (a_1, \dots, a_m)^\top, a_i \in \mathbb{R}^n$,
we observe a “signal” $x \in \mathbb{R}^n$ with m binary measurements :

$$y_i = \text{sign}(a_i^\top x) \in \{\pm 1\} \quad \rightarrow \quad y = \text{sign}(Ax) \in \{\pm 1\}^m$$

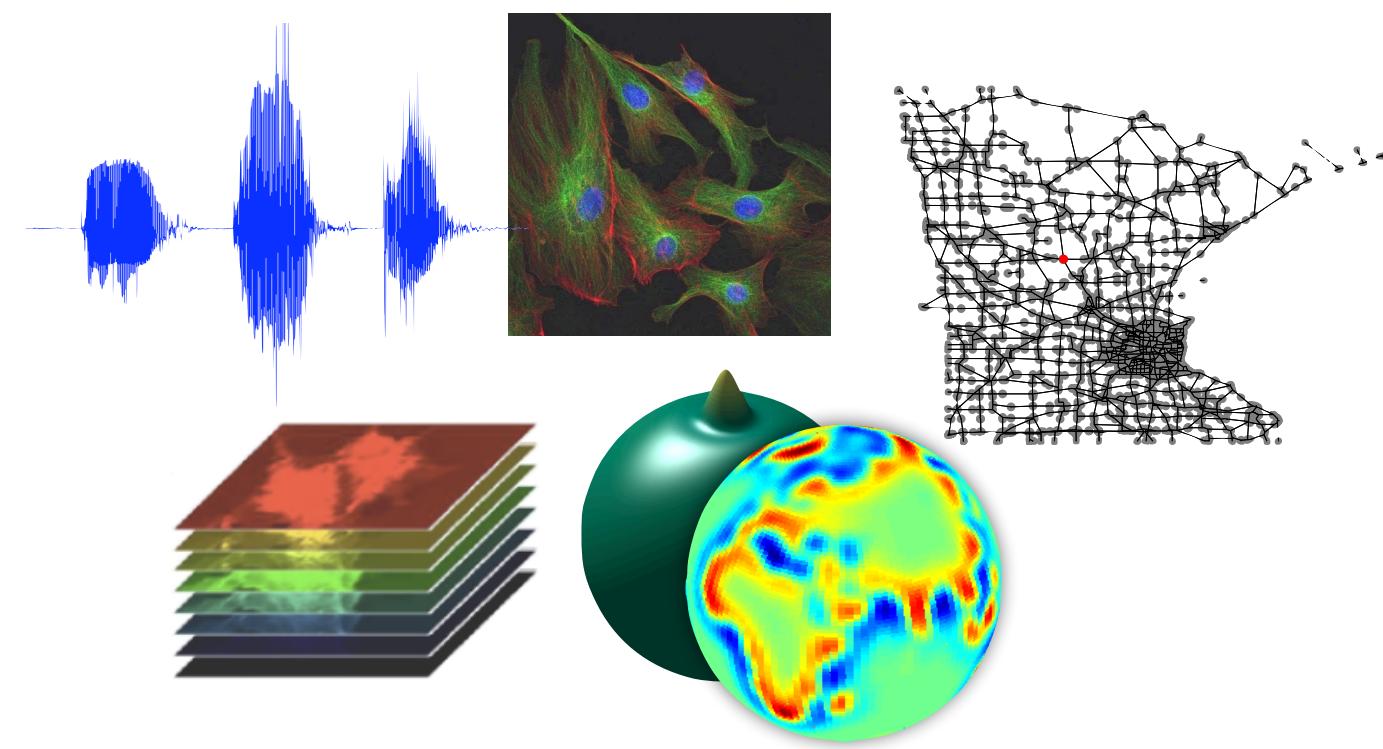


Why binary measurements?

Sensing model Given $A = (a_1, \dots, a_m)^\top, a_i \in \mathbb{R}^n$,

we observe a “signal” $x \in \mathbb{R}^n$ with m binary measurements :

$$y_i = \text{sign}(a_i^\top x) \in \{\pm 1\} \quad \rightarrow \quad y = \text{sign}(Ax) \in \{\pm 1\}^m$$



Contexts

- › Binary compressive sensing (1-bit CS): can we estimate x from y ?
- › Binary/quantized dimensionality reduction: do $\text{sign}(A\mathcal{S})$ capture the geometry of \mathcal{S} ?
- › Machine learning: can we classify two signals from their binary measurements?

Interests

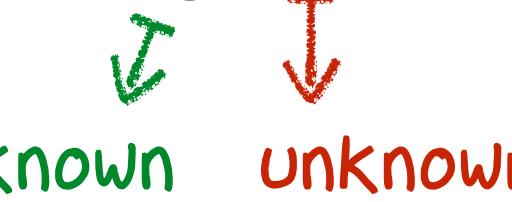
- › Compression at acquisition, for signals or datasets
- › Interesting questions related to information theory and high-dimensional statistics

Purpose of this talk

Learning to reconstruct from binary measurements?

Theoretical analysis: given N binary observations & G operators

$$y_i = \text{sign}(A_{g_i} x_i), \text{ with } 1 \leq i \leq N \text{ and } g_i \in \{1, \dots, G\}$$


known unknown

Purpose of this talk

Learning to reconstruct from binary measurements?

Theoretical analysis: given N binary observations & G operators

$$y_i = \text{sign}(A_{g_i} x_i), \text{ with } 1 \leq i \leq N \text{ and } g_i \in \{1, \dots, G\}$$

known unknown

Estimate signal set $\mathcal{X} \supset \{x_i\}_{i=1}^N$? Error bounds (lower/upper)?
Sample Complexity (*i.e.*, N) bound?

Purpose of this talk

Learning to reconstruct from binary measurements?

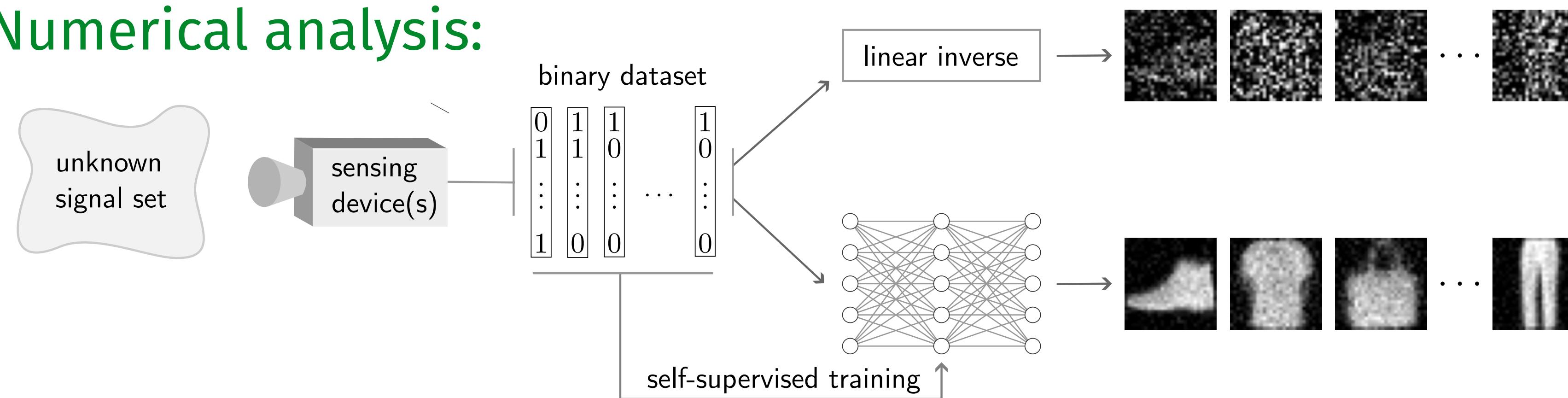
Theoretical analysis: given N binary observations & G operators

$$y_i = \text{sign}(A_{g_i} x_i), \text{ with } 1 \leq i \leq N \text{ and } g_i \in \{1, \dots, G\}$$

known unknown

Estimate signal set $\mathcal{X} \supset \{x_i\}_{i=1}^N$? Error bounds (lower/upper)?
Sample Complexity (i.e., N) bound?

Numerical analysis:



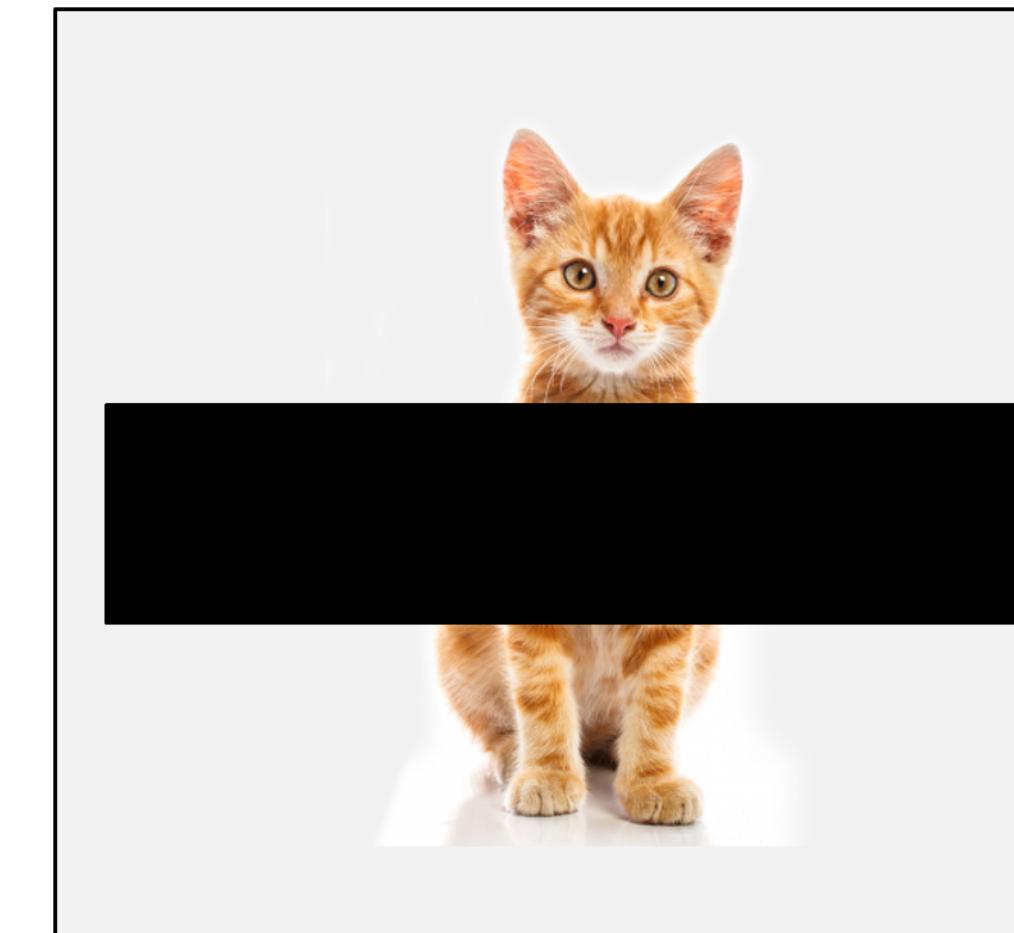
Cost function? Network architecture? Comparison to linear case?

Sensing scenario 1: Multiple Operators

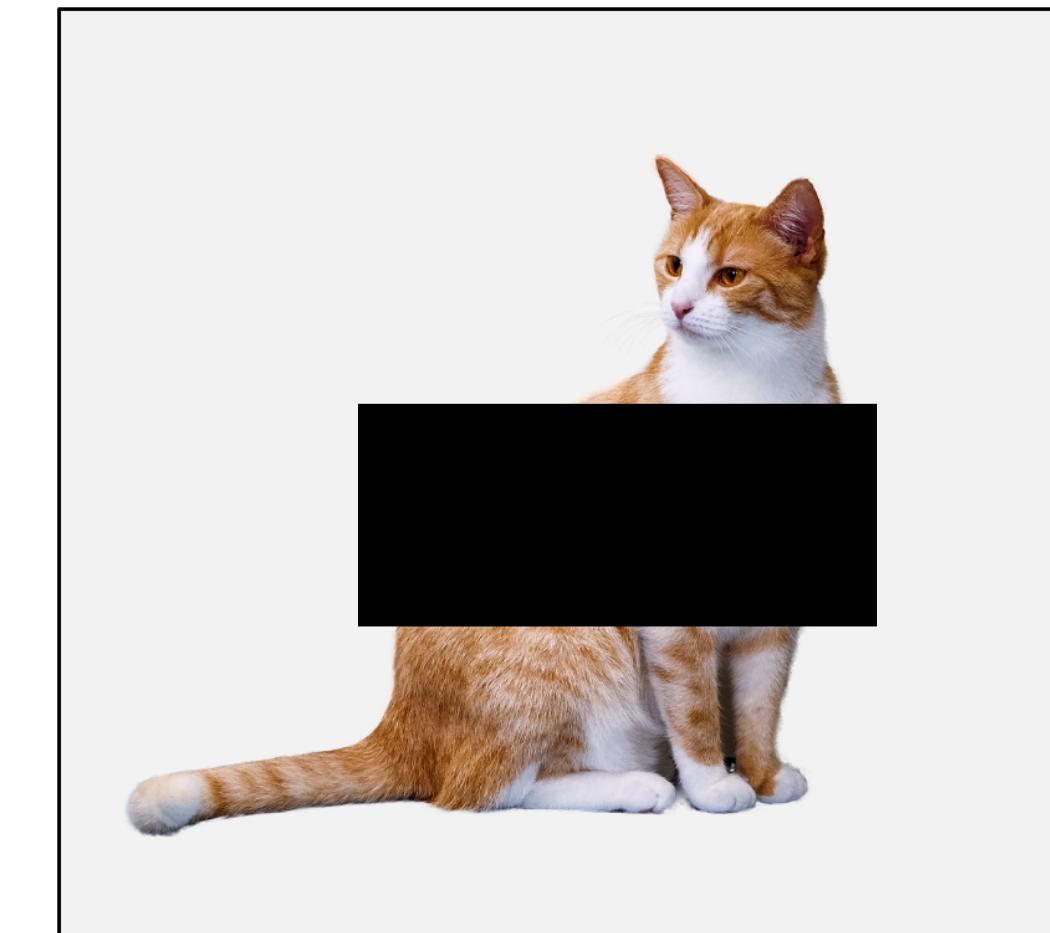
Measurements might be associated to $G \geq 1$ forward operators

