Learning to Reconstruct Signals From Binary Measurements

Julián Tachella
CNRS, Physics Laboratory ENS Lyon, France

Laurent Jacques INMA/ICTEAM
UCLouvain, Belgium

CSAMPTA 23

Inverse problems (IP)

Measurements Measurements

Image inpainting

Radio Astronomy

MRI

Ill-posed: many x consistent with y
Solution:
Restrict to set of plausible signals $x \in \mathscr{X}$

Recommender system
$\frac{\text { Fruit }}{\text { Rating }}$

Solving IP: regularised reconstruction

Idea: use a prior \equiv loss $\rho(x)$ for plausible reconstructions

$$
\hat{x} \in \arg \min _{x} \rho(x) \text { subject to } y=A(x)
$$

Examples: wavelet/dictionary sparsity, total-variation, ...

Disadvantages:

Hard to define a good $\rho(x)$ in real world problems
Loose with respect to the true signal distribution

Solving IP: learning approach

Idea:

use training pairs of signals and measurements $\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{N}$ learn the inversion function $y \rightarrow \hat{x}=f_{\hat{\theta}}(x)$

$\hat{\theta} \in \arg \min _{\theta} \sum_{i=1}^{N}\left\|x_{i}-f_{\theta}\left(y_{i}\right)\right\|^{2}$
where $f_{\theta}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is parameterized as a deep neural network.

Solving IP: learning approach

Advantages:

, State-of-the-art reconstructions

- Once trained, $f_{\hat{\theta}}$ is easy to evaluate

fastMRI

Accelerating MR Imaging with AI

Ground-truth

Total variation (28.2 dB)

Deep network (28.2 dB)
\rightarrow x8 accelerated MRI [Zbontar et al., 2019]

Solving IP: learning approach

Main disadvantage:

Obtaining training signals $\left\{x_{i}\right\}_{i}$ can be expensive/impossible.

For instance:
, Biomedical sciences (e.g., CT, MRI)

- Astronomical imaging (e.g., EHT)

Consequence:
, Risk to solve expected solution (off-distrib. prob)

Prior or reconstruction, which comes first?

Measurement-Driven Computational Imaging

Can we learn to reconstruct signals from measurement data alone $\left\{y_{i}\right\}_{i=1}^{N}$?

Linear inverse problems: $y=A(x)+\epsilon \rightarrow$ Yes
If signal set \mathscr{X} is low-dimensional
\& invariant to groups of transformations

- Theory [T., Chen and Davies, JMLR, 2023]
- Algorithms [Chen, T., Davies, CVPR, ICCV, NeurIPS, 2022]

Non-linear inverse problems: $\quad y=f \circ A(x)+\epsilon \rightarrow$ Today (with $f=$ sign)

Purpose of this talk

Learning to reconstruct from binary measurements?

Theoretical analysis: given N binary observations \& G operators

$$
y_{i}=\operatorname{sign}\left(\underset{\downarrow}{\text { known unknown }} \underset{g_{i}}{ } x_{i}\right) \text { with } 1 \leq i \leq N \text { and } g_{i} \in\{1, \ldots, G\}
$$

Estimate signal set $\mathcal{X} \supset\left\{x_{i}\right\}_{i=1}^{N}$? Error (LB/UB)? Sample Complexity?

Purpose of this talk

Learning to reconstruct from binary measurements?

Theoretical analysis: given N binary observations \& G operators

$$
y_{i}=\operatorname{sign}\left(\underset{\checkmark}{\text { known unknown }} A_{g_{i}} x_{i}\right) \text { with } 1 \leq i \leq N \text { and } g_{i} \in\{1, \ldots, G\}
$$

Estimate signal set $\mathcal{X} \supset\left\{x_{i}\right\}_{i=1}^{N}$? Error (LB/UB)? Sample Complexity?

