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Amplitude and Phase of Image Frequencies (1/2)

Oppenheim and Lim, 1981:

"What's the most important information between
the spectral amplitude and phase of signals?"




Amplitude and Phase of Image Frequencies (1/2)

Oppenheim and Lim, 1981:

"What's the most important information between
the spectral amplitude and phase of signals?"

A simple experiment: Let F the (2-D) Fourier transform

Image reconstructed with Image reconstructed with

Original image f € RNx XNy
spectral amplitude spectral phase
-1 -1
= FoL(|Ff) = F T



Amplitude and Phase of Image Frequencies

Fact: 3 algorithm to recover band-limited images from their spectral phase
(up to a global amplitude).
= Use alternate projections onto convex sets, i.e.,
e given zo = F(f)/|F(f)|, the observes spectral phase,
e assuming f € BB := set of band-limited images (for some cutoff freq.).
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Why could it be useful?

Numerous Fourier/spectral sensing applications:
e Magnetic resonance imaging (MRI);
e Radar systems;
e Michelson interferometry / Fourier transform imaging;

e Aperture synthesis by radio interferometry.

Challenges:
e Massive data stream imposes new data compression strategies.
e Compress but keep useful information (e.g., for subsequent imaging).

e Large magnitude variations = different compression impact.



Why could it be useful?

Numerous Fourier/spectral sensing applications:
e Magnetic resonance imaging (MRI);
e Radar systems;
e Michelson interferometry / Fourier transform imaging;

e Aperture synthesis by radio interferometry.

Challenges:
e Massive data stream imposes new data compression strategies.
e Compress but keep useful information (e.g., for subsequent imaging).

e Large magnitude variations = different compression impact.

Questions: Which systems are compatible with phase-only signal estimation?
> (this talk) Is complex compressive sensing compatible?

Why asking?
e If compatible/robust, quantize the spectral phase for compression!

e Robust to large observation amplitudes; easy quantizers (over [0, 27]).



(Complex) Compressive Sensing 1/3)

Let's collect m < n measurements about x from this linear model:
y=Ax+necC", (CS)

with: e a low-complexity vector x € £ C C"
(with £ the set of, e.g., sparse signals, low-rank matrices, ...),

e a complex sensing matrix A € C™*",

e a given (additive) noise n € C™ and ||n||2 < e.



(Complex) Compressive Sensing 1/3)

Let's collect m < n measurements about x from this linear model:
y=Ax+necC", (CS)

with: e a low-complexity vector x € £ C C"
(with £ the set of, e.g., sparse signals, low-rank matrices, ...),

e a complex sensing matrix A € C™*",
e a given (additive) noise n € C™ and ||n||2 < e.
Compressive sensing:

If m larger than L’s "dimension", and A is "random",
the vector x can be exactly recovered, or estimated (if noise).

[Candes and Tao, 2005; Foucart and Rauhut, 2013]



(Complex) Compressive Sensing (2/3)

Let's be more specific ... let's focus on the Gaussian case.
Restricted isometry property
Forsome 0 < d <1land k< m< n,if

m > C6 *klog(n/k),

and \/EA,J ~iid. (CN(O, 2) Y N(O, 1) + IN(O, 1),

then, with high probability (w.h.p.),

(1= 8*)lIvI* < lAv]z < (1 +8)vI*, Vk-sparse v. (RIP(k, )



(Complex) Compressive Sensing (2/3)

Let's be more specific ... let's focus on the Gaussian case.
Restricted isometry property
Forsome 0 < d <1land k< m< n,if

m > C6 *klog(n/k),

and \/EA,J ~iid. (CN(O, 2) Y N(O, 1) + IN(O, 1),

then, with high probability (w.h.p.),
(1= )vI* < |Av]z < (14 6%)|v][*, Vk-sparse v. (RIP(k, 0))

So, why does CS work?

2, for all k-sparse x, u.

e RIP(2k,8) = |ly — Aull3 = ||A(x — u)|3 =~ ||x — u]

e A is essentially invertible over the set of sparse vectors.