$$A_1 x_1$$

$$A_2 x_2$$



$$A_3 x_3$$



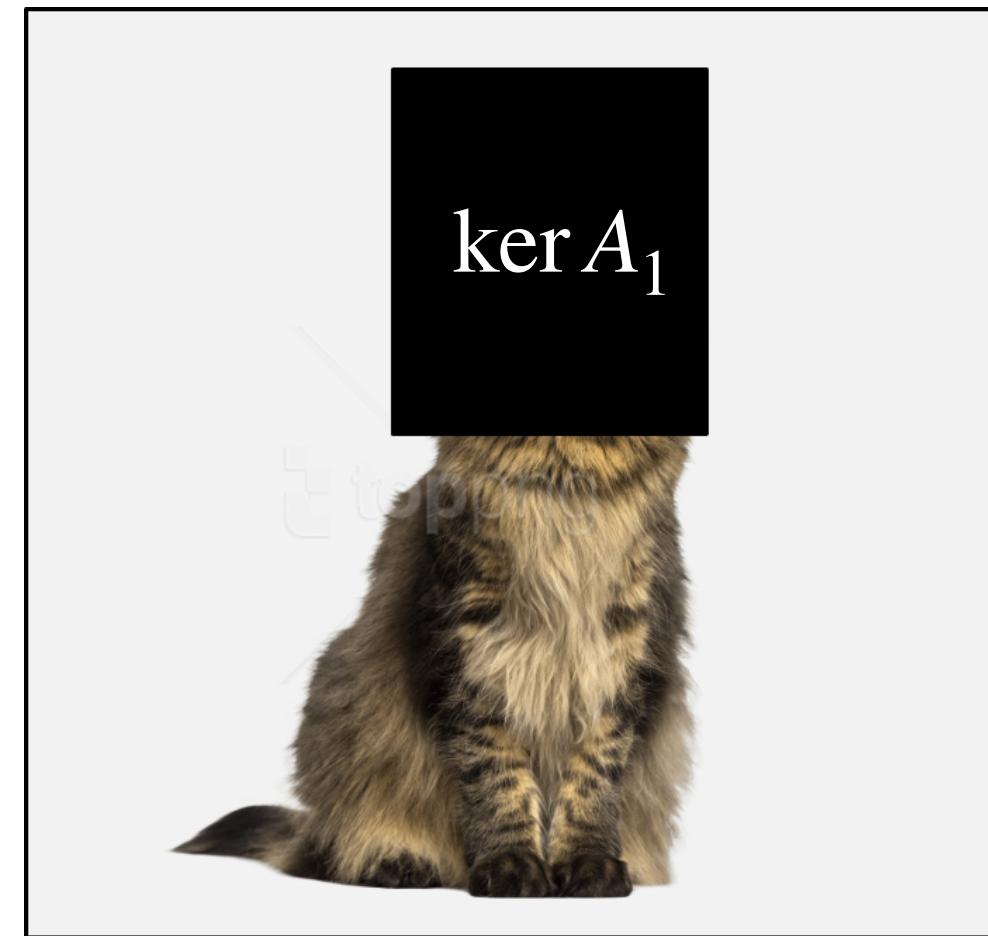
Examples:

- different access ratings for recommendation systems with distinct users
- dynamic sensors: $\{A_t : t = n\Delta_T\}$, multi-coil MRI, radio-astronomy ...

Sensing scenario 1: Multiple Operators

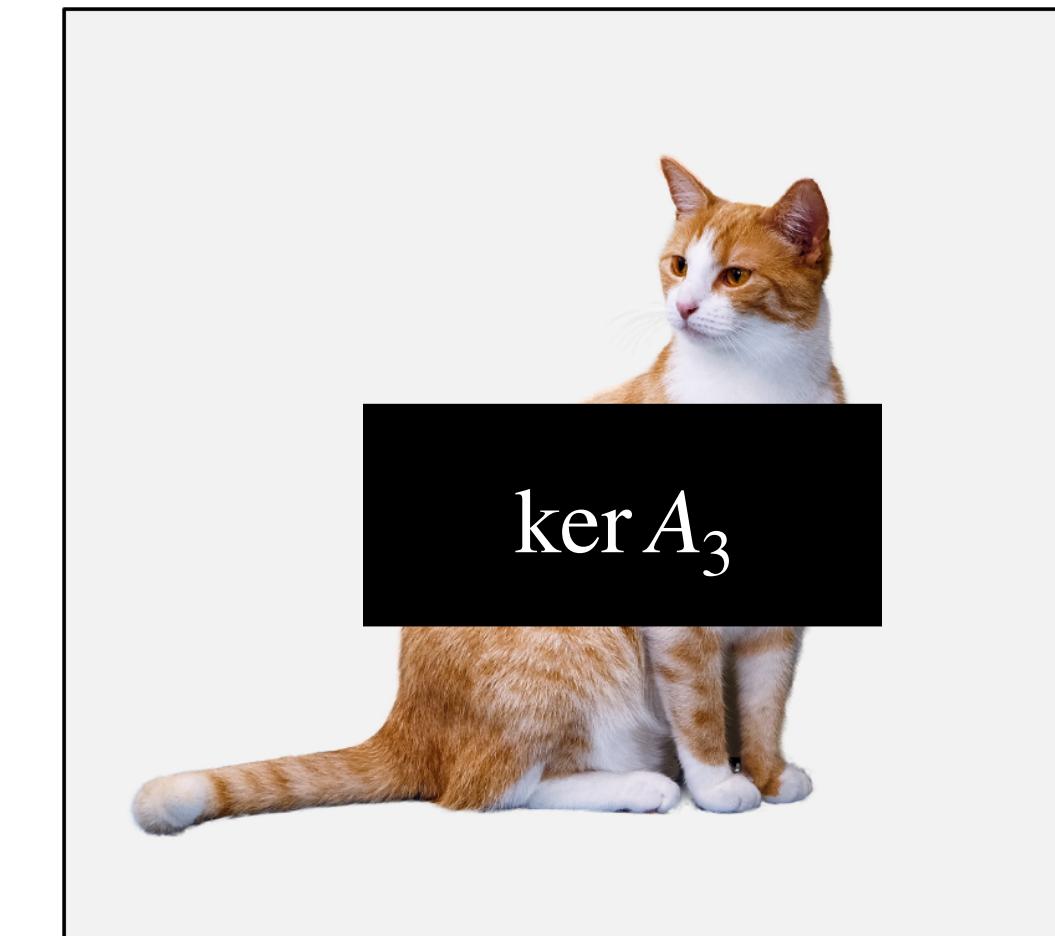
Measurements might be associated to $G \geq 1$ forward operators

$$A_1 x_1$$



$$A_2 x_2$$

$$A_3 x_3$$



Examples:

- different access ratings for recommendation systems with distinct users
- dynamic sensors: $\{A_t : t = n\Delta_T\}$, multi-coil MRI, radio-astronomy ...

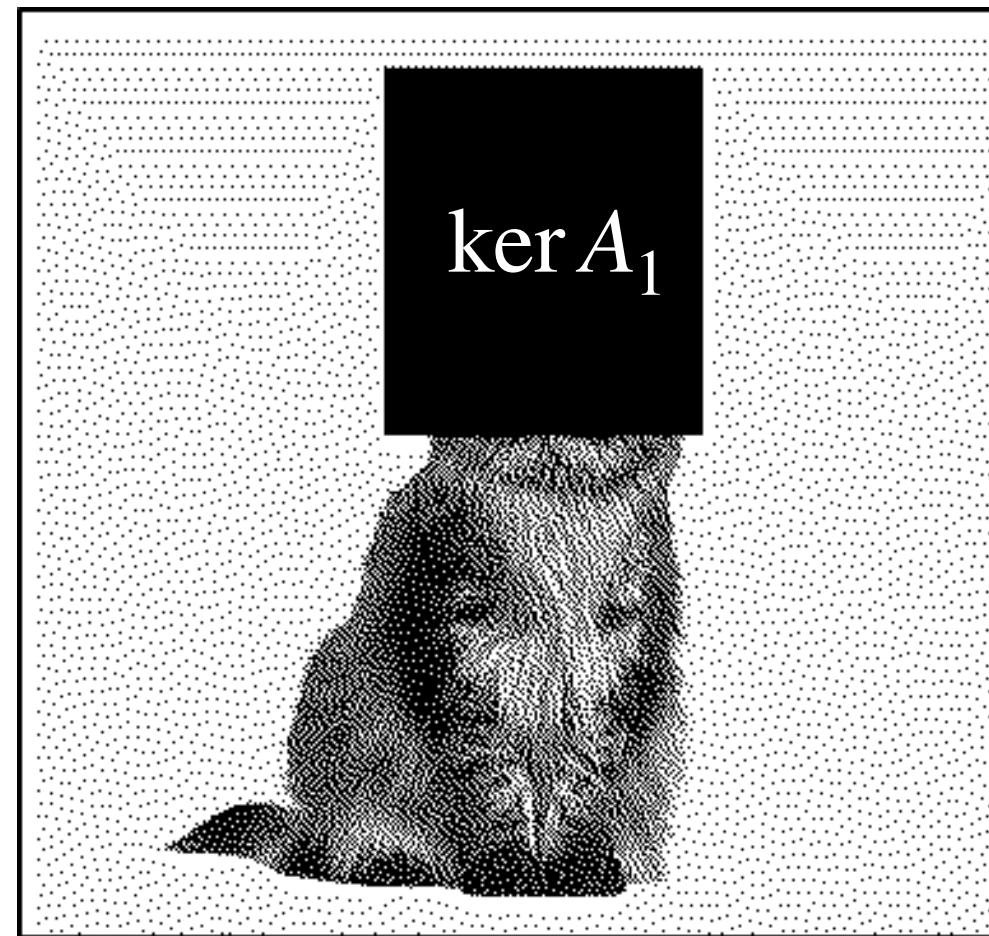
Principle (linear case):