Numerical analysis:

Sensing scenario 1: Multiple Operators

Measurements might be associated to $G \geq 1$ forward operators
$A_{1} x_{1}$

Examples:
, \neq access ratings for recommendation systems with \neq users
, dynamic sensors: $\left\{A_{t}: t=n \Delta_{T}\right\}$

- multi-coil MRI

Sensing scenario 2: One operator \& invariance

Most signals sets are invariant to groups of transformations:

$$
\begin{aligned}
\forall x \in \mathcal{X}, \quad \forall g \in\{1, \ldots, G\}, \quad x^{\prime}=T_{g}^{-1} x \in \mathcal{X} \\
\text { (geometric prior) }
\end{aligned}
$$

Example: translation

Sensing scenario 2: One operator \& invariance

Most signals sets are invariant to groups of transformations:

$$
\forall x \in \mathcal{X}, \quad \forall g \in\{1, \ldots, G\}, \quad x^{\prime}=T_{g}^{-1} x \in \mathcal{X}
$$

(geometric prior)
For all $g \in\{1, \ldots, G\}$ we have

$$
y=\operatorname{sign}(A x)=\operatorname{sign}\left(A T_{g} T_{g}^{-1} x\right)=\operatorname{sign}\left(A_{g} x^{\prime}\right)
$$

Implicit access to multiple operators

$$
A_{g}=A T_{g}
$$

$A T_{g}$ for different g

Model identification: the problem

Assumption: enough points of \mathfrak{X} have been observed for all operators. (More on this later)

Model identification: the problem

Assumption: enough points of \mathfrak{X} have been observed for all operators. (More on this later)
Question: Given the observed sets

$$
\left\{\mathcal{Y}_{g}:=\operatorname{sign}\left(A_{g} \mathcal{X}\right)\right\}_{g=1}^{G}
$$

What's the best approximation \hat{X} of the signal set \mathscr{X} ? meaning?
\rightarrow From this set, a consistent decoder reads:

$$
f(y) \in\left\{x \in \mathbb{S}^{n-1} \mid \operatorname{sign}(A x)=y \text { and } x \in \hat{\mathcal{X}}\right\}
$$

Model identification: geometric intuition

Toy example: $n=3$, increasing m, A_{g} has Gaussian iid entries

$$
m=1
$$

$$
\operatorname{sign}\left(A_{g} \cdot\right) \text { tessellates } \mathbb{S}^{n-1}
$$

Growing number of consistency cells as $m \uparrow$

Model identification: geometric intuition

Toy example: $n=3$, increasing m, A_{g} has Gaussian iid entries

$$
m=3
$$

$$
\operatorname{sign}\left(A_{g} \cdot\right) \text { tessellates } \mathbb{S}^{n-1}
$$

Growing number of consistency cells as $m \uparrow$

Model identification: geometric intuition

Toy example: $n=3$, increasing m, A_{g} has Gaussian iid entries

$$
\operatorname{sign}\left(A_{g} \cdot\right) \text { tessellates } \mathbb{S}^{n-1}
$$

Growing number of consistency cells as $m \uparrow$

$$
m=8
$$

Model identification: geometric intuition

Toy example: $n=3$, increasing m, A_{g} has Gaussian iid entries

$$
\operatorname{sign}\left(A_{g} \cdot\right) \text { tessellates } \mathbb{S}^{n-1}
$$

Growing number of consistency cells as $m \uparrow$

Let us define:

$$
\begin{aligned}
\hat{\mathcal{X}}_{g}=\{ & \left\{v \in \mathbb{S}^{n-1} \mid \exists x \in \mathcal{X}, \operatorname{sign}\left(A_{g} v\right)=\operatorname{sign}\left(A_{g} x\right)\right\} \\
& \rightarrow \text { dilation of } \mathcal{X} \text { by the "uncertainty" of } \operatorname{sign} \circ A_{g}
\end{aligned}
$$

Model identification: geometric intuition

Toy example: $n=3, G=3, m=4, \mathscr{X}=$ black line

Model identification: geometric intuition

Toy example: $n=3, G=3, m=4, \mathscr{X}=$ black line

Different dilations

Model identification: geometric intuition

Toy example: $n=3, G=3, m=4, \mathcal{X}=$ black line

Identification error definition: (adapted to one-bit sensing) Identify signal set up to global error $\delta \rightarrow \hat{X}$ is in a δ-tube \mathscr{X}_{δ}

$$
\hat{\mathcal{X}} \subseteq \mathcal{X}_{\delta}:=\left\{v \in \mathbb{S}^{n-1}:\|x-v\| \leq \delta, x \in \mathcal{X}\right\}
$$

Upper bound? Lower bound? Sample complexity?