(Complex) Compressive Sensing (3/3)

The RIP supports (one of) the "fundamental theorem(s) of CS"

Theorem: If A is RIP(2k,d) with 0 < § < do (e.g., o = 1/V/2),
then the basis pursuit denoise estimate:

X = argmin [|ul|1 sit. |y — Au|2 <¢, (BPDN)
ueCn N~~~ ——
sparsity promoting data fidelity

satisfies the instance optimality

% l[x = xkllx
Ix-%. < C *—F—= + De.
Rec. error; ~ MSE L noise

deviation to sparsity

See, e.g., Candés, 2008; Foucart and Rauhut, 2013.



Phase-Only Sensing Model

Inspired by Oppenheim and Lim, 1981; Boufounos, 2013,

in the context of CS, let's consider the phase-only (non-linear) sensing model:
z =signc(Ax) + e € C™, (PO-CS)

with: e x is real and k-sparse;
e signc(re'?) := € (and 0 if r = 0), applied pointwise;

e and € € C™ a bounded noise with ||€]|« < 7 for some 7 > 0.



Phase-Only Sensing Model

Inspired by Oppenheim and Lim, 1981; Boufounos, 2013,

in the context of CS, let's consider the phase-only (non-linear) sensing model:
z =signc(Ax) + e € C™, (PO-CS)

with: e x is real and k-sparse;

e signc(re'?) := € (and 0 if r = 0), applied pointwise;

e and € € C™ a bounded noise with ||€]|« < 7 for some 7 > 0.
Key observations:

1. If x — Cx with C > 0, z is unchanged (Signal amplitude is lost)

2. If both A and x are real, then z € {£1}™ (Real PO-CS — 1-bit CS)

Fact: In noiseless 1-bit CS, best estimate s.t. |X — x| = Q(1/m) if m 1.

[Boufounos and Baraniuk, 2008; Jacques et al., 2013; Plan and Vershynin, 2012]



Noiseless Signal Recovery for PO-CS (e = 0)

Principle: Turn the non-linear PO model into linear one.



Noiseless Signal Recovery for PO-CS (e = 0)

Principle: Turn the non-linear PO model into linear one. Step by step ...
A. Let’s normalize x

Since signal amplitude is lost, we still have signc(Ax) = signc(Ax*) with

* K m L3 T
x* = X x ith x := /2.
Tax[y %o With x 2

= We now focus on the recovery of x* (— encodes signal direction).

Rationale:

e Useful for our proofs;
e For complex Gaussian v/mA ~ CN™*"(0,2) and g ~ N(0,1),

Egl=r = E|Ax[i=rvmlx]z2 = [x"2~1

= x* is (almost) a unit length vector, a direction



Noiseless Signal Recovery for PO-CS (e = 0)

Principle: Turn the non-linear PO model into linear one. Step by step ...
B. Estimate constraints: From the noiseless model
z = signc(Ax™),

we see that u = x* € R” respects both:

<Z, AU> = RKvVmMm < <ﬁ/4*27 U> =} (normalization)
——
=[Ax* |1 if u=x* =z
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Principle: Turn the non-linear PO model into linear one. Step by step ...
B. Estimate constraints: From the noiseless model
z = signc(Ax™),

we see that u = x* € R” respects both:

<Z, AU> = RKvVmMm < <’.i 1mA*z, U> =} (normalization)
== ——
=[Ax* |1 if u=x* =z
dlag(z)* Au = ( Zik 0 (Au)1 5 999 g Z:, 0 (Au)m )TG RT (phase consistency)
—_——
=[(Ax*)1| if u=x* =|(Ax* )| if u=x*



Noiseless Signal Recovery for PO-CS (e = 0)

Principle: Turn the non-linear PO model into linear one. Step by step ...
B. Estimate constraints: From the noiseless model
z = signc(Ax™),

we see that u = x* € R” respects both:

<Z, AU> = I{\/E < L /4*27 uy=1 (normalization)
<H\/ﬁ >
=||Ax* || if u=x* =ay
dlag(z)* Au = ( Zik 0 (Au)1 5 999 g Z:, 0 (Au)m )TG R/g’/ (phase consistency)
—_——
=[(Ax*)1| if u=x* =|(Ax* )| if u=x*

Let's relax the phase consistency, i.e., impose diag(z)* Au € R, that is
0 = S(diag(z)* Au) = (diag(z)" A® — diag(2)*A™)u =: H.u.
noting also that

(azu)=1 & (af,u)=1, (af,u)=0.