Learning \mathcal{X} is possible if operators don't have the same kernel

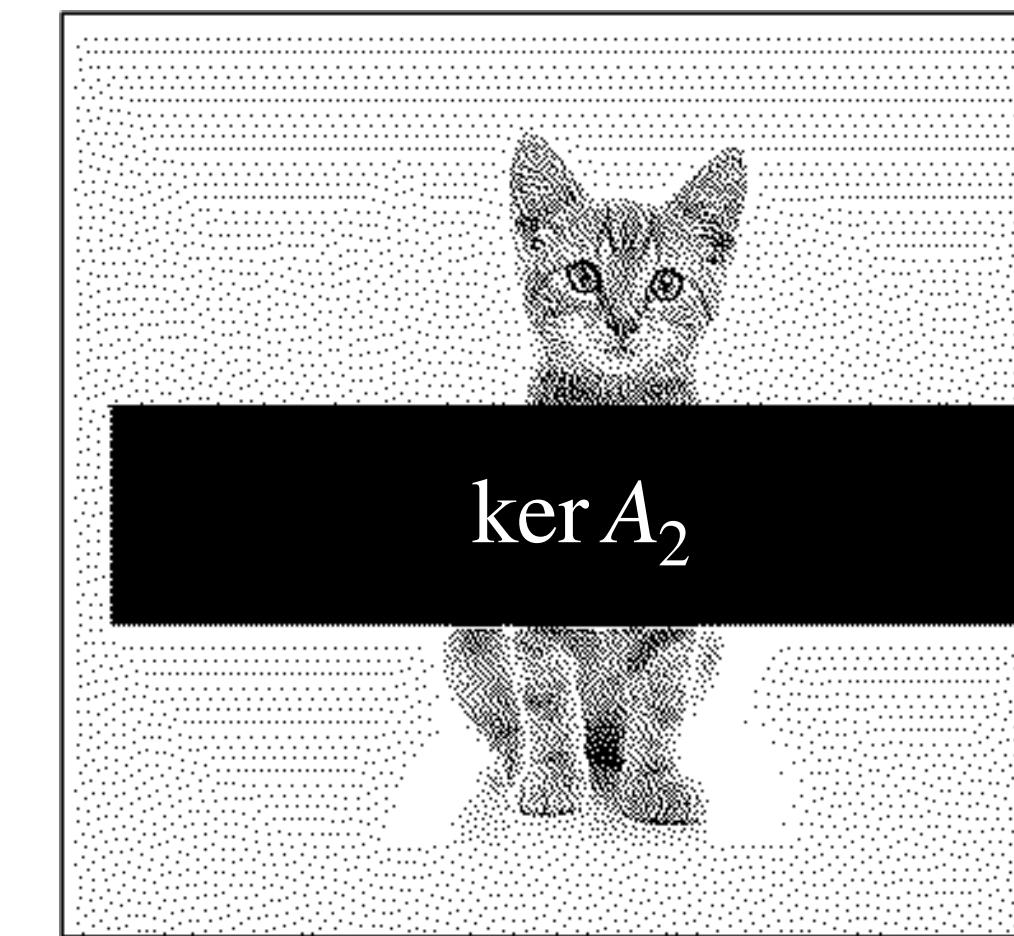
Sensing scenario 1: Multiple Operators

Measurements might be associated to $G \geq 1$ forward operators

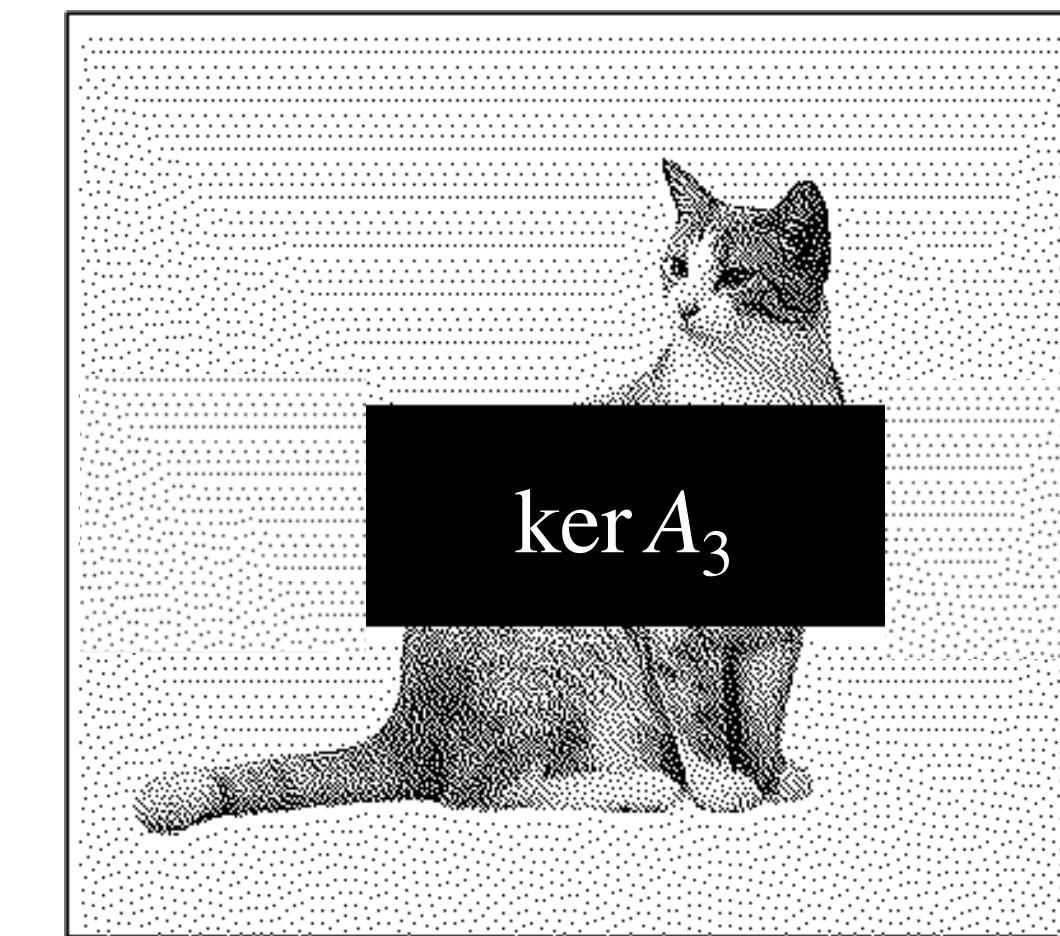
$\text{sign}(A_1 x_1)$



$\text{sign}(A_2 x_2)$



$\text{sign}(A_3 x_3)$



Examples:

- different access ratings for recommendation systems with distinct users
- dynamic sensors: $\{A_t : t = n\Delta_T\}$, multi-coil MRI, radio-astronomy ...

Principle (binary case):

Learning \mathcal{X} is possible if operators don't have the same kernel

Sensing scenario 2: Single operator & invariance

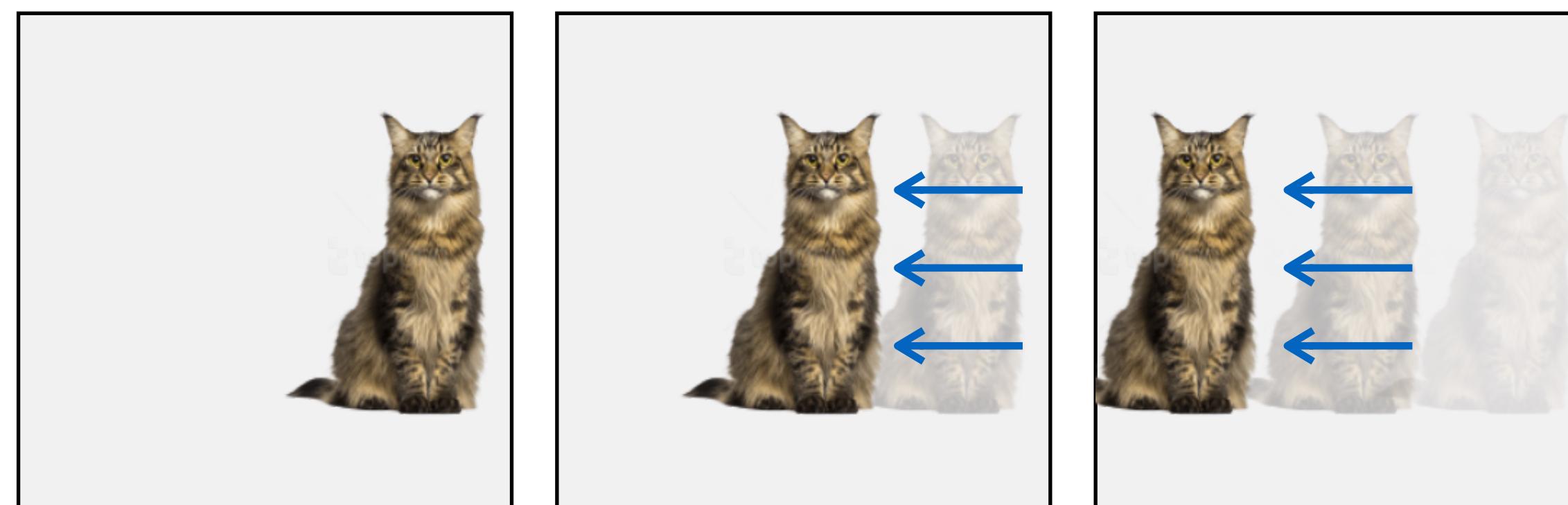
Most signals sets are invariant to groups of transformations:

$$\forall x \in \mathcal{X}, \quad \forall g \in \{1, \dots, G\}, \quad x' = T_g^{-1}x \in \mathcal{X}$$

(see S. Mataigne's seminar ;-))

(geometric prior)

Example: translation



Sensing scenario 2: Single operator & invariance

Most signals sets are invariant to groups of transformations:

$$\forall x \in \mathcal{X}, \quad \forall g \in \{1, \dots, G\}, \quad x' = T_g^{-1}x \in \mathcal{X}$$

(see S. Mataigne's seminar ;-))

(geometric prior)

For all $g \in \{1, \dots, G\}$ we have

(linear case)

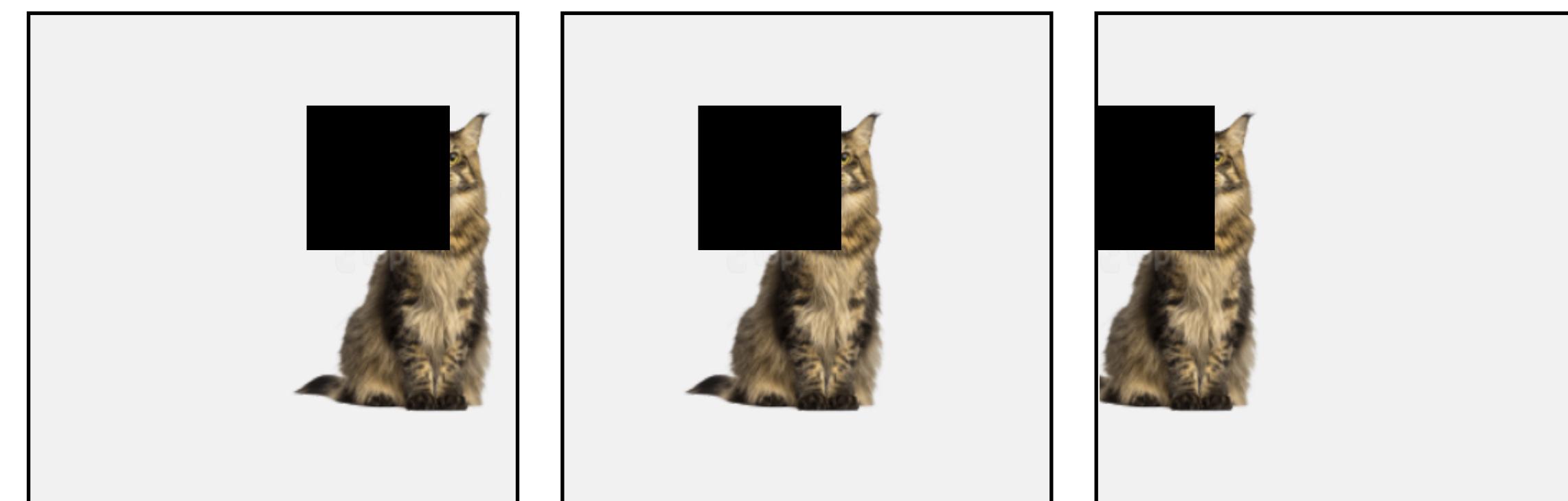
$$y = Ax = AT_g T_g^{-1}x = A_g x'$$

$\downarrow \quad \downarrow$
 $A_g \quad x'$

Implicit access to multiple operators

$$A_g = AT_g$$

AT_g for different g



Necessary condition

A is not equivariant:

$$AT_g \neq \tilde{T}_g A$$

for some \tilde{T}_g .

Do you see why?

Sensing scenario 2: Single operator & invariance

Most signals sets are invariant to groups of transformations:

$$\forall x \in \mathcal{X}, \quad \forall g \in \{1, \dots, G\}, \quad x' = T_g^{-1}x \in \mathcal{X}$$

(see S. Mataigne's seminar ;-)) (geometric prior)

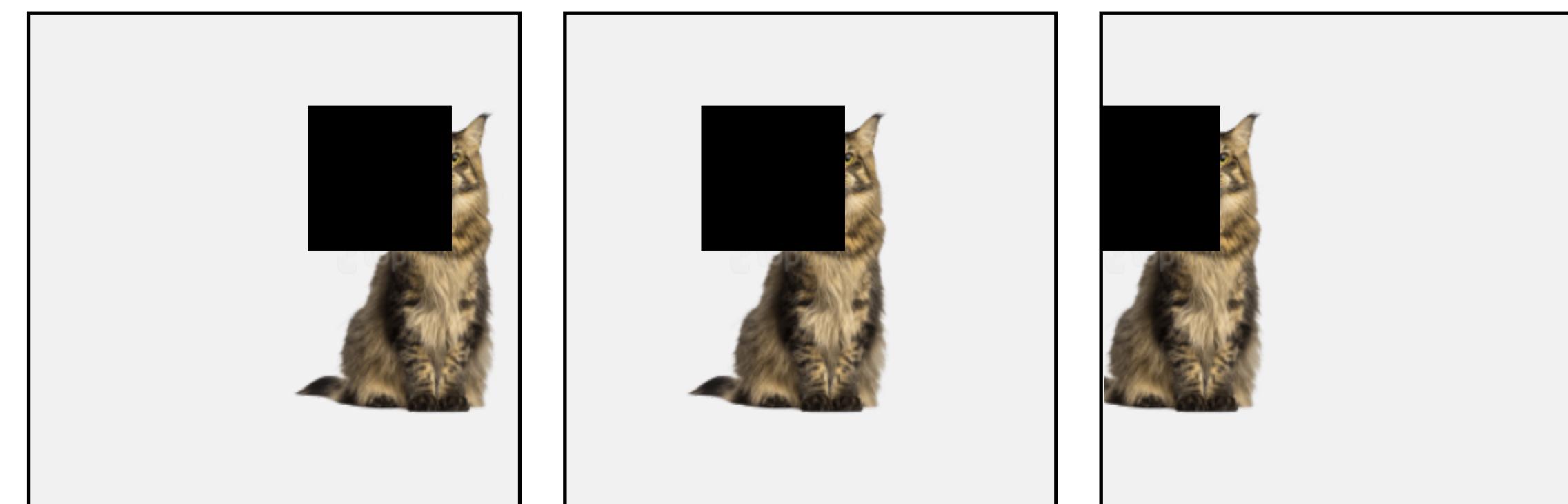
For all $g \in \{1, \dots, G\}$ we have (binary case)

$$y = \text{sign}(Ax) = \text{sign}(AT_g T_g^{-1}x) = \text{sign}(A_g x')$$

$\downarrow \quad \downarrow$
 $A_g \quad x'$

Implicit access to multiple operators

$$A_g = AT_g$$



Necessary condition

A is not equivariant:

$$AT_g \neq \tilde{T}_g A$$

for some \tilde{T}_g .

Do you see why?

Model identification: the problem

Assumption: enough points of \mathcal{X} have been observed for all operators.

∞ for now

(More on this later)

Model identification: the problem

Assumption: enough points of \mathcal{X} have been observed for all operators.