Lower bound (via an oracle standpoint)

Oracle estimation: We access to G observation of each $x \in \mathscr{X}$

$$
\begin{gathered}
\bar{A}=\left[\begin{array}{c}
A_{1} \\
\vdots \\
A_{G}
\end{array}\right] \in \mathbb{R}^{m G \times n} \\
\hat{\mathcal{X}}_{\text {oracle }}=\left\{v \in \mathbb{S}^{n-1} \mid \exists x \in \mathcal{X}, \operatorname{sign}(\bar{A} v)=\operatorname{sign}(\bar{A} x)\right\} \\
\mathcal{X}
\end{gathered}
$$

Lower bound (via an oracle standpoint)

Theorem:

$$
\delta \geq d:=\text { diameter largest consistency cell of } \operatorname{sign}(\bar{A} \cdot)
$$

Proof sketch: Given \mathcal{X} s.t. $\mathcal{X}_{\delta} \subsetneq \mathcal{X}_{\delta_{0}}$ if $\delta<\delta_{0}$, if $\delta<\min \left\{d, \delta_{0}\right\}$, then, $\exists R \in S O(n)$ such that, for $\mathcal{X}^{\prime}=R \mathcal{X}, \mathcal{X}_{\text {oracle }}^{\prime} \not \subset \mathcal{X}_{\delta}^{\prime}$.

Lower bound (via an oracle standpoint)

Theorem:

$$
\delta \geq d:=\text { diameter largest consistency cell of } \operatorname{sign}(\bar{A} \cdot)
$$

Proof sketch: Given \mathcal{X} s.t. $\mathcal{X}_{\delta} \subsetneq \mathcal{X}_{\delta_{0}}$ if $\delta<\delta_{0}$, if $\delta<\min \left\{d, \delta_{0}\right\}$,

$$
\text { then, } \exists R \in S O(n) \text { such that, for } \mathcal{X}^{\prime}=R \mathcal{X}, \hat{\mathcal{X}}_{\text {oracle }}^{\prime} \not \subset \mathcal{X}_{\delta}^{\prime} \text {. }
$$

Consequences: we can show the following

1. If $\operatorname{rank}(\bar{A})<n, \exists$ consistency cells with diameter 2
\rightarrow Model identification error is trivially large
2. We need at least $m>n / G$ measurements
\rightarrow No learning with $G=1$ for incomplete operator (w/o invariance)
3. The maximum cell radius $\geq \frac{2 n}{3 m G}$ (counting argument)
$\rightarrow \delta$ cannot decrease faster than $\propto m^{-1} G^{-1}$

Upper bound (with randomness)

Definition: $\quad \operatorname{boxdim}(S)=\lim \sup _{\epsilon \rightarrow 0^{+}} \frac{\log \mathfrak{N}(S, \epsilon)}{\log 1 / \epsilon}$
Assumption: The signal set \mathscr{X} is low-dimensional $\leftrightarrow \mathscr{X}$ has box-counting dimension $k \ll n$

Examples: sparse dictionaries, manifold models, etc.
Theorem. If $\operatorname{boxdim}(\mathcal{X})<k$ and $A_{1}, \ldots, A_{G} \in \mathbb{R}^{m \times n}$ have i.i.d. Gaussian entries with

$$
m>\frac{4}{\delta}\left(k+\frac{n}{G}\right) \log \left(\frac{5 \sqrt{n}}{m}\right)+\frac{1}{G} \log \frac{1}{\xi}+\frac{n}{G} \log 3,
$$

then

$$
\mathbb{P}\left(\hat{\mathcal{X}} \subseteq \mathcal{X}_{\delta}\right) \geq 1-\xi .
$$

Upper bound (with randomness)

Consequences of the theorem:

\rightarrow The identification error decreases as

$$
\delta=\frac{\left(k+\frac{n}{G}\right)}{m} \log \left(\frac{n m}{k+\frac{n}{G}}\right)
$$

