Learning to Reconstruct Signals From Binary Measurements

Julián Tachella CNRS, Physics Laboratory ENS Lyon, France

Laurent Jacques INMA/ICTEAM UCLouvain, Belgium

Inverse problems (IP)

Image inpainting

Radio Astronomy

MRI

Ill-posed:

many *x* consistent with *y*

Solution:

Restrict to set of plausible signals $x \in \mathcal{X}$

Recommender system

Solving IP: regularised reconstruction

Idea: use a *prior* \equiv *loss* $\rho(x)$ for plausible reconstructions

 $\hat{x} \in \arg\min_{x} \rho(x)$ subject to y = A(x)

Examples: wavelet/dictionary sparsity, total-variation, ...

Disadvantages:

- Hard to define a good $\rho(x)$ in real world problems
- Loose with respect to the true signal distribution

Solving IP: learning approach

Idea:

- use training pairs of signals and measurements $\{(x_i, y_i)\}_{i=1}^N$
- learn the inversion function $y \rightarrow \hat{x} = f_{\hat{\theta}}(x)$

 $\hat{\theta} \in \arg\min_{\theta} \sum_{i=1}^{N} \|x_i - f_{\theta}(y_i)\|^2$

where $f_{\theta} : \mathbb{R}^m \to \mathbb{R}^n$ is parameterized as a deep neural network.

Advantages:

- State-of-the-art reconstructions
- Once trained, $f_{\hat{\theta}}$ is easy to evaluate

fastMRI Accelerating MR Imaging with AI

Ground-truth

Total variation (28.2 dB)

Deep network (28.2 dB)

 \rightarrow x8 accelerated MRI [Zbontar et al., 2019]

Solving IP: learning approach

Main disadvantage:

Obtaining training signals $\{x_i\}_i$ can be expensive/impossible.

For instance:

- Biomedical sciences (e.g., CT, MRI)
- Astronomical imaging (e.g., EHT)

Consequence:

Risk to solve expected solution (off-distrib. prob)

Prior or reconstruction, which comes first?

Measurement-Driven Computational Imaging

Can we learn to reconstruct signals from measurement data alone $\{y_i\}_{i=1}^N$?

Linear inverse problems: $y = A(x) + \epsilon \rightarrow Yes$

If signal set ${\mathcal X}$ is low-dimensional

& invariant to groups of transformations

- Theory [T., Chen and Davies, JMLR, 2023]
- Algorithms [Chen, T., Davies, CVPR, ICCV, NeurIPS, 2022]

Non-linear inverse problems: $y = f \circ A(x) + \epsilon \rightarrow Today$ (with f = sign)

Purpose of this talk

Learning to reconstruct from binary measurements?

Theoretical analysis: given N binary observations & G operators

$$y_i = \operatorname{sign}(A_{g_i} x_i) \text{ with } 1 \leq i \leq N \text{ and } g_i \in \{1, \dots, G\}$$

Estimate signal set $\mathcal{X} \supset \{x_i\}_{i=1}^N$? Error (LB/UB)? Sample Complexity?

Purpose of this talk

Learning to reconstruct from binary measurements?

Theoretical analysis: given N binary observations & G operators

$$y_i = \operatorname{sign}(A_{g_i} x_i) \text{ with } 1 \leq i \leq N \text{ and } g_i \in \{1, \dots, G\}$$

Estimate signal set $\mathcal{X} \supset \{x_i\}_{i=1}^N$? Error (LB/UB)? Sample Complexity?

Sensing scenario 1: Multiple Operators

Measurements might be associated to $G \ge 1$ forward operators

 $A_1 x_1$

$$A_{2}x_{2}$$

 A_3x_3

Examples:

- \neq access ratings for recommendation systems with \neq users
- dynamic sensors: $\{A_t : t = n\Delta_T\}$
- multi-coil MRI

Sensing scenario 2: One operator & invariance

Most signals sets are invariant to groups of transformations:

$$\forall x \in \mathcal{X}, \quad \forall g \in \{1, \dots, G\}, \quad x' = T_g^{-1} x \in \mathcal{X}$$

(geometric prior)

Example: translation

Sensing scenario 2: One operator & invariance

Most signals sets are invariant to groups of transformations:

$$\forall x \in \mathcal{X}, \quad \forall g \in \{1, \dots, G\}, \quad x' = T_g^{-1} x \in \mathcal{X}$$
 (geometric prior)

For all $g \in \{1, ..., G\}$ we have $y = \operatorname{sign}(Ax) = \operatorname{sign}(AT_g T_g^{-1}x) = \operatorname{sign}(A_g x')$ $\bigvee_{\substack{V \\ A_g}} \bigvee_{\substack{X'}}$