∞ for now

(More on this later)

Question: Given the observed sets

$$\{\mathcal{Y}_g := \text{sign}(A_g \mathcal{X})\}_{g=1}^G$$

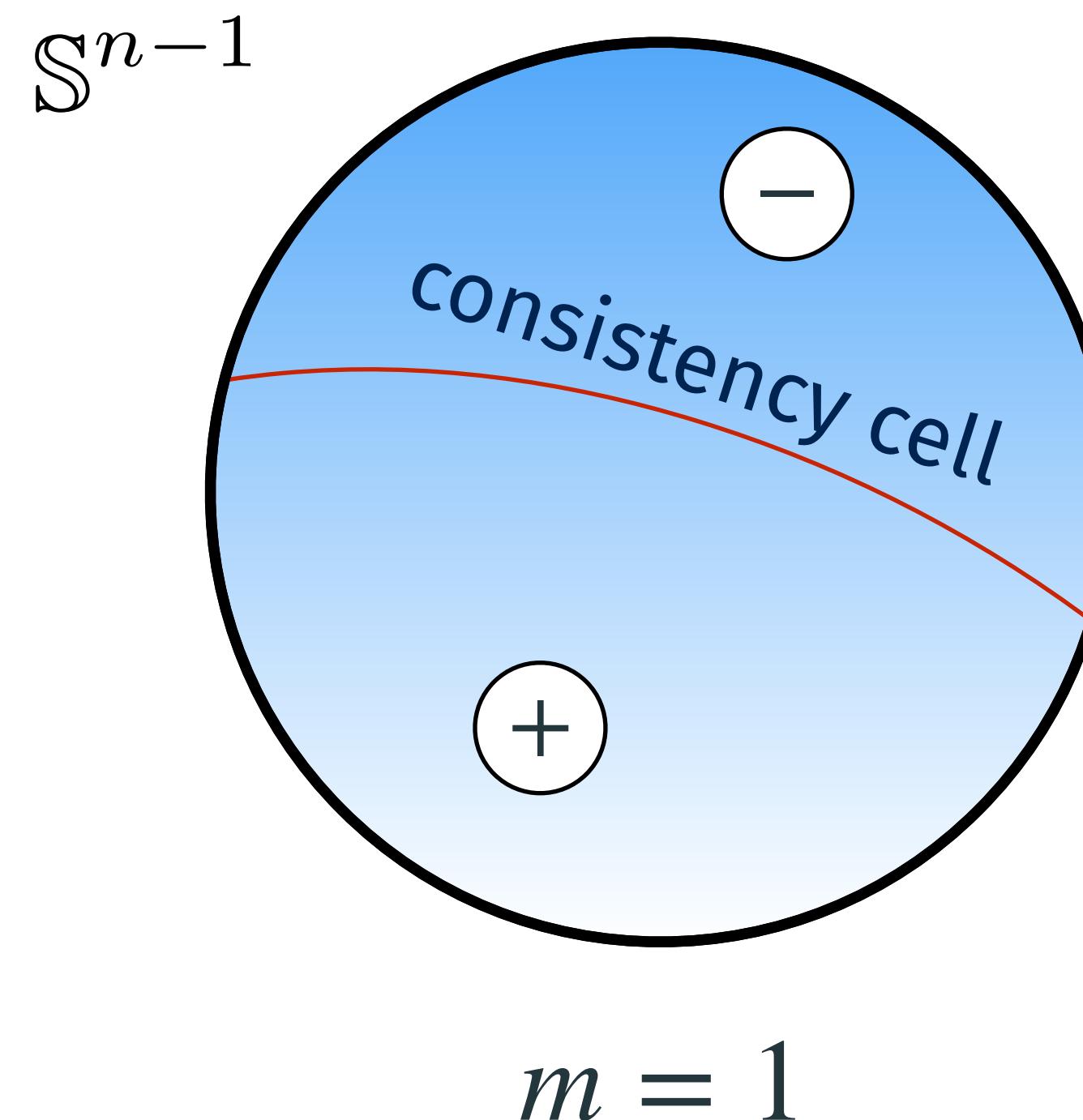
What's the best approximation $\hat{\mathcal{X}}$ of the signal set \mathcal{X} ?
meaning?

→ From $\hat{\mathcal{X}}$, a consistent (ideal) decoder reads:

$$f(y) \in \{x \in \mathbb{S}^{n-1} \mid \underbrace{\text{sign}(Ax) = y}_{\text{consistency}} \text{ and } \underbrace{x \in \hat{\mathcal{X}}}_{\text{approx. prior}}\}$$

Model identification: geometric intuition

Toy example: $n = 3$, $m \times n$ matrix A_g has Gaussian iid entries : $(A_g)_{ij} \sim_{\text{iid}} \mathcal{N}(0,1)$

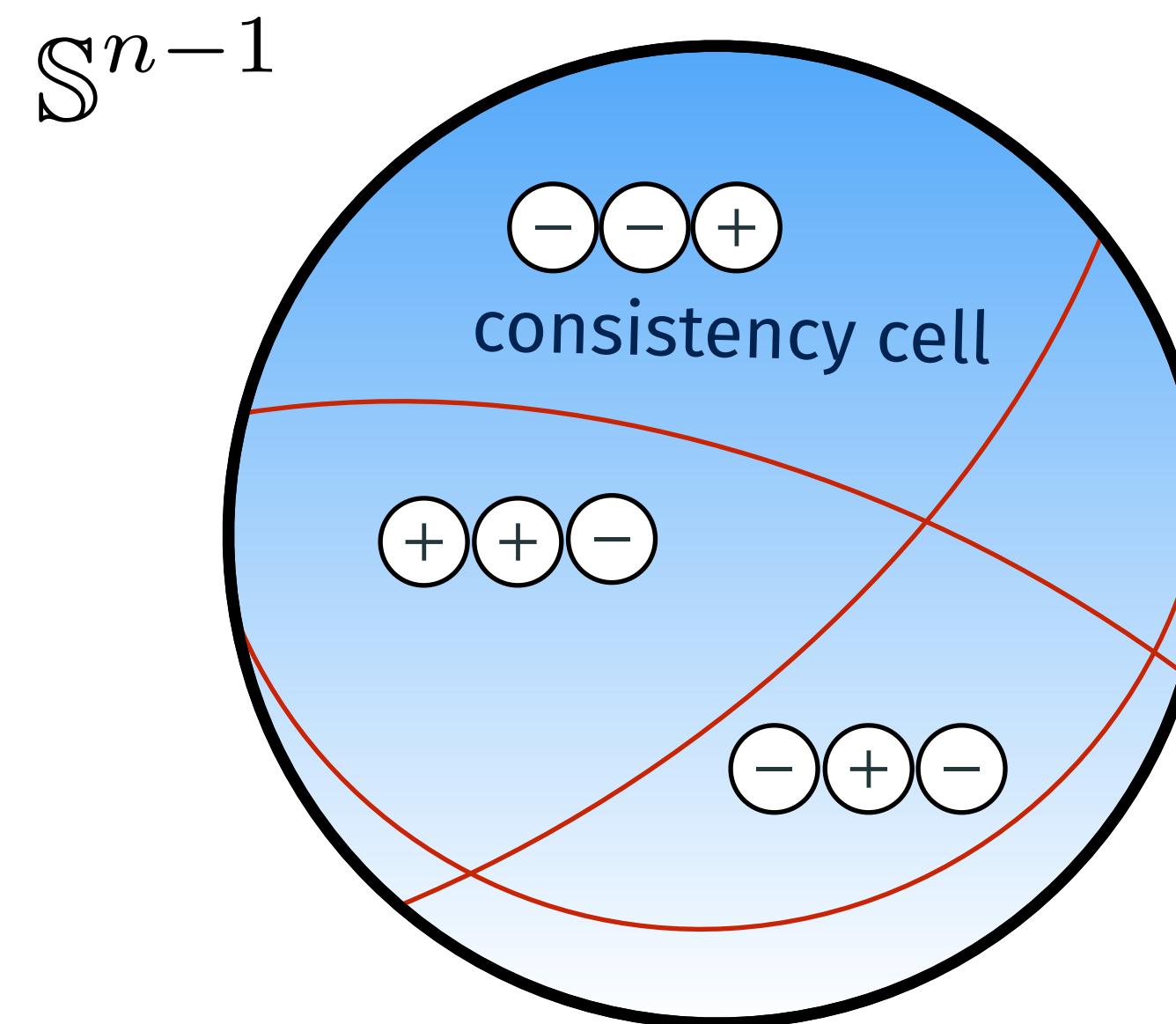


$\text{sign}(A_g \cdot)$ **tessellates** \mathbb{S}^{n-1}

Growing number of consistency cells as $m \uparrow$
(bounded by 2^m)

Model identification: geometric intuition

Toy example: $n = 3, m \times n$ matrix A_g has Gaussian iid entries : $(A_g)_{ij} \sim_{\text{iid}} \mathcal{N}(0,1)$

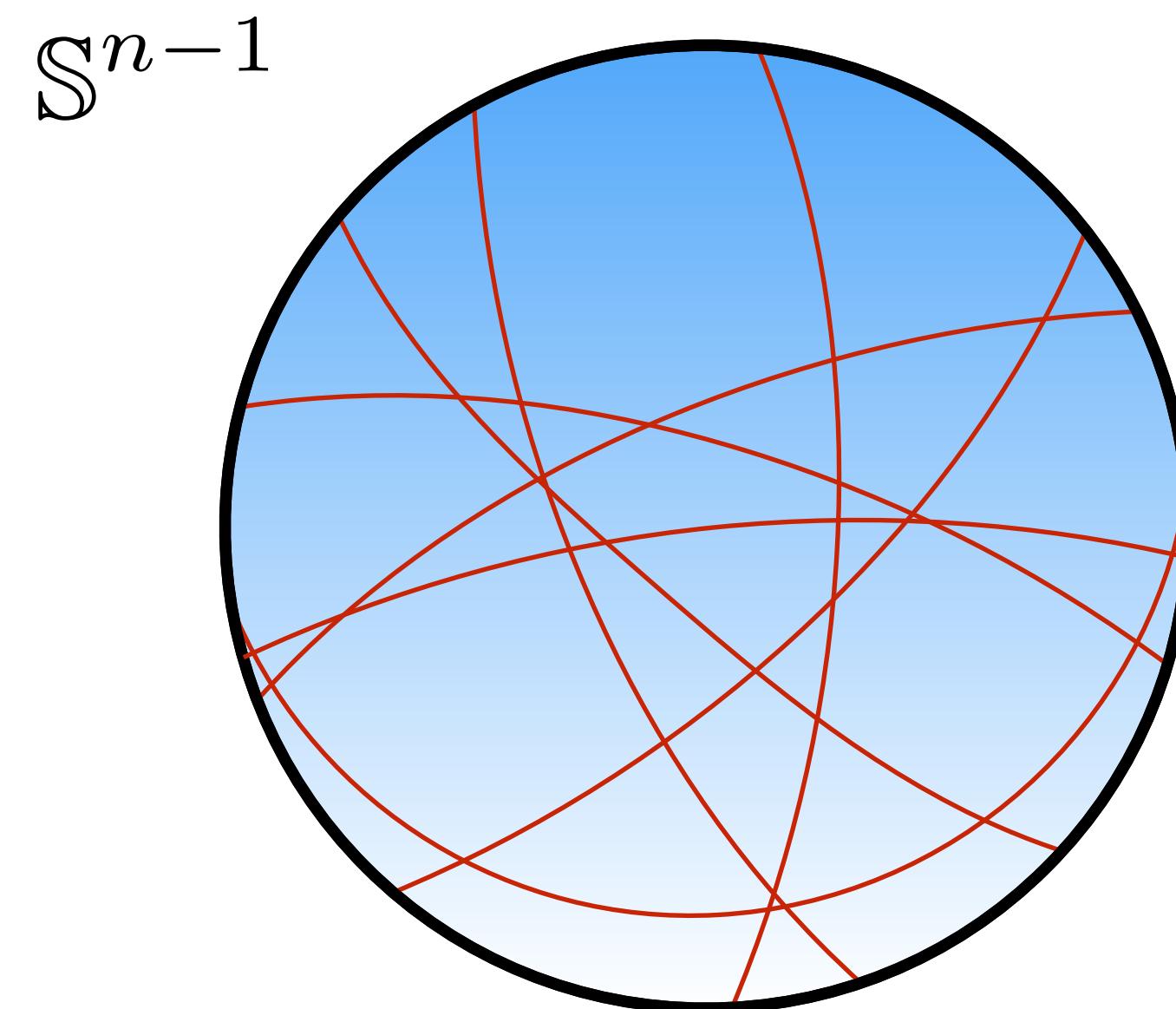


$\text{sign}(A_g \cdot)$ **tessellates** \mathbb{S}^{n-1}

Growing number of consistency cells as $m \uparrow$
(bounded by 2^m)

Model identification: geometric intuition

Toy example: $n = 3$, $m \times n$ matrix A_g has Gaussian iid entries : $(A_g)_{ij} \sim_{\text{iid}} \mathcal{N}(0,1)$