\rightarrow We require at least $m \geq k+\frac{n}{G}$ measurements per operator
\rightarrow For $G>\frac{n}{k}$, error \sim signal recovery errors from one-bit CS

Sample Complexity (with randomness)

How many binary observations to obtain \hat{X} ?
\rightarrow upper bound on $N=\bigcup_{g=1}^{G}\left|\operatorname{sign}\left(A_{g} X\right)\right|$
Theorem. If $\operatorname{boxdim}(\mathcal{X})<k$ and $A_{1}, \ldots, A_{G} \in \mathbb{R}^{m \times n}$ have i.i.d. Gaussian entries, then, with probability exceeding $1-\frac{1024}{9 m^{2} n}$, there are

$$
N \leq G\left(\frac{m \sqrt{n}}{k}\right)^{8 k}
$$

possible different measurements vectors.
\rightarrow Exponential on the model $\operatorname{dim} k$ and not the ambient $\operatorname{dim} n!$

Algorithms

Learning to reconstruct from binary measurements in practice?
Goal:
Learn reconstruction network $\hat{x}=f_{\theta}\left(y, A_{g}\right)$ with a self-supervised loss \mathscr{L} which uses $\left\{\left(y_{i}, A_{g_{i}}\right\}_{i=1}^{N}\right.$

Warning:

No clear link with the theory (yet)

Multi-operator case

Self-supervised training loss: given a reconstruction model f_{θ}

$$
\arg \min _{\theta} \mathcal{L}_{\mathrm{MC}}(\theta)
$$

with:

$$
\begin{aligned}
& \mathcal{L}_{\mathrm{MC}}(\theta):=\sum_{i=1}^{N} \log \left[1+\exp \left(-y_{i} A_{g_{i}} f_{\theta}\left(y_{i}, A_{g_{i}}\right)\right)\right] \\
& \quad \rightarrow \text { promotes measurement consistency } y_{i} \approx \operatorname{sign}\left(A_{g_{i}} f_{\theta}\left(y_{i}, A_{g_{i}}\right)\right)
\end{aligned}
$$

Problem: this is a consistent reconstruction $f_{\theta}\left(y, A_{g}\right)=A_{g}^{\dagger} y$

Multi-operator case

Self-supervised training loss: given a reconstruction model f_{θ}

$$
\arg \min _{\theta} \mathcal{L}_{\mathrm{MC}}(\theta)+\mathcal{L}_{\mathrm{CC}}(\theta)
$$

with:

$$
\begin{aligned}
& \mathcal{L}_{\mathrm{MC}}(\theta):=\sum_{i=1}^{N} \log \left[1+\exp \left(-y_{i} A_{g_{i}} f_{\theta}\left(y_{i}, A_{g_{i}}\right)\right)\right] \\
& \quad \rightarrow \text { promotes measurement consistency } y_{i} \approx \operatorname{sign}\left(A_{g_{i}} f_{\theta}\left(y_{i}, A_{g_{i}}\right)\right) \\
& \quad \mathcal{L}_{\mathrm{CC}}(\theta):=\sum_{i=1}^{N} \sum_{s=1}^{G}\left\|f_{\theta}\left(A_{s} f_{\theta}\left(y_{i}, A_{g_{i}}\right), A_{s}\right)-f_{\theta}\left(y_{i}, A_{g_{i}}\right)\right\| \\
& \quad \rightarrow \text { promotes cross-operator consistency, e.g., prevents MC sol } f_{\theta}\left(y, A_{g}\right)=A_{g}^{\dagger} y
\end{aligned}
$$

Remarks:

- Network-agnostic scheme (applicable to any existing deep model)
- We called this "Self-Supervised learning loss for training reconstruction networks from Binary Measurement data alone" (SSBM)