Noiseless Signal Recovery for PO-CS (e = 0)

This is a linear

In summary, u = x* respects the relaxed, real m + 2 constraints
— P T
(1’ 07 2 0) = sensing model!

with
R oS HZT)T c R(mH2)xn.

A, = (o,
In other words,

e A good estimate X of x* should respect the linear model A% = e;
since x* € {u e R": A1 = e1}.

e We know this estimate should be sparse (as x* is)

10



Noiseless Signal Recovery for PO-CS (e = 0)

In summary, u = x* respects the relaxed, real m + 2 constraints ...

This is a linear

Au=e; :=(1,0,---,0)" =

sensing model!

with
Az o (a% Oﬁ;\}, H;F)T c R(m+2)><n.

z )

In other words,
e A good estimate X of x* should respect the linear model A% = e;
since x* € {u e R": A1 = e1}.

e We know this estimate should be sparse (as x* is)

= As in linear CS, we can compute % from a basis pursuit program (BP)

x =argmin||ulj; st. Au=e, (BP(A,, e1))
uecCr

Question: How far is X from x*? Well, let's see if A, respects the RIP!

10



RIP for A,? (1/1)

How could A, := (af, a, H])" respect the RIP?
For a sparse v, ||A.v|3 := |{(cz, v)|* + ||H.v|3
you can show that, for complex Gaussian A:
* (az,v) = (7, v) & projection of v onto X' := RX.

e H,x =0 & H, RIP on XN 2k-sparse signals.

akil,



RIP for A,? (1/1)

How could A, := (af, a, H])" respect the RIP?

For a sparse v, [[Av[3 = [{ae, V) + [ Hav[3 ~ (125, v)? + V213 = [Iv3
you can show that, for complex Gaussian A:
* (az,v) = (7, v) & projection of v onto X' := RX.

e H,x =0 & H, RIP on XN 2k-sparse signals.

Theorem: Given x and 0 < 6 < 1, /mA ~ CN™*"(0,2), if

m > C6 *klog(n/k),

then, w.h.p., A; satisfies the RIP (k,4).

Consequences:
e For X = BP(A,, e1), if A, is RIP(§ < do, 2k),
we get exact reconstruction of signal direction, i.e., X = x*!

e Instance optimality for the noisy setting (with BPDN)  (not covered here)

akil,



Simulations (1/2)

Let's plot a phase-transition curve: we generate \/mA ~ CN™*?%¢(0,2) &
e 20-sparse vectors in R%°;
e m € [1,256] and average over 100 trials;
e Reconstruction successful if SNR > 60 dB.

12



Simulations (1/2)

Let's plot a phase-transition curve: we generate \/mA ~ CN™*?%¢(0,2) &
e 20-sparse vectors in R%°;
e m € [1,256] and average over 100 trials;
e Reconstruction successful if SNR > 60 dB.

1.0 A
QL 0.81
+
©
o
>, 06
—
g
B %41
O
]
o 0.2
—e-- Success rate of CS
amd —— Success rate of PO-CS
0 2 a 6 8 10 12
m/s

12



Simulations (2/2)

Let's be a little more daring ... and forget Gauss

'3}



Simulations

Let's be a little more daring ... and forget Gauss
Bernoulli random matrix Random partial Fourier
Aj ~ija {£1} (A = sub-sampled F(x))
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Simulations

Let's be a little more daring ... and forget Gauss
Random partial Fourier

Bernoulli random matrix
(A = sub-sampled F(x))

Aj ~ija {£1}
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m/s
Interestingly:

e These results are not covered by theory.

e Bernoulli random matrices do not work for 1-bit CS.

e Fourier sensing has PO-CS counter-examples (that cannot be recovered)!

e.g., for x' := h* x with by > 0,Vk, signc(Ax’) = signc(Ax).
13



Take-Away Messages

1. In Gauss’ world, despite:
e the non-linearity of its sensing model,

e and the bad example of 1-bit CS (the "real" PO-CS),

phase-only compressive sensing works "as well as" (linear) CS.
2. What is recovered/estimated is the signal direction (via x*).