Implicit access to multiple operators $A_g = AT_g$

Model identification: the problem

Assumption: enough points of ${\mathcal X}$ have been observed for all operators. (More on this later)

Model identification: the problem

Assumption: enough points of ${\mathcal X}$ have been observed for all operators. (More on this later)

Question: Given the observed sets

$$\left\{\mathcal{Y}_g := \operatorname{sign}(A_g \mathcal{X})\right\}_{g=1}^G$$

What's the best approximation $\hat{\mathcal{X}}$ of the signal set \mathcal{X} ? meaning?

→ From this set, a consistent decoder reads: $f(y) \in \{x \in \mathbb{S}^{n-1} | \operatorname{sign}(Ax) = y \text{ and } x \in \hat{\mathcal{X}} \}$

Toy example: n = 3, increasing m, A_g has Gaussian iid entries

 $\operatorname{sign}(A_g \cdot)$ tessellates \mathbb{S}^{n-1}

Growing number of consistency cells as $m \uparrow$

Toy example: n = 3, increasing m, A_g has Gaussian iid entries

 $\operatorname{sign}(A_g \cdot)$ tessellates \mathbb{S}^{n-1}

Growing number of consistency cells as $m \uparrow$

Toy example: n = 3, increasing m, A_g has Gaussian iid entries

 $\operatorname{sign}(A_g \cdot)$ tessellates \mathbb{S}^{n-1}

Growing number of consistency cells as $m \uparrow$

Toy example: n = 3, increasing m, A_g has Gaussian iid entries

 $\operatorname{sign}(A_g \cdot)$ tessellates \mathbb{S}^{n-1}

Growing number of consistency cells as $m \uparrow$

Let us define:

$$\hat{\mathcal{X}}_g = \left\{ v \in \mathbb{S}^{n-1} \mid \exists x \in \mathcal{X}, \operatorname{sign}\left(A_g v\right) = \operatorname{sign}\left(A_g x\right) \right\}$$

 \rightarrow dilation of \mathscr{X} by the "uncertainty" of sign $\circ A_g$

Toy example: n = 3, G = 3, m = 4, $\mathcal{X} = black line$

Different dilations

Toy example: n = 3, G = 3, m = 4, $\mathcal{X} = black line$

Different dilations

Toy example: n = 3, G = 3, m = 4, $\mathcal{X} = black line$

Identification error definition: (adapted to one-bit sensing)

Identify signal set up to global error $\delta \rightarrow \hat{\mathcal{X}}$ is in a δ -tube \mathcal{X}_{δ}

$$\hat{\mathcal{X}} \subseteq \mathcal{X}_{\delta} := \{ v \in \mathbb{S}^{n-1} : \|x - v\| \le \delta, x \in \mathcal{X} \}$$

Upper bound? Lower bound? Sample complexity?

Lower bound (via an oracle standpoint)

Oracle estimation: We access to *G* observation of each $x \in \mathcal{X}$

$$\bar{A} = \begin{bmatrix} A_1 \\ \vdots \\ A_G \end{bmatrix} \in \mathbb{R}^{mG \times n}$$

 $\hat{\mathcal{X}}_{\text{oracle}} = \left\{ v \in \mathbb{S}^{n-1} \mid \exists x \in \mathcal{X}, \operatorname{sign}(\bar{A}v) = \operatorname{sign}(\bar{A}x) \right\}$

Lower bound (via an oracle standpoint)

Theorem:

$$\delta \geq d := \text{diameter largest consistency cell of } \operatorname{sign}(\bar{A} \cdot)$$

Proof sketch: Given \mathcal{X} s.t. $\mathcal{X}_{\delta} \subsetneq \mathcal{X}_{\delta_0}$ if $\delta < \delta_0$, if $\delta < \min\{d, \delta_0\}$, then, $\exists R \in SO(n)$ such that, for $\mathcal{X}' = R\mathcal{X}, \hat{\mathcal{X}}'_{\text{oracle}} \not\subset \mathcal{X}'_{\delta}$.

Lower bound (via an oracle standpoint)

Theorem:

 $\delta \ge d := \text{diameter largest consistency cell of } sign(\bar{A} \cdot)$

Proof sketch: Given \mathcal{X} s.t. $\mathcal{X}_{\delta} \subsetneq \mathcal{X}_{\delta_0}$ if $\delta < \delta_0$, if $\delta < \min\{d, \delta_0\}$, then, $\exists R \in SO(n)$ such that, for $\mathcal{X}' = R\mathcal{X}, \hat{\mathcal{X}}'_{\text{oracle}} \not\subset \mathcal{X}'_{\delta}$.

