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Inverse problems (IP)

= A(x) +¢
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Ill-posed:
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Solving IP: regularised reconstruction

Idea: use a prior = loss p(x) for plausible reconstructions

T € arg min p(x) subject to y = A(x)

I

Examples: wavelet/dictionary sparsity, total-variation, ...

Disadvantages:

Hard to define a good p(x) in real world problems
Loose with respect to the true signal distribution

Cat friendly
presentation



Solving IP: learning approach

Idea:
use training pairs of signals and measurements {(xl-, yi) }?;1

learn the inversion function y — X = f;(x)

A . N
0 € argming ) .~ ||z — fo(ys)lI?

where f, : R™ — R" is parameterized as a deep neural network.



Solving IP: learning approach

Advantages:
State-of-the-art reconstructions

fastMRI
Once trained, f; is easy to evaluate [EaaRIES

Ground-truth Total variation Deep network
(28.2 dB) (28.2 dB)

- x8 accelerated MRI [Zbontar et al., 2019]



Solving IP: learning approach

Main disadvantage:

Obtaining training signals {X;}. can be expensive/impossible.

For instance:
Biomedical sciences (e.g., CT, MRI)
Astronomical imaging (e.g., EHT)

Consequence:
Risk to solve expected solution (off-distrib. prob)

Prior or reconstruction, which comes first?




Measurement-Driven Computational Imaging

Can we learn to reconstruct signals
from measurement data alone{yl-}fil?

Linear inverse problems: y = A(x) + € - Yes

If signal set X is low-dimensional
& Invariant to groups of transformations

Theory [T.,, Chen and Davies, JMLR, 2023]
Algorithms [Chen, T., Davies, CVPR, ICCV, NeurlPS, 2022]

Non-linear inverse problems: y = fo A(x) +€ - Today
(with f = sign)



Purpose of this talk

Learning to reconstruct from binary measurements?

Theoretical analysis: given N binary observations & G operators

y; = sign(A,, ;) with 1 <i < N and g; € {1,...,G}

Z v
Known unknown

Estimate signal set X D {z;},? Error (LB/UB)? Sample Complexity?
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Sensing scenario 1: Multiple Operators

Measurements might be associated to G > 1 forward operators

Examples:
%+ access ratings for recommendation systems with # users
dynamic sensors: {A, : f = nA4}
multi-coil MRI
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Sensing scenarlo 2: One operator & invariance

Most signals sets are invariant to groups of transformations:

VieX, Vge{l,....,G}, 2’ =T;'zeX

(seometric prior)

Example: translation
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Sensing scenarlo 2: One operator & invariance

Most signals sets are invariant to groups of transformations:

VieX, Vge{l,....,G}, 2’ =T;'zeX

(seometric prior)
Forallg € {1, ..., G} we have

y = sign(Ax) = sign(AT, Tg_la:) = sign(A,x")
v \Y

/
Ag X

ici AT, for diff
Implicit access to , for different g

multiple operators
Ag = ATg

12



Model identification: the problem

Assumption: enough points of X have been observed for all operators.
(More on this later)
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Model identification: the problem

Assumption: enough points of X have been observed for all operators.
(More on this later)

Question: Given the observed sets

[V, :=sign(4,X)}

g=1

What's the best approximation  of the signal set X ?

meaning?

- From this set, a consistent decoder reads:
fly) € {x € S"!|sign(Ar) =y and z € X'}
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Model identification: geometric intuition

Toy example: n = 3, increasing m, Ag has Gaussian I1id entries

Sn— 1
@ sign(4, -) tessellates Sk

Growing number of
consistency cells as m 1
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Model identification: geometric intuition

Toy example: n = 3, increasing m, Ag has Gaussian I1id entries

Sign(Ag ) tessellates S"!

Growing number of
consistency cells as m 1

Let us define:
X, = {veSt 1| 3z e X,sign(Ayv) = sign (Ayz) }

- dilation of 2 by the “uncertainty” of sign o A,
18



Model identification: geometric intuition

Toy example:n =3, G =3, m =4, 2 = black line

X X,

Different dilations
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Model identification: geometric intuition

Toy example:n =3, G =3, m =4, 2 = black line

X

Identification error definition: (adapted to one-bit sensing)

ldentify signal set up to global erroro = isin a 5-tube v

X CXs:={veS .

Upper bound? Lower bound

x — v

? Sam

< d,x € X}

nle complexity?
21



Lower bound (via an oracle standpoint)

Oracle estimation: We access to G observation ofeachx € &

A=

A

X

Xorncle = {v c S 1| 3z € X, sign(Av) = sign(Ax)}
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Lower bound (via an oracle standpoint)

Theorem:;

0 > d := diameter largest consistency cell of sign(A )

Proof sketch: Given X s.t. Xs C X5, if § < do, if 6 < min{d, do},
then, 3R € SO(n) such that, for X' = RX, X! . & &.
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Lower bound (via an oracle standpoint)

Theorem:;

0 > d := diameter largest consistency cell of sign(A )

Proof sketch: Given X s.t. Xs C X5, if § < do, if 6 < min{d, do},
then, 3R € SO(n) such that, for X' = RX, X! . & &.

