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Inverse problems (IP)
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Ill-posed:

Fruit User1 User2 User3

many x consistent with y (e.g, if m < n) — :
Solution: ? )
Restrict to a set of plausible signals X = x .
Size?



Solving IP: regularised reconstruction

Idea: use a prior = loss p(x) to promote plausible reconstructions

T € arg min p(x) subject to y ~ A(x)

X

Examples: wavelet/dictionary sparsity, total-variation, ...



Solving IP: regularised reconstruction

Idea: use a prior = loss p(x) to promote plausible reconstructions

T € arg min p(x) subject to y ~ A(x)

X

Examples: wavelet/dictionary sparsity, total-variation, ...

Disadvantages:
Loose description of true signal distribution
Hard to define a good p(x) in real world problems
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Solving IP: learning approach

Idea:
use training pairs of signals and measurements { (x;, ;) }?;1

learn a parametric inversion functiony — X = f;(x)



Solving IP: learning approach

Idea:
use training pairs of signals and measurements { (x;, ;) }?;1

learn a parametric inversion functiony — X = f;(x)

Y 0

<>

NXSAT NI K7
R KREK
SIS

s\ \\

o/

A . N
f € arg ming Zi:l H% — fe(yi)Hz

m

where f, : R™ — R"is parameterized as a deep neural network.

Implicitly learn both the prior & distribution, and the reconstruction



Solving IP: learning approach

Advantages:
State-of-the-art reconstructions

“Once trained”, f; is easy/fast to evaluate

Example:

fastMRI

Accelerating MR Imaging with Al

Ground-truth Total variation Deep network
(28.2 dB) (28.2 dB)

> x 8 accelerated MRI [Zbontar et al., 2019]



Solving IP: learning approach

Main disadvantage:

Obtaining training signals {xi}f.il can be expensive/impossible.

For instance:
Biomedical sciences (e.g., CT, MRI)
Astronomical imaging (e.g., EHT)

Consequence:
Risk to solve expected solution (off-distribution problem)



Solving IP: learning approach

Main disadvantage:

Obtaining training signals {xi}f.il can be expensive/impossible.

For instance:
Biomedical sciences (e.g., CT, MRI)
Astronomical imaging (e.g., EHT)

Consequence:
Risk to solve expected solution (off-distribution problem)

Conundrum:
Prior or reconstruction, which comes first?

Reconstruction
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Measurement-Driven Computational Imaging

Unsupervised context:

Can we learn to reconstruct signals
from measurement data alone {yi}é\il?

Linear inverse problems: y = A(x) +€¢ - Yes

If signal set ' is low-dimensional, and, either multiple operators {Ai}liv

or 2 invariant to groups of transformations.
Theory [T., Chen and Davies, JMLR, 2023]

Algorithms [Chen, T., Davies, CVPR, ICCV, NeurlIPS, 2022]

11



Measurement-Driven Computational Imaging

Unsupervised context:

Can we learn to reconstruct signals
from measurement data alone {yl-}iil?

Linear inverse problems: y = A(x) +€¢ - Yes

If signal set ' is low-dimensional, and, either multiple operators {Ai}liv

or 2 invariant to groups of transformations.
Theory [T., Chen and Davies, JMLR, 2023]

Algorithms [Chen, T., Davies, CVPR, ICCV, NeurlIPS, 2022]

Non-linear inverse problems: y = f o A(x) +¢ - Today

(with f = sign, binary measurements)
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Why binary measurements?

Sensing model Given A = (ay, ..., am)T, a, € R",

we observe a “signal” x € R" with m binary measurements : w MW £

y; = sign(aiTx) c{xl} - y=si1gn(Ax) e {£1}"
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Why binary measurements?

Sensing model Given A = (ay, ..., am)T, a, € R",
we observe a “signal” x € R" with m binary measurements:: WM% WWN
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y; = sign(aiTx) c{xl} - y=si1gn(Ax) e {£1}"

Contexts
Binary compressive sensing (1-bit CS): can we estimate x from y ?

Binary/quantized dimensionality reduction: do sign(Ad&’) capture the geometry of &7
Machine learning: can we classify two signals from their binary measurements?