Consequences: we can show the following

1. If $rank(\overline{A}) < n$, \exists consistency cells with diameter 2

 \rightarrow Model identification error is trivially large

- 2. We need at least m > n/G measurements
 - \rightarrow No learning with G = 1 for incomplete operator (w/o invariance)
- 3. The maximum cell radius $\geq \frac{2n}{3mG}$ (counting argument)

 $\rightarrow \delta$ cannot decrease faster than $\propto m^{-1}G^{-1}$

Upper bound (with randomness)

Definition:
$$\operatorname{boxdim}(S) = \lim \sup_{\epsilon \to 0^+} \frac{\log \mathfrak{N}(S, \epsilon)}{\log 1/\epsilon}$$

Assumption: The signal set ${\mathcal X}$ is low-dimensional $\leftrightarrow {\mathcal X}$ has box-counting dimension $k \ll n$

Examples: sparse dictionaries, manifold models, etc.

Theorem. If $boxdim(\mathcal{X}) < k$ and $A_1, \ldots, A_G \in \mathbb{R}^{m \times n}$ have i.i.d. Gaussian entries with

$$m > \frac{4}{\delta}\left(k + \frac{n}{G}\right)\log\left(\frac{5\sqrt{n}}{m}\right) + \frac{1}{G}\log\frac{1}{\xi} + \frac{n}{G}\log 3,$$

then

$$\mathbb{P}(\hat{\mathcal{X}} \subseteq \mathcal{X}_{\delta}) \geq 1 - \xi.$$

Consequences of the theorem:

→ The identification error decreases as

$$\delta = \frac{(k + \frac{n}{G})}{m} \log(\frac{nm}{k + \frac{n}{G}})$$

→ We require at least $m \ge k + \frac{n}{G}$ measurements per operator

 \rightarrow For $G > \frac{n}{k}$, error \sim signal recovery errors from one-bit CS

Sample Complexity (with randomness)

How many binary observations to obtain $\hat{\mathscr{X}}$?

 \rightarrow upper bound on $N = \bigcup_{g=1}^{G} |\operatorname{sign}(A_g \mathscr{X})|$

Theorem. If $\operatorname{boxdim}(\mathcal{X}) < k$ and $A_1, \ldots, A_G \in \mathbb{R}^{m \times n}$ have i.i.d. Gaussian entries, then, with probability exceeding $1 - \frac{1024}{9m^2n}$, there are

$$N \le G(\frac{m\sqrt{n}}{k})^{8k}$$

possible different measurements vectors.

 \rightarrow Exponential on the model dim k and not the ambient dim n !

Learning to reconstruct from binary measurements in practice?

Goal:

Learn reconstruction network $\hat{x} = f_{\theta}(y, A_g)$ with a **self-supervised loss** \mathscr{L} which uses $\{(y_i, A_{g_i})\}_{i=1}^N$

Warning:

No clear link with the theory (yet)

Self-supervised training loss: given a reconstruction model f_{θ}

 $\arg\min_{\theta} \ \mathcal{L}_{\mathrm{MC}}(\theta)$

with:

 $\mathcal{L}_{\mathrm{MC}}(\theta) := \sum_{i=1}^{N} \log \left[1 + \exp\left(-y_i A_{g_i} f_{\theta}(y_i, A_{g_i})\right) \right]$

→ promotes measurement consistency $y_i \approx \text{sign}(A_{g_i} f_{\theta}(y_i, A_{g_i}))$

Problem: this is a consistent reconstruction $f_{\theta}(y, A_g) = A_g^{\dagger} y$

Self-supervised training loss: given a reconstruction model f_{θ}

$$\arg\min_{\theta} \mathcal{L}_{\mathrm{MC}}(\theta) + \mathcal{L}_{\mathrm{CC}}(\theta)$$

with:

$$\mathcal{L}_{\mathrm{MC}}(\theta) := \sum_{i=1}^{N} \log \left[1 + \exp\left(-y_i A_{g_i} f_{\theta}(y_i, A_{g_i})\right) \right]$$

→ promotes measurement consistency $y_i \approx \text{sign}(A_{g_i} f_{\theta}(y_i, A_{g_i}))$

$$\mathcal{L}_{\mathrm{CC}}(\theta) := \sum_{i=1}^{N} \sum_{s=1}^{G} \left\| f_{\theta} \left(A_s f_{\theta}(y_i, A_{g_i}), A_s \right) - f_{\theta}(y_i, A_{g_i}) \right\|$$