Consequences: we can show the following

1. If rank(A) < n, 3 consistency cells with diameter 2
— Model identification error is trivially large
2. We need at least m > n/G measurements

— No learning with G = 1 for incomplete operator (w/o invariance)

3. The maximum cell radius > = (
3mG

—> & cannot decrease faster than o« m~1G~!

counting argument)
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Upper bound (with randomness)

log N(S
Definition: boxdim(S) = lim sup 0g N5, €) - A
e—0T 1Og 1/6

Assumption: The signal set X is low-dimensional
< I has box-counting dimension k < n

Examples: sparse dictionaries, manifold models, etc.

Theorem. Ifboxdim(X) < k and Ay, ..., Ag € R™*"
have 1.1.d. Gaussian entries with

3 (k+ &)log(*") + G log ¢ + & log3,

then
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Upper bound (with randomness)

Consequences of the theorem:

> The identification error decreases as

n

- We require at least m > k+ -

measurements per operator

n

> For G > p

, error ~ signal recovery errors from one-bit CS
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Sample Complexity (with randomness)

How many binary observations to obtain 2 ?

- upper bound on N = | Jg_, | sign(A,X) |

Theorem. Ifboxdim(X) < k and Ay, ..., Ag € R™*"

have 1.1.d. Gaussian entries,

then, with probability exceeding 1 — 2223

oz, there are

possible different measurements vectors.

- Exponential on the model dim k and not the ambient dim 7!
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Learning to reconstruct from binary measurements in practice?

Goal:

Learn reconstruction network X = f, (v, Ag)
with a self-supervised loss Z which uses {(y;, Agi)}f.\; {

Warning:

No clear link with the theory (yet)
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Multi-operator case

Self-supervised training loss: given a reconstruction model f,

arg m@in Lyic(0)

with:
N
£MC(‘9) = Zizl log [1 + exp ( — yiAgi fQ(yiv Agz))]

- promotes measurement consistency y; X sign(Agifg(yl-, Agi))

Problem: this is a consistent reconstruction f, (y, A,) = Agy
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Multi-operator case

Self-supervised training loss: given a reconstruction model f,
arg m@in L (6’) + Lo ((9)

with:
N
£MC(‘9) = Zizl log [1 + exp ( — yiAgi fQ(yiv Agz))]

- promotes measurement consistency y; X sign(AgifQ(yl-, Agi))

Loc(0) =30 S0 [ fo(Asfo(yir Ag.)s As) — fo(yi, Ag,)|

-> promotes cross-operator consistency, e.g., prevents MC sol f, (y, Ag) = Agy

RemarRs:
Network-agnostic scheme (applicable to any existing deep model)

We called this “Self-Supervised learning loss for training reconstruction
networks from Binary Measurement data alone” (SSBM)

30



Single operator with equivariance

Self-supervised training loss: given a reconstruction model f,
arg m@in Laic(0) + Lrq(0)

with:
N
£MC(9) = Zizl log [1 + exp ( — yiAgi fQ(yiv Agz))]

- promotes measurement consistency y; X sign(AgifQ(yl-, Ag_))

Lrq(0) := Zi\; 25:1 Hf9 (ATgf@(yivA)vATg) o Tgf@(yivA)H
- promotes equivariance of fyo A, i.e, (foA)(Tg-) = Tg(foA)( )

RemarRs:
Network-agnostic scheme (applicable to any existing deep model)

We called this “Self-Supervised learning loss for training reconstruction
networks from Binary Measurement data alone” (SSBM)
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Operators: C ot o o | c
A, with Gaussian iid entries ) ol
Network: (&
gy o AT | -]
Jo(y,A) = ggo A (Y) d

256 256 256

I-. .-}. =) 3x3 Conv + BN + Relu

128 256 Copy
J 2x2 Max Pooling

- — - 3x3 Up-Conv + BN + Relu

256 512 = 1x1 Conv

where g, Is a U-net CNN

Comparison:
Linear inverse ATyl- (no training)

Binary IHT (BIHT) with wavelets (no training)
Fully supervised loss

SSBM (proposed)
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MNIST

Multiple operators (G = 10), images have n = 784 pixels.

2 — L T
° o —F—SSBM (ours)
—}—Linear Inverse

—J—BIHT

Supervised

N
o
T

Test PSNR
o

101

0.06 0.13 0.26 0.51 1.001.28

m/n
30 —
—F— SSBM (ours)
s o (X l/m

Y 251 "" | 1
Z - x — logm
2 m
O 20 —==em =n/G
7
o)
I_

0.06 0.13 0.26 0.51 1.001.28
m/n

Test PSNR := & S PSNR (2}, fo (sign (Ag,2}) , Ay,)), 7} € “test set” 33



Fashion MNIST

Multiple operators (G=10), with m=300, images have n=784 pixels.

linear
inverse

proposed

supervised

ground
truth
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Multiple operators (G=10) with m=9830, images have n=49152 pixels.

linear
inverse

BIHT

proposed

supervised

ground
truth
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Conclusion and take-away messages

New unsupervised learning framework for binary data

Theory: Conditions for learning
Number of measurements
L/U Bounds on global identification error

Practice: Deep learning approach
Self-supervised loss which can be applied to any model

Ongoing/future work
Other non-linear inverse problems (e.g., phase retrieval)
Upper bounds for the invariant case

Noise/dither y = sign(Ax + €)
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Thank you!
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