Interests
Compression at acquisition, for signals or datasets

Interesting questions related to information theory and high-dimensional statistics
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Purpose of this talk

Learning to reconstruct from binary measurements?

Theoretical analysis: given N binary observations & G operators

y; = sign(Ag, x;), with 1 <i< N and g; € {1,...,G}

VAR
Known ounknown
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Purpose of this talk

Learning to reconstruct from binary measurements?

Theoretical analysis: given N binary observations & G operators

y; = sign(Ag, x;), with 1 <i< N and g; € {1,...,G}

VAR
Known ounknown

Estimate signal set X D {z;}/Y,? Error bounds (lower/upper)?

Sample Complexity (¢.e., N) bound?
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Purpose of this talk

Learning to reconstruct from binary measurements?

Theoretical analysis: given N binary observations & G operators

y; = sign(Ag, x;), with 1 <i< N and g; € {1,...,G}

VAR
Known ounknown

Estimate signal set X D {z;}Y,? Error bounds (lower/upper)?
Sample Complexity (i.e., N) bound?

Numerical analysis:

binary dataset
0] 1] [1] 1
; 1| 1] |0 0
unknown | sensing T .
signal set device(s) o S O R
1o/l o \
Oi

self-supervised training T

linear inverse @ ——

Q0
Q2 () L) ()
O 0O 00O

Cost function? Network architecture? Comparison to linear case?
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Sensing scenario 1: Multiple Operators

Measurements might be associated to G > 1 forward operators

ArX, Aszx;

Examples:
different access ratings for recommendation systems with distinct users

dynamic sensors: {A, : t = nA;}, multi-coil MRI, radio-astronomy ...
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Sensing scenario 1: Multiple Operators

Measurements might be associated to G > 1 forward operators

ArX, Azx;

Examples:
different access ratings for recommendation systems with distinct users

dynamic sensors: {A, : t = nA;}, multi-coil MRI, radio-astronomy ...

Principle (linear case):
Learning ' is possible if operators don’t have the same kernel

19



Sensing scenario 1: Multiple Operators

Measurements might be associated to G > 1 forward operators

sign(A;x;) s1gn(A,x,) S1gn(Ax5)

Examples:
Ifferent access ratings for recommendation systems with distinct users
ynamic sensors: {A, : t = nA}, multi-coil MRI, radio-astronomy ...

rinciple (binary case):
Learning ' is possible if operators don’t have the same kernel
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Sensing scenario 2: Single operator & Invariance

Most sighals sets are invariant to groups of transformations:

Vee X, Vge{l,...,G}, ' =T 'zecX

(see S. Mataigne’s seminar ;-) ) (seometric prior)

Example: translation

21



Sensing scenario 2: Single operator & Invariance

Most sighals sets are invariant to groups of transformations:

Vee X, Vge{l,...,G}, ' =T 'zecX

(see S. Mataigne’s seminar ;-) ) (seometric prior)
Forall g € {1, ..., G} we have (linear case)
Y = Axr = AT, T 'z = Ayx’
J Y
Ag X

AT, for different g

Implicit access to
multiple operators

A, = AT,

Necessary condition
A is not equivariant:

AT, # T,A
for some Tg.

Do you see why?
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Sensing scenario 2: Single operator & Invariance

Most sighals sets are invariant to groups of transformations:

Vee X, Vge{l,...,G}, ' =T 'zecX

(see S. Mataigne’s seminar ;-) ) (seometric prior)
Forall g € {1, ..., G} we have (binary case)
y = sign(Az) = sign(AT, T, 'z) = sign(Ayz’)
J Y
Ag X

AT, for different g

Implicit access to
multiple operators

A, = AT,

Necessary condition
A is not equivariant:

AT, # T,A
for some Tg.

Do you see why?
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Model identification: the problem

Assumption: enough points of X have been observed for all operators.
oo for now (More on this later)

24



Model identification: the problem

Assumption: enough points of X have been observed for all operators.
oo for now (More on this later)

Question: Given the observed sets

[V, :=sign(A,X)}"

g=1
What's the best approximation  of the signal set X ?

meaning?