Single operator with equivariance

Self-supervised training loss: given a reconstruction model f_{θ}

$$
\arg \min _{\theta} \mathcal{L}_{\mathrm{MC}}(\theta)+\mathcal{L}_{\mathrm{Eq}}(\theta)
$$

with:

$$
\begin{aligned}
& \mathcal{L}_{\mathrm{MC}}(\theta):=\sum_{i=1}^{N} \log \left[1+\exp \left(-y_{i} A_{g_{i}} f_{\theta}\left(y_{i}, A_{g_{i}}\right)\right)\right] \\
& \quad \rightarrow \text { promotes measurement consistency } y_{i} \approx \operatorname{sign}\left(A_{g_{i}} f_{\theta}\left(y_{i}, A_{g_{i}}\right)\right) \\
& \quad \mathcal{L}_{\mathrm{Eq}}(\theta):=\sum_{i=1}^{N} \sum_{g=1}^{G}\left\|f_{\theta}\left(A T_{g} f_{\theta}\left(y_{i}, A\right), A T_{g}\right)-T_{g} f_{\theta}\left(y_{i}, A\right)\right\| \\
& \quad \rightarrow \text { promotes equivariance of } f_{\theta} \circ A, \text { i.e., }(f \circ A)\left(T_{g} \cdot\right)=T_{g}(f \circ A)(\cdot)
\end{aligned}
$$

Remarks:

- Network-agnostic scheme (applicable to any existing deep model)
- We called this "Self-Supervised learning loss for training reconstruction networks from Binary Measurement data alone" (SSBM)

Experiments

Operators:

A_{g} with Gaussian iid entries

Network:

, $f_{\theta}(y, A)=g_{\theta} \circ A^{\top}(y)$
where g_{θ} is a U-net CNN

Comparison:

Linear inverse $A^{\top} y_{i}$ (no training)
Binary IHT (BIHT) with wavelets (no training)
Fully supervised loss
SSBM (proposed)

MNIST

Multiple operators ($G=10$), images have $n=784$ pixels.

I-SSBM (ours)
- Linear Inverse
T-BIHT
T Supervised

$$
\begin{array}{|l}
\hline \text { I }
\end{array} \text { SSBM (ours) }
$$

Test PSNR $:=\frac{1}{N^{\prime}} \sum_{i=1}^{N^{\prime}} \operatorname{PSNR}\left(x_{i}^{\prime}, f_{\theta}\left(\operatorname{sign}\left(A_{g_{i}} x_{i}^{\prime}\right), A_{g_{i}}\right)\right), x_{i}^{\prime} \in "$ test set"

Fashion MNIST

Multiple operators ($\mathrm{G}=10$), with $\mathrm{m}=300$, images have $\mathrm{n}=784$ pixels.

linear inverse										
BIHT	$=8$			yis				\%		
proposed	?	?	?	?	?	?	?	?	?	?
supervised	?	?	?	?	?	?	?	?	?	?
ground truth	?	?	?	?	?	?	?	?	?	$?$

Fashion MNIST

Multiple operators ($\mathrm{G}=10$), with $\mathrm{m}=300$, images have $\mathrm{n}=784$ pixels.

CelebA

Multiple operators ($\mathrm{G}=10$) with $\mathrm{m}=9830$, images have $\mathrm{n}=49152$ pixels.

Conclusion and take-away messages

New unsupervised learning framework for binary data
Theory: Conditions for learning
, Number of measurements
, L/U Bounds on global identification error

Practice: Deep learning approach
Self-supervised loss which can be applied to any model

Ongoing/future work
, Other non-linear inverse problems (e.g., phase retrieval)
, Upper bounds for the invariant case

- Noise/dither $y=\operatorname{sign}(A x+\epsilon)$

Thank you!

References:

眩 Chen, Tachella and Davies, "Robust Equivariant Imaging: a fully unsupervised framework for learning to image from noisy and partial measurements", CVPR 2022 (Oral)

Bi Chen, Tachella and Davies, "Equivariant Imaging: Learning Beyond the Range Space", ICCV 2021 (Oral)

Tachella, Chen and Davies, "Unsupervised Learning From Incomplete Measurements for Inverse Problems", NeurIPS 2022.
: Tachella, Chen and Davies, "Sensing Theorems for Unsupervised Learning in Inverse Problems", JMLR 2023.
© Chen, Davies, Eerhardt, Schonlieb, Ferry and Tachella, "Imaging with Equivariant Deep Learning", IEEE SPM 2023.
; Tachella and Jacques, "Learning to Reconstruct Signals from Binary Measurements", arXiv:2303.08691, 2023

