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Inverse problems (IP)
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Solving IP: regularised reconstruction

Idea: use a prior  loss  for plausible reconstructions 

Examples:  wavelet/dictionary sparsity, total-variation, … 

Disadvantages:  

‣ Hard to define a good  in real world problems 
‣ Loose with respect to the true signal distribution

≡ ρ(x)

ρ(x)
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x̂ 2 argmin
x

⇢(x) subject to y = A(x)

Cat friendly  
presentation



Solving IP: learning approach

Idea:  
‣ use training pairs of signals and measurements   
‣ learn the inversion function  

      

{(xi, yi)}N
i=1

y → ̂x = f ̂θ (x)
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f ̂θy ̂x
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✓̂ 2 argmin✓
PN

i=1 kxi � f✓(yi)k2

where  is parameterized as a deep neural network.fθ : ℝm → ℝn



Solving IP: learning approach
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Advantages:  
‣ State-of-the-art reconstructions 

‣ Once trained,    is easy to evaluatef ̂θ

→ x8 accelerated MRI [Zbontar et al., 2019]

Ground-truth Total variation 
(28.2 dB)

Deep network 
(28.2 dB)



Main disadvantage:  

  Obtaining training signals  can be expensive/impossible.  

For instance: 
‣ Biomedical sciences (e.g., CT, MRI) 
‣ Astronomical imaging (e.g., EHT) 

Consequence: 
‣ Risk to solve expected solution (off-distrib. prob) 

{xi}i

Solving IP: learning approach
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Prior or reconstruction, which comes first?



Measurement-Driven Computational Imaging

Linear inverse problems:                                    → Yes 
If signal set  is low-dimensional  

& invariant to groups of transformations 

‣ Theory [T., Chen and Davies, JMLR, 2023] 

‣ Algorithms [Chen, T., Davies, CVPR, ICCV, NeurIPS, 2022] 

Non-linear inverse problems:                                               → Today 

𝒳
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Can we learn to reconstruct signals 
from measurement data alone ? {yi}N

i=1
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y = A(x) + ✏
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y = f �A(x) + ✏
(with )f = sign



Purpose of this talk
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Learning to reconstruct from binary measurements?

Theoretical analysis:  given  binary observations &  operatorsN G
<latexit sha1_base64="ctnyz6OnckSP0B/zrTnpDOWT4PQ="></latexit>

yi = sign(Agixi) with 1  i  N and gi 2 {1, . . . , G}

known unknown
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Estimate signal set X � {xi}Ni=1? Error (LB/UB)? Sample Complexity?



Purpose of this talk
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unknown
signal set

self-supervised training

binary dataset

sensing
device(s)

linear inverse

Figure 1: We propose a method for learning to reconstruct binary measurement observations, using
only the binary observations themselves for training. The learned reconstruction function can dis-
cover unseen patterns in the data (in this case the clothes of fashionMNIST - see the experiments
in Section 5), which cannot be recognized in the standard linear reconstructions (no learning). We
also provide theoretical bounds which characterize how well we can expect to learn the set of signals
from binary measurement data alone.

It is possible to obtain a good estimation of x despite the binary quantization, if the set of
plausible signals X is low-dimensional [6], i.e., if it occupies a small portion of the ambient space
Sn�1. For example, reconstruction methods often assume that X is a single linear subspace or a
union of subspaces [5], generally by imposing sparsity over a known dictionary. The well-known
total variation regularization assumes that the gradients of the signal are sparse [7]. However,
in real-world settings, the set of signals X is generally unknown, and sparsity assumptions on an
arbitrary dictionary yield a loose description of the true set X , negatively impacting the quality
of reconstructions obtained under this assumption. This limitation can be overcome by learning
the reconstruction mapping y 7! x (e.g., with a deep neural network) directly from N pairs of
measurements and associated signals—i.e., a supervised learning scenario with a labeled dataset
{(yi, xi)}Ni=1 with N assumed su�ciently large. While this learning-based approach generally obtains
state-of-the-art performance, it is often impractical since it can be very expensive or even impossible
to obtain ground-truth signals xi for training. For example, recommender systems generally do not
have access to high-resolution user ratings on all items for training.

In this paper, we investigate the problems of identifying the signal set and learning reconstruction
mapping using a dataset of binary measurements only {yi}

N
i=1. In this setting, if the measurement

process is incomplete m < n, the matrix A has a non-trivial nullspace and there is no information in
the measurement data about the set of signals X in the nullspace [8]. As a consequence, there is not
enough information for learning the reconstruction function either. For example, the trivial pseudo-
inverse reconstruction f(y) = A

>(AA
>)�1

y is perfectly consistent with the binary measurements,
i.e., sign (Af(y)) = y, but is generally far from being optimal.

Here we show that it is still possible to identify the signal set and learn to reconstruct the binary
measurements, if the measurement operator varies across observations, i.e.,

yi = sign (Agixi) (2)

where each signal xi is observed via one out of G operators gi 2 {1, . . . , G}, and i = 1, . . . , N . This
sensing assumption holds in various practical applications, where signals are observed through dif-
ferent operators (e.g., recommendation systems access ratings about a di↵erent set of items for each
user) or through an operator which changes through time (e.g., a sensor that changes its calibra-
tion). Moreover, this assumption is also valid for the case where we obtain binary measurements via

2

Learning to reconstruct from binary measurements?