- From 52", a consistent (ideal) decoder reads:
f(y) € {x € S" Y| sign(Az) = y and z € X'}

consistency approx.
prior

25



Model identification: geometric intuition

Toy example: n = 3, m X n matrix A, has Gaussian iid entries : (Ag)l-j ~q N(0,1)

sign(Ag ) tessellates S"!

Growing number of consistency cells as m 1
(bounded by 2™)
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Model identification: geometric intuition

Toy example: n = 3, m X n matrix A, has Gaussian iid entries : (Ag)ij ~q N(0,1)

sign(Ag ) tessellates S"!

consistency cell

Growing number of consistency cells as m 1
(bounded by 2™)
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Model identification: geometric intuition

Toy example: n = 3, m X n matrix A, has Gaussian iid entries : (Ag)ij ~q N(0,1)

n—1
S sign(Ag ) tessellates S"!

Growing number of consistency cells as m 1
(bounded by 2™)
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Model identification: geometric intuition

Toy example: n = 3, m X n matrix A, has Gaussian iid entries : (Ag)ij ~q N(0,1)

sign(Ag ) tessellates S"!

Growing number of consistency cells as m 1
(bounded by 2™)

Let us define the biggest set binary consistent (wrt Ag) with X :
X, = fve St |3z e X, sign (A, v) =sign (Agz)

- dilation of ' by the “uncertainty” of sign e A,

29



Model identification: geometric intuition

Toy example:n =3, G =3, m =4, = black line

Different dilations of &
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Model identification: geometric intuition

Toy example:n =3, G =3, m =4, = black line

R a o
X X = mgzl‘)c'g
- =
all As

Different dilations of & Intersected dilations
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Model identification: geometric intuition

Toy example:n =3, G =3, m =4, = black line

Identification error (definition)

ldentify signal set up to global erroro = Qisin a 5-tube X s
XCX:={veS"!:|z—v|]|<dbze}

Upper/Lower bound on 0? Sample complexity?
32



Lower bound on O (via an oracle standpoint)

Oracle estimation: We access to G observations of each x € X

A
(sign(Alx), Cees sign(AGx)) o sign(Ax) € {£1}"C, with A =| : | € RO
Ag

A

Xoracle = {v € "1 | Tz € X, sign(Av) = sign(Azx) |

X ‘)E, oracle ‘)E,

33



Lower bound on O (via an oracle standpoint)

Question: smallest 0 such that X C X 5? (whatever s orientation)

oracle
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Lower bound on O (via an oracle standpoint)

Question: smallest 6 such that X C 5[5 ? (whatever X'’s orientation)

oracle

Theorem: for any set &’ C S, there exists a rotated set 2"’ s.t.

8 > d := diameter largest consistency cell of sign(A )

.7 Largest cell

Xoracle &
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Lower bound on O (via an oracle standpoint)

Question: smallest 6 such that X C 5[5 ? (whatever X'’s orientation)

oracle

Theorem: for any set &’ C S, there exists a rotated set 2"’ s.t.

8 > d := diameter largest consistency cell of sign(A )

.7 Largest cell -

Sn—l

Xoracle &
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Lower bound on O (via an oracle standpoint)

Question: smallest 6 such that X C 5[5 ? (whatever X'’s orientation)

oracle

Theorem: for any set &’ C S, there exists a rotated set 2"’ s.t.

8 > d := diameter largest consistency cell of sign(A )

Consequences: we can show the following

1. If rank(A) < n, 3 consistency cells with diameter 2
— Model identification error is trivially large

Proof: Given x = A 'u, for some u, define Xy = ”ifz” with unit vector v € ker A( # 0),

We have:
2 2 2 2
eI = (12 + Il = 1+ [|x]
sign Ax, =sign Ax_ =sign Ax - x,,x_ are unit vectors in the same cell

Moreover,
2||v]l 2

VIl 1 +{|x]]

(=2, if |lx]| = 0)

dist(x,,x_) =

37



Lower bound on O (via an oracle standpoint)

Question: smallest 0 such that 2 C 5[5 ? (whatever 2 '’s orientation)

oracle

Theorem: for any set &’ C S, there exists a rotated set 2"’ s.t.