→ promotes cross-operator consistency, e.g., prevents MC sol $f_{\theta}(y, A_g) = A_g^{\dagger} y$

Remarks:

- Network-agnostic scheme (applicable to any existing deep model)
- We called this "**S**elf-**S**upervised learning loss for training reconstruction networks from **B**inary **M**easurement data alone" (SSBM)

Single operator with equivariance

Self-supervised training loss: given a reconstruction model f_{θ}

$$\arg\min_{\theta} \mathcal{L}_{\mathrm{MC}}(\theta) + \mathcal{L}_{\mathrm{Eq}}(\theta)$$

with:

$$\mathcal{L}_{\mathrm{MC}}(\theta) := \sum_{i=1}^{N} \log \left[1 + \exp\left(-y_i A_{g_i} f_{\theta}(y_i, A_{g_i})\right) \right]$$

→ promotes measurement consistency $y_i \approx \text{sign}(A_{g_i} f_{\theta}(y_i, A_{g_i}))$

$$\mathcal{L}_{\mathrm{Eq}}(\theta) := \sum_{i=1}^{N} \sum_{g=1}^{G} \left\| f_{\theta} \left(AT_g f_{\theta}(y_i, A), AT_g \right) - T_g f_{\theta}(y_i, A) \right\|$$

→ promotes equivariance of $f_{\theta} \circ A$, i.e., $(f \circ A)(T_g \cdot) = T_g(f \circ A)(\cdot)$

Remarks:

- Network-agnostic scheme (applicable to any existing deep model)
- We called this "**S**elf-**S**upervised learning loss for training reconstruction networks from **B**inary **M**easurement data alone" (SSBM)

Experiments

Operators:

 $\blacktriangleright A_g$ with Gaussian iid entries

Network:

• $f_{\theta}(y, A) = g_{\theta} \circ A^{\mathsf{T}}(y)$ where g_{θ} is a U-net CNN

Comparison:

- Linear inverse $A^{\mathsf{T}}y_i$ (no training)
- Binary IHT (BIHT) with wavelets (no training)
- Fully supervised loss
- SSBM (proposed)

MNIST

Multiple operators (G = 10), images have n = 784 pixels.

Test PSNR := $\frac{1}{N'} \sum_{i=1}^{N'} \text{PSNR}(x'_i, f_\theta(\text{sign}(A_{g_i}x'_i), A_{g_i})), x'_i \in \text{``test set''}$

Fashion MNIST

Multiple operators (G=10), with m=300, images have n=784 pixels.

linear inverse										
BIHT	- 4			ser Nga	й. -	- 	40			÷۴
proposed	?	?	?	?	?	?	?	?	?	?
supervised	?	?	?	?	?	?	?	?	?	?
ground truth	?	?	?	?	?	?	?	?	?	?

Fashion MNIST

Multiple operators (G=10), with m=300, images have n=784 pixels.

linear inverse									
BIHT			чт. Мул	й. -	- 	-11			
proposed								-	1
supervised		A.							
ground truth			a in	9.0	6.4	1	Δ.		

CelebA

Multiple operators (G=10) with m=9830, images have n=49152 pixels.

Conclusion and take-away messages

New unsupervised learning framework for binary data

Theory: Conditions for learning

- Number of measurements
- L/U Bounds on global identification error

Practice: Deep learning approach

Self-supervised loss which can be applied to any model

Ongoing/future work

- Other non-linear inverse problems (e.g., phase retrieval)
- Upper bounds for the invariant case
- Noise/dither $y = sign(Ax + \epsilon)$

Thank you!

References:

- Chen, Tachella and Davies, "Robust Equivariant Imaging: a fully unsupervised framework for learning to image from noisy and partial measurements", CVPR 2022 (Oral)
- Chen, Tachella and Davies, "Equivariant Imaging: Learning Beyond the Range Space", ICCV 2021 (Oral)
- Tachella, Chen and Davies, "Unsupervised Learning From Incomplete Measurements for Inverse Problems", NeurIPS 2022.
- Tachella, Chen and Davies, "Sensing Theorems for Unsupervised Learning in Inverse Problems", JMLR 2023.
- Chen, Davies, Eerhardt, Schonlieb, Ferry and Tachella, "Imaging with Equivariant Deep Learning", IEEE SPM 2023.
- Tachella and Jacques, "Learning to Reconstruct Signals from Binary Measurements", arXiv:2303.08691, 2023