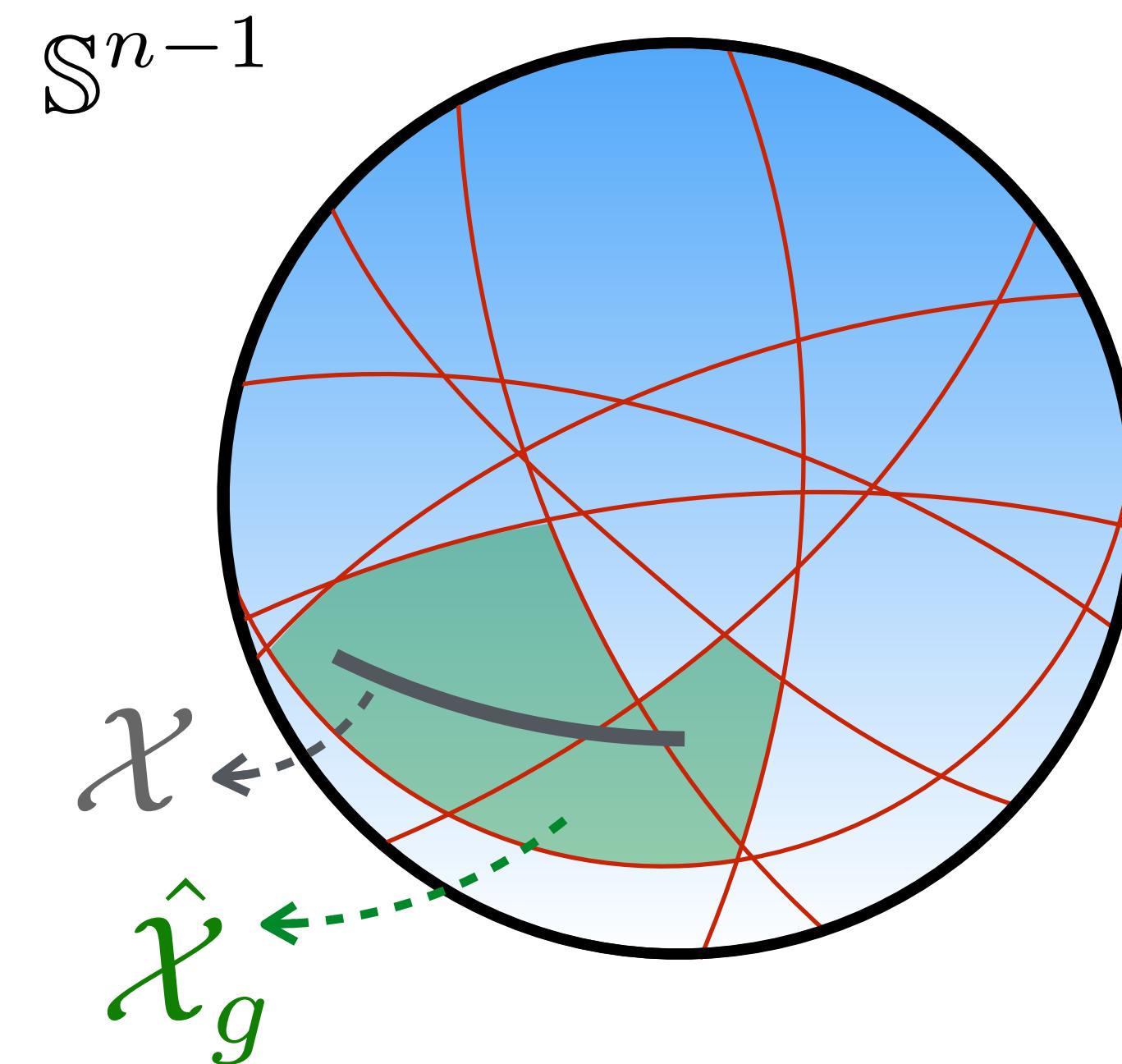


$\text{sign}(A_g \cdot)$ **tessellates** \mathbb{S}^{n-1}

Growing number of consistency cells as $m \uparrow$
(bounded by 2^m)

Model identification: geometric intuition

Toy example: $n = 3$, $m \times n$ matrix A_g has Gaussian iid entries : $(A_g)_{ij} \sim_{\text{iid}} \mathcal{N}(0,1)$



$\text{sign}(A_g \cdot)$ **tessellates** \mathbb{S}^{n-1}

Growing number of consistency cells as $m \uparrow$
(bounded by 2^m)

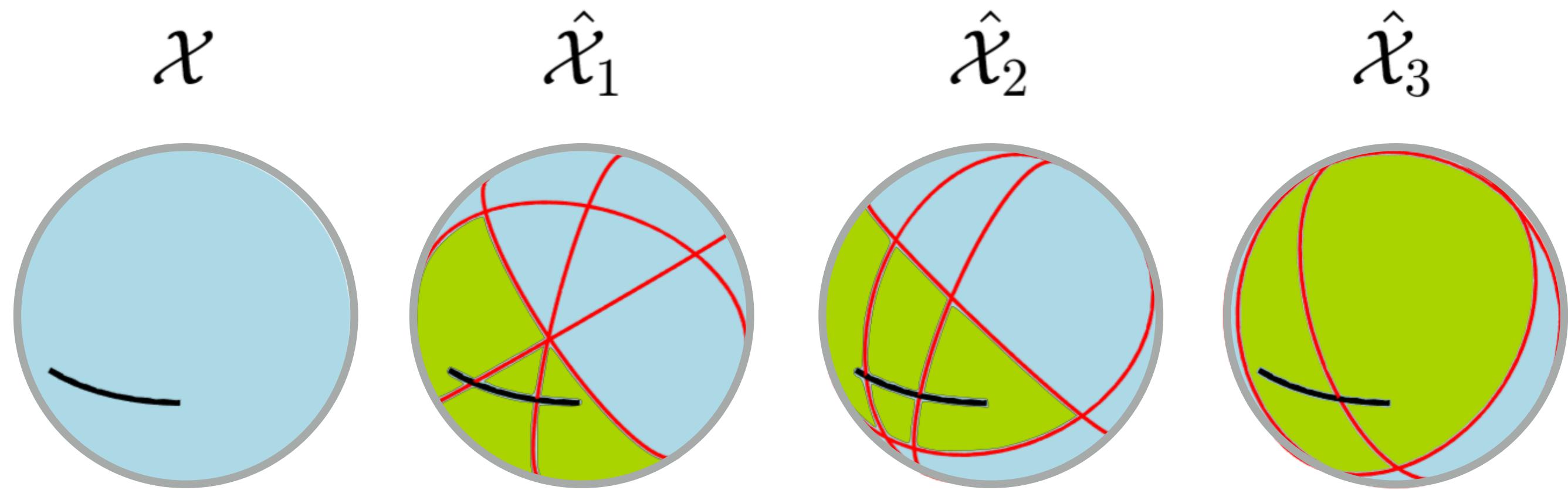
Let us define the biggest set binary consistent (wrt A_g) with \mathcal{X} :

$$\hat{\mathcal{X}}_g = \{v \in \mathbb{S}^{n-1} \mid \exists x \in \mathcal{X}, \text{sign}(A_g v) = \text{sign}(A_g x)\}$$

→ dilation of \mathcal{X} by the “uncertainty” of $\text{sign} \circ A_g$

Model identification: geometric intuition

Toy example: $n = 3$, $G = 3$, $m = 4$, $\mathcal{X} = \text{black line}$



A_1

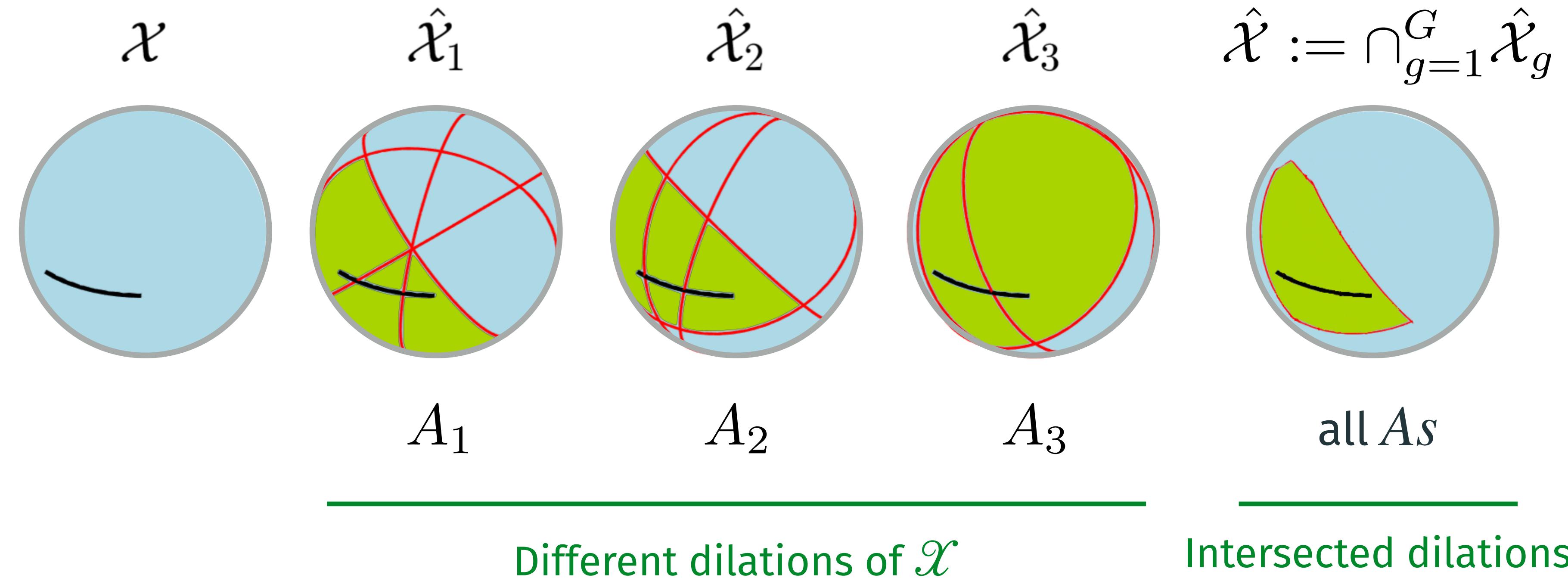
A_2

A_3

Different dilations of \mathcal{X}

Model identification: geometric intuition

Toy example: $n = 3$, $G = 3$, $m = 4$, \mathcal{X} = black line



Model identification: geometric intuition

Toy example: $n = 3, G = 3, m = 4, \mathcal{X} = \text{ black line}$



Identification error (definition)

Identify signal set up to global error $\delta \rightarrow \hat{\mathcal{X}}$ is in a δ -tube \mathcal{X}_δ

$$\hat{\mathcal{X}} \subseteq \mathcal{X}_\delta := \{v \in \mathbb{S}^{n-1} : \|x - v\| \leq \delta, x \in \mathcal{X}\}$$

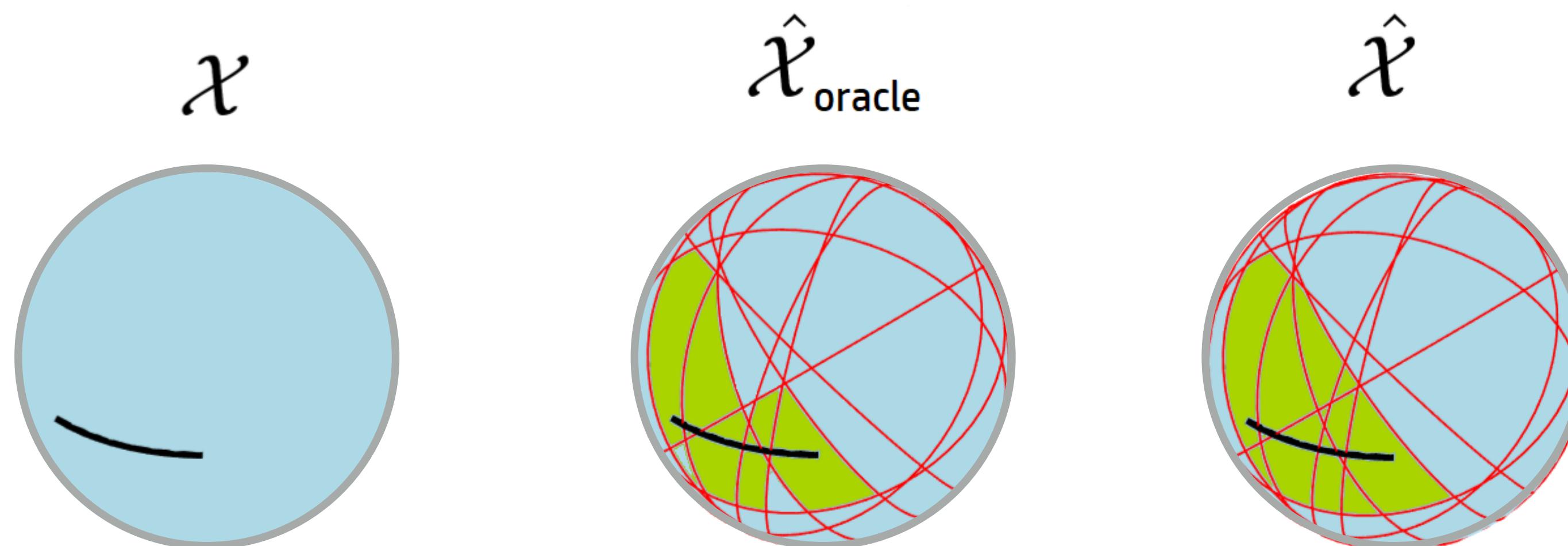
Upper/Lower bound on δ ? Sample complexity?