8 > d := diameter largest consistency cell of sign(A )

Consequences: we can show the following

1. If rank(A) < n, 3 consistency cells with diameter 2
— Model identification error is trivially large

2. We need at least m > n/G measurements per operator

— No learning of X with G = 1 (w/o invariance)
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Lower bound on O (via an oracle standpoint)

Question: smallest 0 such that 3[01,3016 C 5[5 ? (whatever I’s orientation)

Theorem: for any set &’ C S, there exists a rotated set 2"’ s.t.

8 > d := diameter largest consistency cell of sign(A )

Consequences: we can show the following

1. If rank(A) < n, 3 consistency cells with diameter 2
— Model identification error is trivially large

2. We need at least m > n/G measurements per operator

— No learning of X with G = 1 (w/o invariance)

2n

3. The maximum cell radius > e (counting argument)

Thao & Vetterli (1996, Theorem A.7)

{sign (AX)}| < ("C)2"

—> § cannot decrease faster than o« m~ G~}

39



Upper bound on O (with the help of randomness)

log (S
Definition:  boxdim(S) = lim sup 0g N(S, ¢)
e—0T log 1/6

Assumption: The signal set 2 is low-dimensional
< I has box-counting dimension k < n

Examples: sparse dictionaries, manifold models, etc.

40



Upper bound on O (with the help of randomness)

. . . log N(S, €)
Defi . boxdim(S) =1 ! \
efinition: boxdim(S) = lim e8_1;1(])@)+ log 1/¢ 6@;
Assumption: The signal set X is low-dimensional N(S, e)

< I has box-counting dimension k < n

Examples: sparse dictionaries, manifold models, etc.

distinct operators

Theorem. Ifboxdim(X) < k and A4, ..., Ag € RM*"
have 1.1.d. Gaussian entries with

m > %(k’ | ?ﬁlog(#) | élogé - & log 3, mz(k+%)

then

41



Upper bound on O (with the help of randomness)

Consequences of this theorem:

> The identification error of 2 decreases as

Ql=

n

- We require at least m > k+ -

measurements per operator
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Upper bound on O (with the help of randomness)

Consequences of this theorem:

> The identification error of 2 decreases as

Ql=

n

- We require at least m > k+ -

measurements per operator

n

> For G > p

. error 0 ~ signal recovery error in one-bit compressive sensing

Any consistent decoder f s.t.

y € {£1}" — f(y) € {x € S" !|sign(Az) =y and x € X'}

has an error max, .o ||x —f(sign(Ax)) | = 0(£)

m

[L), ). Laska, P. Boufounos, R. Baraniuk, 2013]
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Sample Complexity bound (again with randomness)

How many binary observations /V to hope to estimate Q2
- an upper bound on N is | J;_, | sign(A,2)|

Theorem. Ifboxdim(X) < k and A4, ..., Ag € R™*"

have 1.1.d. Gaussian entries,

then, with probability exceeding 1 — 2223

o5, there are

possible different measurements vectors.

- Exponential in the model dim k but not the ambient dimension n !

Ly



Algorithms

Learning to reconstruct from binary measurements in practice?

Goal:

Learning a reconstruction network X = f, (v, A,)
with a self-supervised loss &£ which uses {(y, Agi) }ﬁ.\il

Warning:

No clear link with the theory (yet)
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Multi-operator case

Self-supervised training loss: given a reconstruction model f,

arg m@in Lyic(0)

with:
Lyic(0) = S:Z og |1+ exp (—yi Ay, fo(yi, Ag,)) ] (Logistic loss)

- promotes measurement consistency : y, & Sign(AgifQ(yl-, Agi))

Problem: the function f@(y,A ) = AT =A (AA )_ly IS a consistent reconstruction

g N g
- fp acts independently for each A, - no gain in increasing G !
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Multi-operator case

Self-supervised training loss: given a reconstruction model f,

arg m@in Lyic(0) +Lcc(6)

with:
Lyic(0) = S:f,\il log |1+ exp ( — yiAy, fo(yi, Ag,)) (Logistic loss)

- promotes measurement consistency : y, & Sign(AgifQ(yl-, Agi))

LCC(H) — S:ff\il S:sG—l Hf9 (ASfQ(y’ivAgi)7As) o fQ(yiaAgi)

> promotes cross-operator consistency, e.g., prevents MC sol f, (v, A,) = Agy

(Square loss)