3. Applications: phase-quantization procedures with bounded distortion
e.g., in radar, MRI, ...

4. Open questions:

e (minor) Extension to complex signals.

e (major) Theoretical extension to other random sensing matrices.

14
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Thank you!

LJ, T. Feuillen, "The importance of phase in complex compressive sensing",
arXiv:2001.02529 (2020, submitted).

Boufounos, Petros T (2013). “Sparse signal reconstruction from phase-only measurements”. In: Proc.
Int. Conf. Sampling Theory and Applications (SampTA)],(July 1-5 2013). Citeseer.

Boufounos, Petros T and Richard G Baraniuk (2008). "“1-bit compressive sensing”. In: 2008 42nd Annual
Conference on Information Sciences and Systems. |EEE, pp. 16-21.

Candes, EJ and T Tao (2005). “Decoding by linear programming”. In: IEEE Transactions on Information
Theory 51.12, pp. 4203-4215.

Candés, Emmanuel J. (May 2008). “The restricted isometry property and its implications for compressed
sensing”. In: Comptes Rendus Mathematique 346.9-10, pp. 589-592.

Foucart, Simon and Holger Rauhut (2013). A Mathematical Introduction to Compressive Sensing.
Springer New York.

Jacques, Laurent et al. (2013). “Robust 1-bit compressive sensing via binary stable embeddings of sparse
vectors”. In: IEEE Transactions on Information Theory 59.4, pp. 2082—2102.

Oppenheim, A.V. and J.S. Lim (1981). “The importance of phase in signals”. In: Proceedings of the
IEEE 69.5, pp. 520-541.

Plan, Yaniv and Roman Vershynin (2012). “Robust 1-bit compressed sensing and sparse logistic
regression: A convex programming approach’. In: IEEE Transactions on Information Theory 59.1,
pp. 482—494.


https://arxiv.org/abs/2001.02529

Part |

Extra slides




Extra simulations: noisy case

We generate \/mA ~ CN™*?%¢(0,2) &
e 20-sparse vectors in R?°°;
e m € [1,256] and average over 100 trials;
o z =signc(Ax) + &, with £ € C" and [|£]| < 7.
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Simplifying hypothesis

Phase-only observation in Compressive Sensing?
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Simplifying hypothesis

Phase-only observation in Compressive Sensing?
Let’s first simplify the context ...
1. We consider the sensing of real vectors x € R".

Note: If complex signal x, we can always rewrite
9 o 9 < X% —
Ax = (A" +iA%)(x" +ix¥) = (A,iA) | "4 | = Ax,
x

with x € R?" and A € C™*?",
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Note: If complex signal x, we can always rewrite
9 o 9 < X% —
Ax = (A" +iA%)(x" +ix¥) = (A,iA) | "4 | = Ax,
x

with x € R?" and A € C™*?",

Caveat: This can impact the signal model
e.g., sparse in C" = group sparse in R?".
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Simplifying hypothesis

Phase-only observation in Compressive Sensing?
Let’s first simplify the context ...
1. We consider the sensing of real vectors x € R".

Note: If complex signal x, we can always rewrite

X
<

R
Ax = (A" +iA%)(x" +ix¥) = (A, iA) ( ) = AxX,
X

with x € R?" and A € C™*?",

Caveat: This can impact the signal model
e.g., sparse in C" = group sparse in R?".

2. We focus here on the case of sparse vectors in R".

However, extension to any low-complexity signals is possible
(with small "dimension", that is Gaussian mean width)
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