Lower bound on δ (via an *oracle* standpoint)

Oracle estimation: We access to G observations of each $x \in \mathcal{X}$

$$(\text{sign}(A_1 x), \dots, \text{sign}(A_G x)) \leftrightarrow \text{sign}(\bar{A} x) \in \{\pm 1\}^{mG}, \text{ with } \bar{A} = \begin{pmatrix} A_1 \\ \vdots \\ A_G \end{pmatrix} \in \mathbb{R}^{mG \times n}$$

$$\hat{\mathcal{X}}_{\text{oracle}} = \{v \in \mathbb{S}^{n-1} \mid \exists x \in \mathcal{X}, \text{sign}(\bar{A}v) = \text{sign}(\bar{A}x)\}$$



Lower bound on δ (via an *oracle* standpoint)

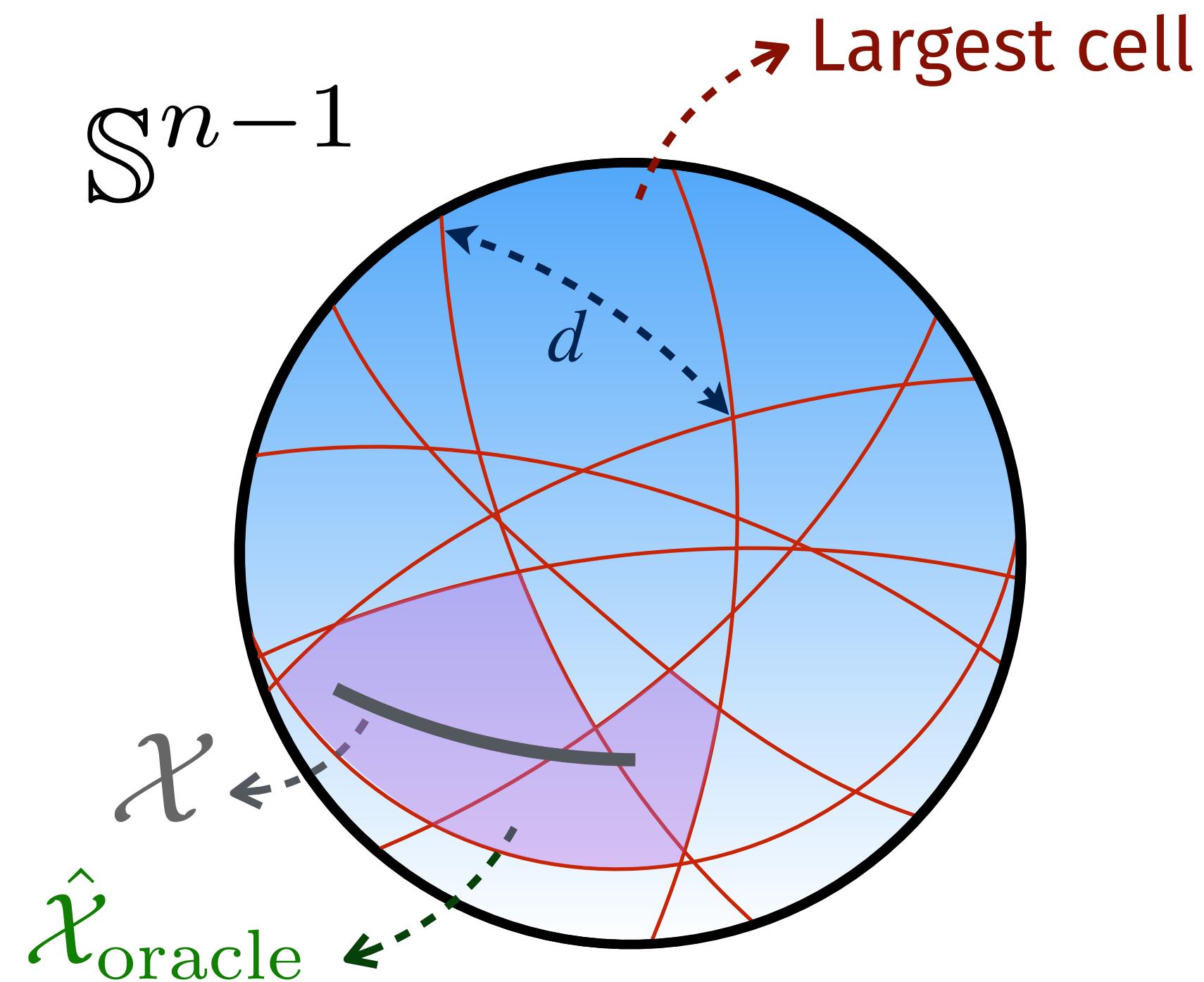
Question: smallest δ such that $\mathcal{X}_{\text{oracle}} \subset \mathcal{X}_\delta$? (*whatever \mathcal{X} 's orientation*)

Lower bound on δ (via an *oracle* standpoint)

Question: smallest δ such that $\mathcal{X}_{\text{oracle}} \subset \mathcal{X}_\delta$? (whatever \mathcal{X} 's orientation)

Theorem: for any set $\mathcal{X} \subset \mathbb{S}^{n-1}$, there exists a rotated set \mathcal{X}' s.t.

$$\delta \geq d := \text{diameter largest consistency cell of } \text{sign}(\bar{A} \cdot)$$

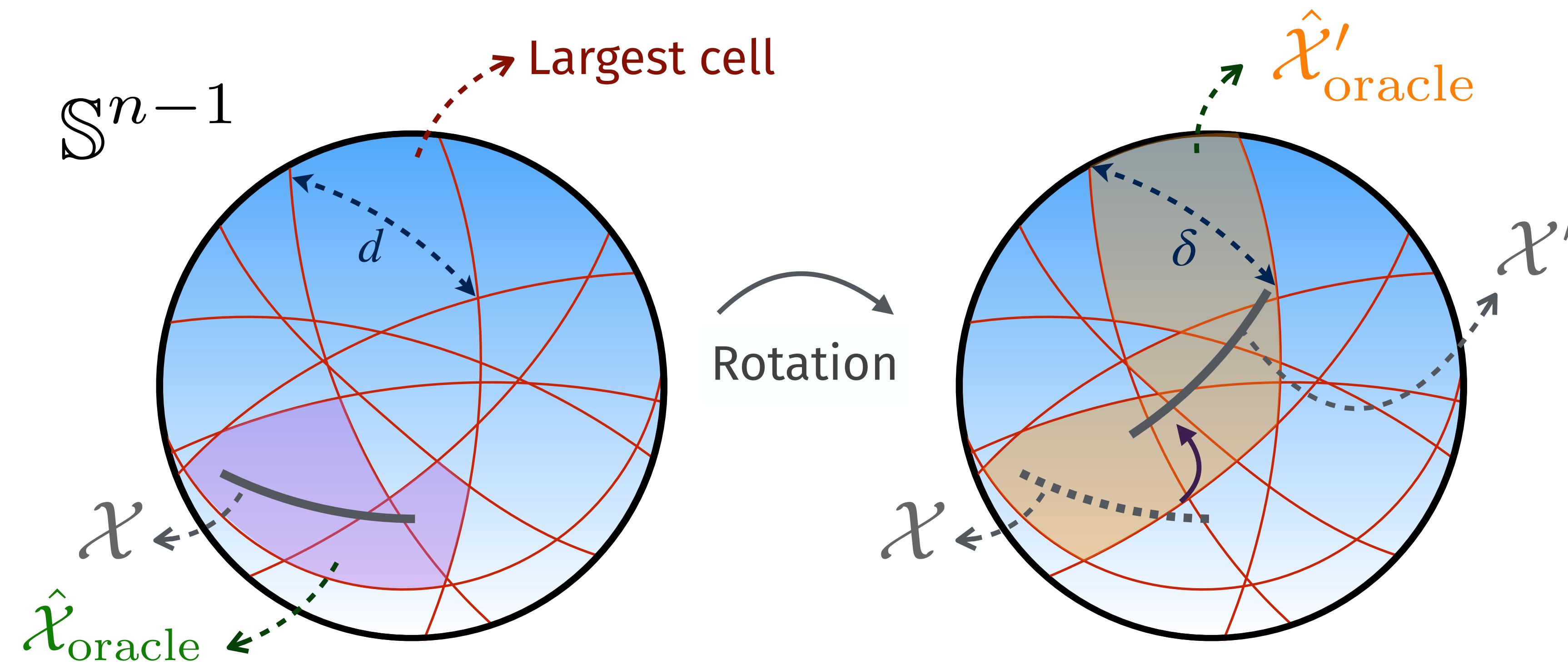


Lower bound on δ (via an *oracle* standpoint)

Question: smallest δ such that $\mathcal{X}_{\text{oracle}} \subset \mathcal{X}_\delta$? (whatever \mathcal{X} 's orientation)

Theorem: for any set $\mathcal{X} \subset \mathbb{S}^{n-1}$, there exists a rotated set \mathcal{X}' s.t.

$$\delta \geq d := \text{diameter largest consistency cell of } \text{sign}(\bar{A} \cdot)$$



Lower bound on δ (via an *oracle* standpoint)

Question: smallest δ such that $\mathcal{X}_{\text{oracle}} \subset \mathcal{X}_\delta$? (whatever \mathcal{X} 's orientation)

Theorem: for any set $\mathcal{X} \subset \mathbb{S}^{n-1}$, there exists a rotated set \mathcal{X}' s.t.

$$\delta \geq d := \text{diameter largest consistency cell of } \text{sign}(\bar{A} \cdot)$$

Consequences: we can show the following

1. If $\text{rank}(\bar{A}) < n$, \exists consistency cells with diameter 2

→ Model identification error is trivially large

Proof: Given $x = \bar{A}^\top u$, for some u , define $x_\pm := \frac{x \pm v}{\|x \pm v\|}$ with unit vector $v \in \ker \bar{A} (\neq 0)$,
We have:

- $\|x_\pm\|^2 = \|x\|^2 + \|v\|^2 = 1 + \|x\|^2$
- $\text{sign } \bar{A}x_+ = \text{sign } \bar{A}x_- = \text{sign } \bar{A}x \rightarrow x_+, x_-$ are unit vectors in the same cell

Moreover,

$$\text{dist}(x_+, x_-) = \frac{2\|v\|}{\sqrt{\|x\| + \|v\|}} = \frac{2}{\sqrt{1 + \|x\|}} \quad (\rightarrow 2, \text{ if } \|x\| \rightarrow 0)$$

Lower bound on δ (via an *oracle* standpoint)

Question: smallest δ such that $\mathcal{X}_{\text{oracle}} \subset \mathcal{X}_\delta$? (whatever \mathcal{X} 's orientation)

Theorem: for any set $\mathcal{X} \subset \mathbb{S}^{n-1}$, there exists a rotated set \mathcal{X}' s.t.

$$\delta \geq d := \text{diameter largest consistency cell of } \text{sign}(\bar{A} \cdot)$$

Consequences: we can show the following

1. If $\text{rank}(\bar{A}) < n$, \exists consistency cells with diameter 2
→ Model identification error is trivially large
2. We need at least $m > n/G$ measurements per operator
→ No learning of \mathcal{X} with $G = 1$ (w/o invariance)

Lower bound on δ (via an *oracle* standpoint)

Question: smallest δ such that $\mathcal{X}_{\text{oracle}} \subset \mathcal{X}_\delta$? (whatever \mathcal{X} 's orientation)

Theorem: for any set $\mathcal{X} \subset \mathbb{S}^{n-1}$, there exists a rotated set \mathcal{X}' s.t.

$$\delta \geq d := \text{diameter largest consistency cell of } \text{sign}(\bar{A} \cdot)$$

Consequences: we can show the following

1. If $\text{rank}(\bar{A}) < n$, \exists consistency cells with diameter 2
 - Model identification error is trivially large
2. We need at least $m > n/G$ measurements per operator
 - No learning of \mathcal{X} with $G = 1$ (w/o invariance)
3. The maximum cell radius $\geq \frac{2n}{3mG}$ (counting argument)
 - δ cannot decrease faster than $\propto m^{-1}G^{-1}$

Thao & Vetterli (1996, Theorem A.7)

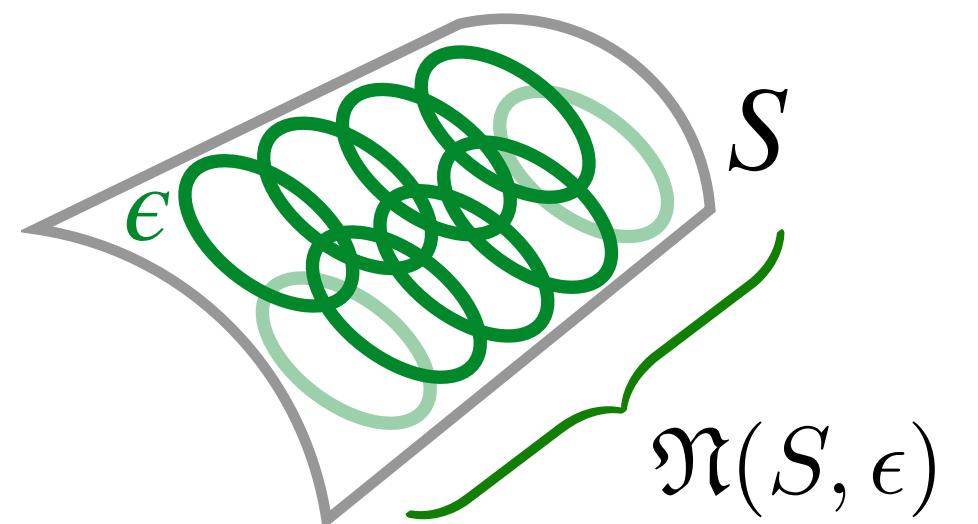
$$|\{\text{sign}(\bar{A}\mathcal{X})\}| \leq \binom{mG}{n} 2^n$$

Upper bound on δ (with the help of randomness)

Definition: $\text{boxdim}(S) = \limsup_{\epsilon \rightarrow 0^+} \frac{\log \mathfrak{N}(S, \epsilon)}{\log 1/\epsilon}$

Assumption: The signal set \mathcal{X} is **low-dimensional**

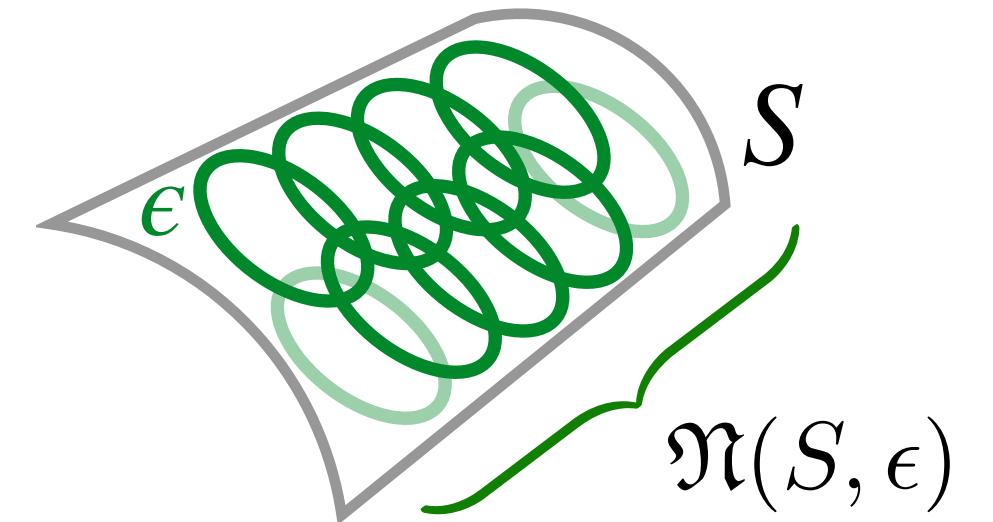
$\leftrightarrow \mathcal{X}$ has box-counting dimension $k \ll n$



Examples: sparse dictionaries, manifold models, etc.