‘ 2

RemarRs:
Network-agnostic scheme (applicable to any existing deep model)

We called this “Self-Supervised learning loss for training reconstruction
networRs from Binary Measurement data alone” (SSBM)
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Single operator with equivariance

Self-supervised training loss: given a reconstruction model f,

arg m@in ,CMc(H) —|—£Eq(6’)

with:
Lyic(0) = S:f,\il log |1+ exp ( — yiAy, fo(yi, Ag,)) (Logistic loss)

- promotes measurement consistency : y, & Sign(AgifQ(yl-, Agi))

Lrq(0) = 30 0 || fo (AT, folyi, A), AT,) — Ty fo(yi, A)
- promotes equivariance of fyo A: (foA)(Tg-) = Tg(foA)( - )

H2 (Square loss)

RemarRs:
Network-agnostic scheme (applicable to any existing deep model)

We called this “Self-Supervised learning loss for training reconstruction
networRs from Binary Measurement data alone” (SSBM)
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Experiments

Operators |
C 64 6464 64 C C
{Ag}G:1 with Gaussian iid entries
= =) - |—>P—
Network
_ l 128 128 128
Jo(y,A) = gge A (Y) |_I I"I
where g, 1s a U-net CNN
64 128
l' 256 256 256
I-. .-;. w) 3x3 Conv + BN + RelLu
Comparison with iy B whex ook
x2 Max Pooling
. . T c o -—_ 3x3 Up-Conv + BN + Relu
Linear inverse A ' y; (no training) = 12 = 11 Gon

Binary IHT (BIHT) with wavelets (no training)
Fully supervised loss

SSBM (proposed)
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MNIST dataset

Multiple operators (G = 10), images have n = 784 pixels.

25 L | ! ! ' ! | ! | ! ! H | ! ! ! ! 1 | 30 ! ! I
s Sradinl — T
——BIHT - : i _.-
20r Supervised s X — ogm . _
m z m ! ———am =n/G "’
Z Z I -
) 7)) i
O 15+ - O 20 I
l_ 0
10 | : T !
[
5 N R 1 . 1 . : . . a1 l 10 P - L I | : | : ! | ! ! T |
0.06 0.13 0.26 0.51 1.001.28 0.06 0.13 0.26 0.51 1.001.28
m/n m/n

Test PSNR := ij\zl PSNR (27, fo (sign (A4, x)), Ag,)), x; € “test set”
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Fashion MNIST dataset

Multiple operators (G=10), with m=300, images have n=784 pixels.

linear
Inverse

proposed

supervised

ground
truth

"l-.-"|

| h .’:-1 o gl '- SAd . :I ] Rk T
-: . l-«- :I‘. ‘ - l--'_. \-.'l- " |-|.' "-' ;'--' r‘ [
o .Elﬂ[‘!..“HE ,
- r
o=

B

B

B

B

B

B

B

j

j

?

?

?

?

?

?

?

?

?

°~)

51



Fashion MNIST dataset

Multiple operators (G=10), with m=300, images have n=784 pixels.

linear ,'_ / "-;*f P
inverse el TR

- EEIM L
— B ]
— B IS ]
- P IS )
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CelebA dataset

Multiple operators (G=10) with m=9830, images have n=49152 pixels.

linear g :
inverse
BIHT || ‘r_'*
proposed -
=

ground
truth

supervised H
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Conclusion and take-away messages

New unsupervised learning framework for binary data

Theory: we have studied several conditions for learning X, e.g.,
Lower and upper bounds on its identification error 0
Required number of measurements N

Practice: Deep learning approach
Self-supervised loss which can be applied to any model

Ongoing/future work

Other non-linear inverse problems (such as saturation, or phase retrieval | Ax \2)
Upper bounds for the invariant case?

Noise/dither ? y = sign(Ax + €)
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Thank you!

Chen, Tachella and Davies, “Robust Equivariant Imaging: a fully unsupervised framework for learning to image from noisy
and partial measurements”, CVPR 2022 (Oral)
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Tachella, Chen and Davies, “Sensing Theorems for Unsupervised Learning in Inverse Problems”, JMLR 2023.
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... and others on demand