Upper bound on δ (with the help of randomness)

Definition: $\text{boxdim}(S) = \limsup_{\epsilon \rightarrow 0^+} \frac{\log \mathfrak{N}(S, \epsilon)}{\log 1/\epsilon}$



Assumption: The signal set \mathcal{X} is **low-dimensional**

$\leftrightarrow \mathcal{X}$ has box-counting dimension $k \ll n$

Examples: sparse dictionaries, manifold models, etc.

Theorem. If $\text{boxdim}(\mathcal{X}) < k$ and distinct operators $A_1, \dots, A_G \in \mathbb{R}^{m \times n}$ have i.i.d. Gaussian entries with

$$m > \frac{4}{\delta} \left(k + \frac{n}{G} \right) \log \left(\frac{5\sqrt{n}}{m} \right) + \frac{1}{G} \log \frac{1}{\xi} + \frac{n}{G} \log 3,$$

$$\leftrightarrow m \simeq \left(k + \frac{n}{G} \right)$$

then

$$\mathbb{P}(\hat{\mathcal{X}} \subseteq \mathcal{X}_\delta) \geq 1 - \xi.$$

Upper bound on δ (with the help of randomness)

Consequences of this theorem:

→ The identification error of \mathcal{X} decreases as

$$\delta = \frac{(k + \frac{n}{G})}{m} \log\left(\frac{nm}{k + \frac{n}{G}}\right)$$

→ We require at least $m \geq k + \frac{n}{G}$ measurements *per operator*

Upper bound on δ (with the help of randomness)

Consequences of this theorem:

→ The identification error of \mathcal{X} decreases as

$$\delta = \frac{(k + \frac{n}{G})}{m} \log\left(\frac{nm}{k + \frac{n}{G}}\right)$$

→ We require at least $m \geq k + \frac{n}{G}$ measurements *per operator*

→ For $G > \frac{n}{k}$, error $\delta \sim$ signal recovery error in one-bit compressive sensing

Any consistent decoder f s.t.
 $y \in \{\pm 1\}^m \mapsto f(y) \in \{x \in \mathbb{S}^{n-1} \mid \text{sign}(Ax) = y \text{ and } x \in \mathcal{X}\}$
has an error $\max_{x \in \mathcal{X}} \|x - f(\text{sign}(Ax))\| = O\left(\frac{k}{m}\right)$

[LJ, J. Laska, P. Boufounos, R. Baraniuk, 2013]

Sample Complexity bound (again with randomness)

How many binary observations N to hope to estimate $\hat{\mathcal{X}}$?

→ an upper bound on N is $\bigcup_{g=1}^G |\text{sign}(A_g \mathcal{X})|$

Theorem. If $\text{boxdim}(\mathcal{X}) < k$ and $A_1, \dots, A_G \in \mathbb{R}^{m \times n}$ have i.i.d. Gaussian entries, then, with probability exceeding $1 - \frac{1024}{9m^2n}$, there are

$$N \leq G \left(\frac{m\sqrt{n}}{k} \right)^{8k}$$

possible different measurements vectors.

→ Exponential in the model $\dim k$ but not the ambient dimension n !

Algorithms

Learning to reconstruct from binary measurements **in practice?**

Goal:

Learning a reconstruction network $\hat{x} = f_\theta(y, A_g)$

with a **self-supervised loss** \mathcal{L} which uses $\{(y_i, A_{g_i})\}_{i=1}^N$

Warning:

No clear link with the theory (yet)

Multi-operator case

Self-supervised training loss: given a reconstruction model f_θ

$$\arg \min_{\theta} \mathcal{L}_{\text{MC}}(\theta)$$

with:

$$\mathcal{L}_{\text{MC}}(\theta) := \sum_{i=1}^N \log [1 + \exp (-y_i A_{g_i} f_\theta(y_i, A_{g_i}))] \quad (\text{Logistic loss})$$

→ promotes **measurement consistency**: $y_i \approx \text{sign}(A_{g_i} f_\theta(y_i, A_{g_i}))$

Problem: the function $f_\theta(y, A_g) = A_g^\dagger y := A_g^\top (A_g A_g^\top)^{-1} y$ is a consistent reconstruction

→ f_θ acts independently for each A_g → no gain in increasing G !

Multi-operator case

Self-supervised training loss: given a reconstruction model f_θ

$$\arg \min_{\theta} \mathcal{L}_{\text{MC}}(\theta) + \mathcal{L}_{\text{CC}}(\theta)$$

with:

$$\mathcal{L}_{\text{MC}}(\theta) := \sum_{i=1}^N \log [1 + \exp (-y_i A_{g_i} f_\theta(y_i, A_{g_i}))] \quad (\text{Logistic loss})$$

→ promotes **measurement consistency**: $y_i \approx \text{sign}(A_{g_i} f_\theta(y_i, A_{g_i}))$

$$\mathcal{L}_{\text{CC}}(\theta) := \sum_{i=1}^N \sum_{s=1}^G \|f_\theta(A_s f_\theta(y_i, A_{g_i}), A_s) - f_\theta(y_i, A_{g_i})\|^2 \quad (\text{Square loss})$$

→ promotes **cross-operator consistency**, e.g., prevents MC sol $f_\theta(y, A_g) = A_g^\dagger y$

Remarks:

- Network-agnostic scheme (applicable to any existing deep model)
- We called this “*Self-Supervised learning loss for training reconstruction networks from Binary Measurement data alone*” (SSBM)

Single operator with equivariance

Self-supervised training loss: given a reconstruction model f_θ

$$\arg \min_{\theta} \mathcal{L}_{\text{MC}}(\theta) + \mathcal{L}_{\text{Eq}}(\theta)$$

with:

$$\mathcal{L}_{\text{MC}}(\theta) := \sum_{i=1}^N \log [1 + \exp (-y_i A_{g_i} f_\theta(y_i, A_{g_i}))] \quad (\text{Logistic loss})$$

→ promotes **measurement consistency**: $y_i \approx \text{sign}(A_{g_i} f_\theta(y_i, A_{g_i}))$

$$\mathcal{L}_{\text{Eq}}(\theta) := \sum_{i=1}^N \sum_{g=1}^G \|f_\theta(AT_g f_\theta(y_i, A), AT_g) - T_g f_\theta(y_i, A)\|^2 \quad (\text{Square loss})$$

→ promotes **equivariance** of $f_\theta \circ A$: $(f \circ A)(T_g \cdot) = T_g(f \circ A)(\cdot)$

Remarks:

- Network-agnostic scheme (applicable to any existing deep model)
- We called this “*Self-Supervised learning loss for training reconstruction networks from Binary Measurement data alone*” (SSBM)

Experiments

Operators

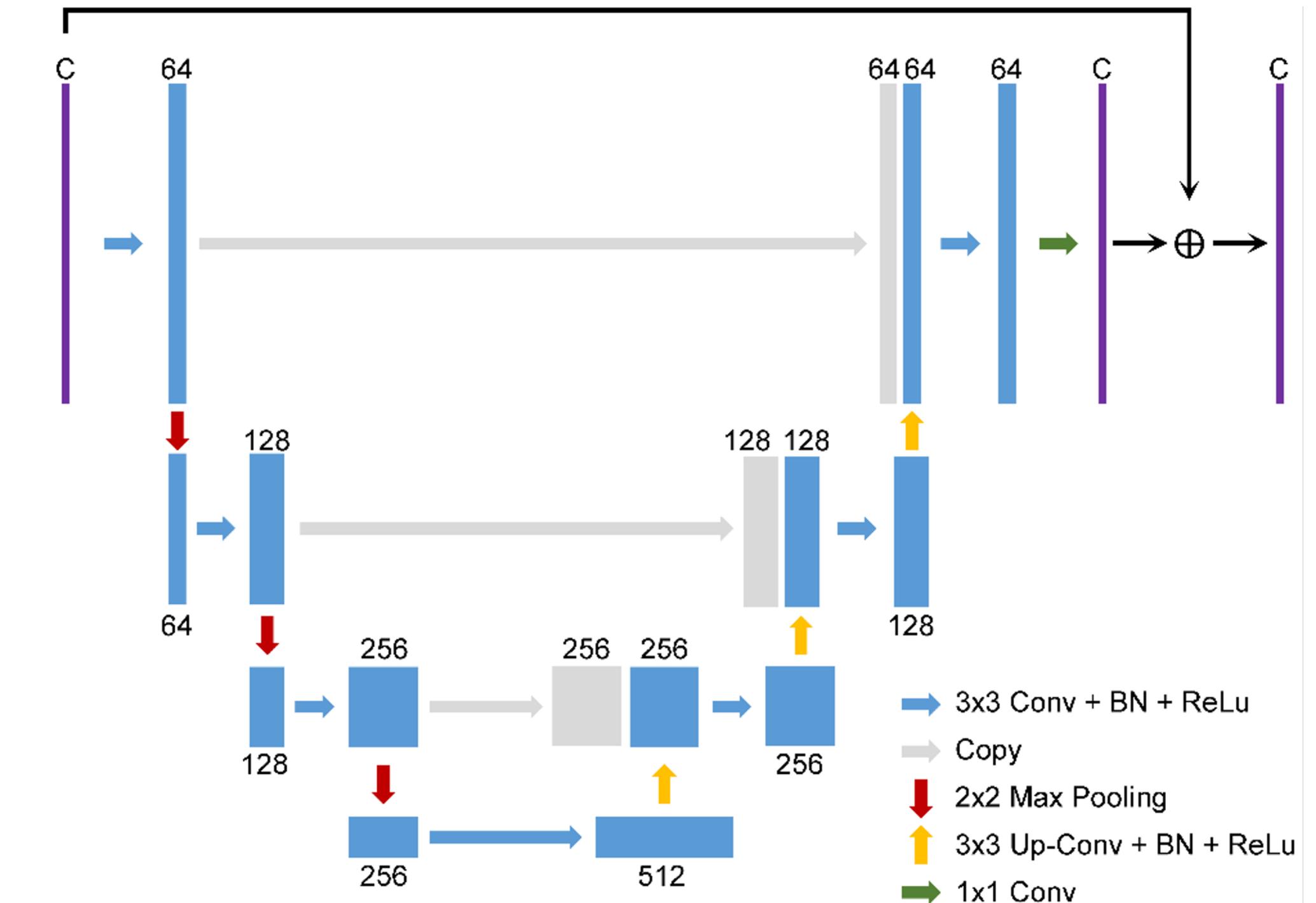
- ▶ $\{A_g\}_{g=1}^G$ with Gaussian iid entries

Network

- ▶ $f_\theta(y, A) = g_\theta \circ A^\top(y)$
where g_θ is a U-net CNN

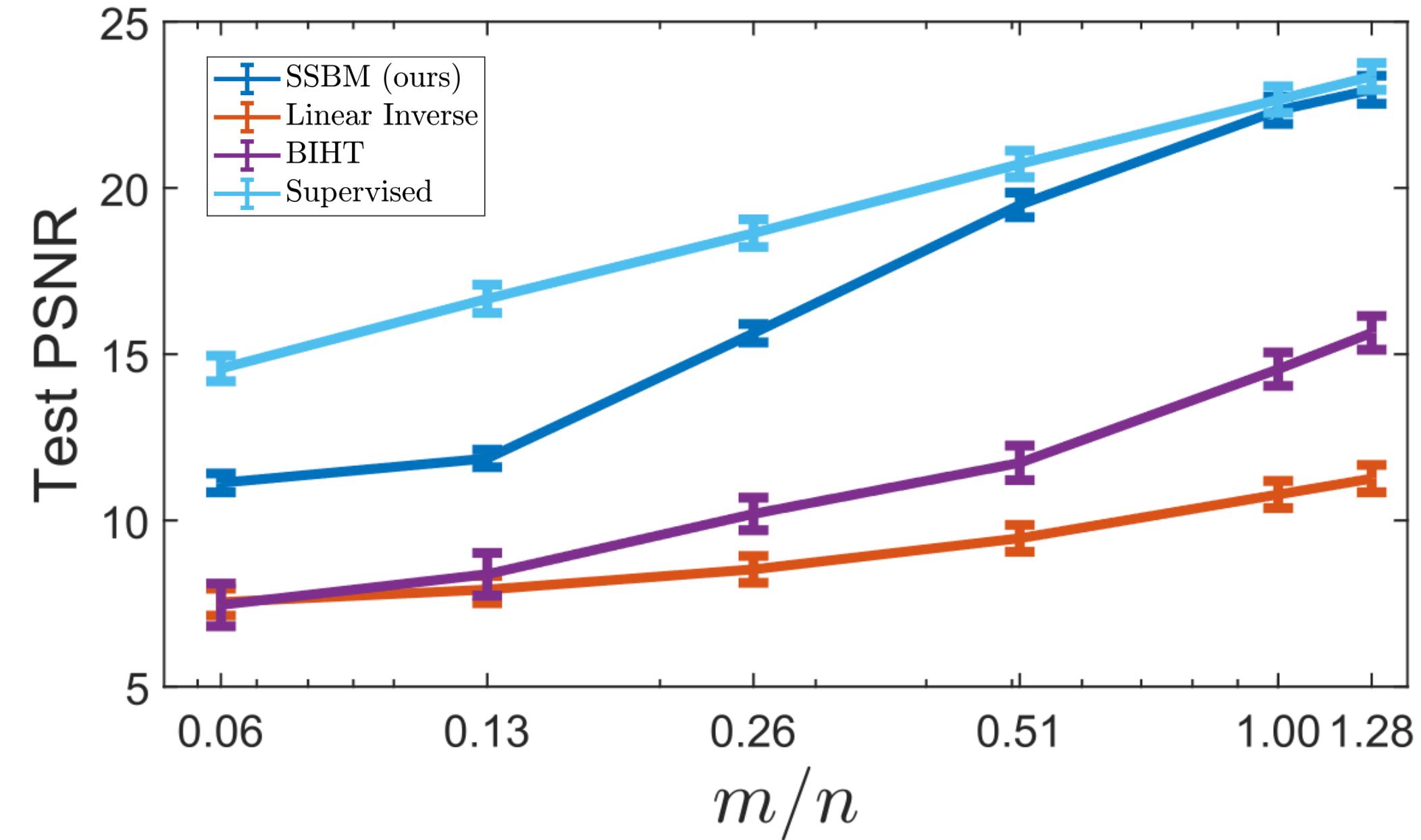
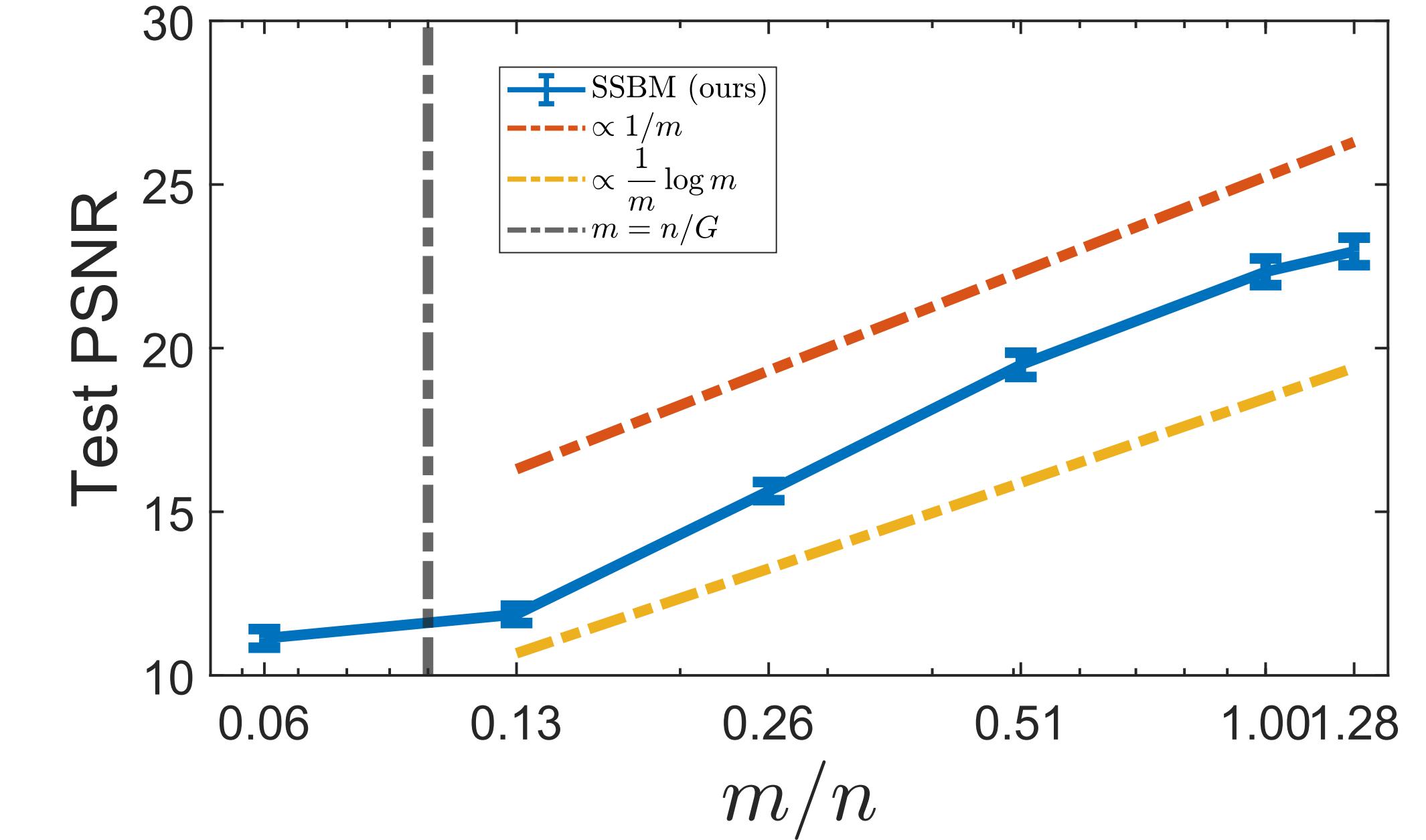
Comparison with

- ▶ Linear inverse $A^\top y_i$ (no training)
- ▶ Binary IHT (BIHT) with wavelets (no training)
- ▶ Fully supervised loss
- ▶ **SSBM (proposed)**



MNIST dataset

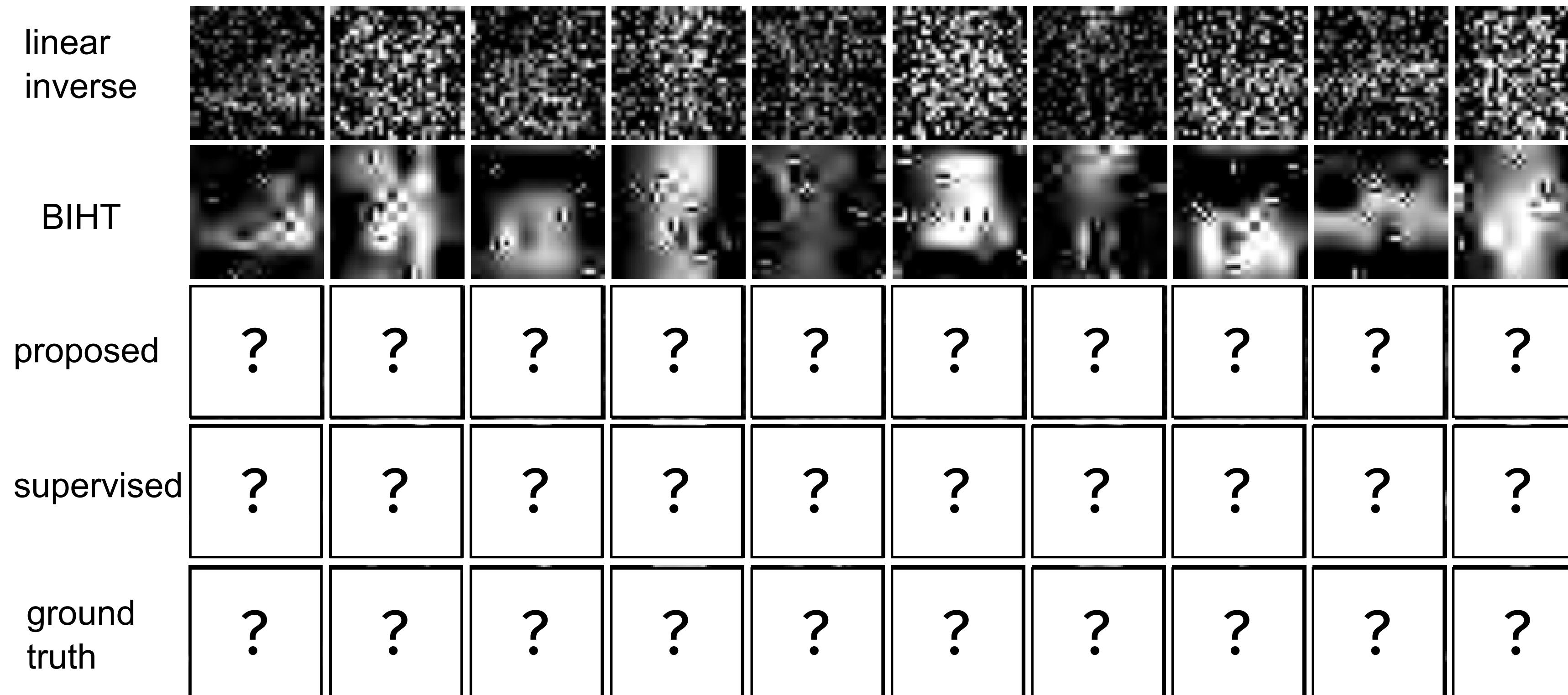
Multiple operators ($G = 10$), images have $n = 784$ pixels.



Test PSNR := $\frac{1}{N'} \sum_{i=1}^{N'} \text{PSNR} (x'_i, f_\theta (\text{sign} (A_{g_i} x'_i), A_{g_i}))$, $x'_i \in \text{"test set"}$

Fashion MNIST dataset

Multiple operators ($G=10$), with $m=300$, images have $n=784$ pixels.



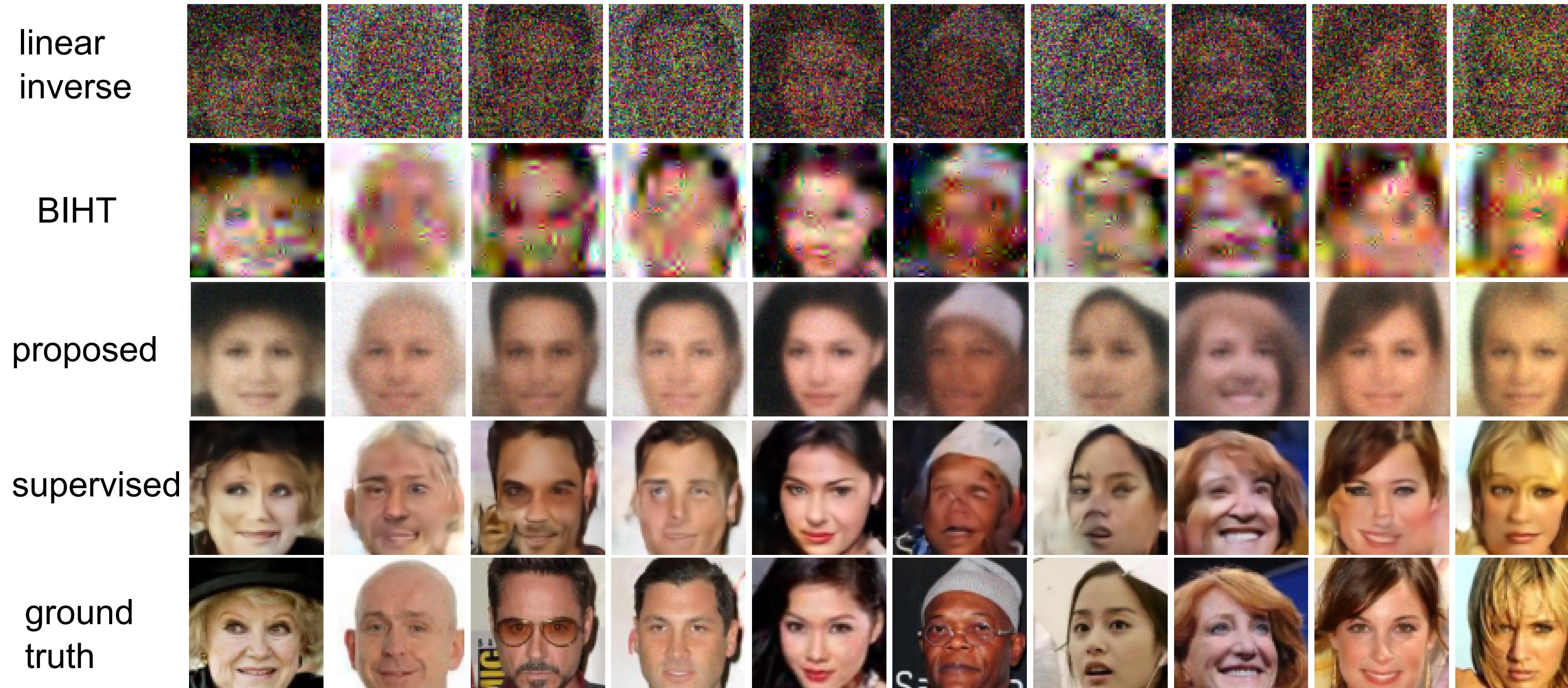
Fashion MNIST dataset

Multiple operators ($G=10$), with $m=300$, images have $n=784$ pixels.



CelebA dataset

Multiple operators (G=10) with m=9830, images have n=49152 pixels.



Conclusion and take-away messages

New unsupervised learning framework for binary data

Theory: we have studied several conditions for learning \mathcal{X} , e.g.,

- ▶ Lower and upper bounds on its identification error δ
- ▶ Required number of measurements N

Practice: Deep learning approach

- ▶ Self-supervised loss which can be applied to any model

Ongoing/future work

- ▶ Other non-linear inverse problems (such as *saturation*, or *phase retrieval* $|Ax|^2$)
- ▶ Upper bounds for the invariant case?
- ▶ Noise/dither ? $y = \text{sign}(Ax + \epsilon)$

Thank you!

- ❑ Chen, Tachella and Davies, “[Robust Equivariant Imaging: a fully unsupervised framework for learning to image from noisy and partial measurements](#)”, CVPR 2022 (Oral)
- ❑ Chen, Tachella and Davies, “[Equivariant Imaging: Learning Beyond the Range Space](#)”, ICCV 2021 (Oral)
- ❑ Tachella, Chen and Davies, “[Unsupervised Learning From Incomplete Measurements for Inverse Problems](#)”, NeurIPS 2022.
- ❑ Tachella, Chen and Davies, “[Sensing Theorems for Unsupervised Learning in Inverse Problems](#)”, JMLR 2023.
- ❑ Chen, Davies, Eerhardt, Schonlieb, Ferry and Tachella, “[Imaging with Equivariant Deep Learning](#)”, IEEE SPM 2023.
- ❑ **Tachella and Jacques, “[Learning to Reconstruct Signals from Binary Measurements](#)”, TMLR+ICLR’24, 2023**

... and others on demand