Numerical analysis:
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yi = sign(Agixi) with 1  i  N and gi 2 {1, . . . , G}

known unknown
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Estimate signal set X � {xi}Ni=1? Error (LB/UB)? Sample Complexity?

Theoretical analysis:  given  binary observations &  operatorsN G



Sensing scenario 1: Multiple Operators

Measurements might be associated to  forward operatorsG ≥ 1
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A2x2A1x1 A3x3

Examples:  
‣  access ratings for recommendation systems with  users 
‣ dynamic sensors:  
‣ multi-coil MRI

≠ ≠
{At : t = nΔT}



Most signals sets are invariant to groups of transformations: 

Sensing scenario 2: One operator & invariance
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8x 2 X , 8g 2 {1, . . . , G}, x0 = T�1
g x 2 X

Example: translation

(geometric prior)



Most signals sets are invariant to groups of transformations: 

For all  we have g ∈ {1, …, G}

Sensing scenario 2: One operator & invariance
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 for different  ATg gImplicit access to 
multiple operators  

 Ag = ATg

<latexit sha1_base64="5SvNAzXzR7QA79DRfQ2zRRdFKnU="></latexit>

8x 2 X , 8g 2 {1, . . . , G}, x0 = T�1
g x 2 X

Ag x′ 
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y = sign(Ax) = sign(ATg T
�1
g x) = sign(Agx

0)

(geometric prior)



Model identification: the problem

Assumption: enough points of  have been observed for all operators. 𝒳
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(More on this later)



Model identification: the problem

Assumption: enough points of  have been observed for all operators. 

Question: Given the observed sets 

What’s the best approximation  of the signal set  ?

𝒳

�̂� 𝒳
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Yg := sign(AgX )

 G

g=1
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f(y) 2 {x 2 Sn�1| sign(Ax) = y and x 2 X̂
 

→ From this set, a consistent decoder reads:

meaning?

(More on this later)



Model identification: geometric intuition

Toy example: , increasing ,  has Gaussian iid entries n = 3 m Ag
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 tessellates sign(Ag ⋅) 𝕊n−1

Growing number of  
     consistency cells as m ↑

m = 1

+

−
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Sn�1



Model identification: geometric intuition

Toy example: , increasing ,  has Gaussian iid entries n = 3 m Ag
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 tessellates sign(Ag ⋅) 𝕊n−1

m = 3

<latexit sha1_base64="2qaBV+zOW2SLjAxFM1QOy4IHIiQ="></latexit>

Sn�1

Growing number of  
     consistency cells as m ↑+

−

+ −

− +

− −+



Model identification: geometric intuition

Toy example: , increasing ,  has Gaussian iid entries n = 3 m Ag
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 tessellates sign(Ag ⋅) 𝕊n−1

m = 8
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Sn�1

Growing number of  
     consistency cells as m ↑



Model identification: geometric intuition

Toy example: , increasing ,  has Gaussian iid entriesn = 3 m Ag
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 tessellates sign(Ag ⋅) 𝕊n−1
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X̂g =
�
v 2 Sn�1 | 9x 2 X , sign (Agv) = sign (Agx)

 

<latexit sha1_base64="cKhDIivERpIAeV/gPT5qE97jzBw="></latexit>

X̂g
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Let us define:
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Sn�1

Growing number of  
     consistency cells as m ↑

→ dilation of  by the “uncertainty” of 𝒳 sign ∘ Ag



Model identification: geometric intuition

Toy example: ,  black line n = 3, G = 3, m = 4 𝒳 =

19

Figure 3: Illustration of the model identification problem from binary measurements with n = 3,
m = 4, and G = 3. A signal set with box-counting dimension 1 is depicted in black. From left to

right: The red lines define the frontiers of the consistency cells associated with operators A1, . . . , A3.

union of subspaces [23, 17]. For example, the set of (k+1)-sparse vectors with unit norm has a box-
counting dimension equal to k. The upper box-counting dimension is particularly useful to obtain
an upper bound on the covering number of a set: if boxdim (X ) < k, there exists a set-dependent
constant ✏0 2 (0, 1

2 ) for which

N(X , ✏)  ✏
�k (6)

holds for all ✏  ✏0 [21]. The following theorem exploits this fact to provide a bound on the number
of measurements needed for recovering a signal with an error smaller than � from generic binary
observations:

Theorem 1. Let A be a matrix with iid entries sampled from a standard Gaussian distribution and
assume that boxdim (X ) < k, such that N(X , ✏)  ✏

�k for all ✏ < ✏0 with ✏0 2 (0, 1
2 ). If the number

of measurements verifies

m �
2
�

�
2k log 4

p
n

� + log 1
⇠

�
(7)

then for all x, s 2 X and �  min{4
p
n✏0,

1
2}, we have that

sign (Ax) 6= sign (As) =) kx� sk < � (8)

with probability greater than 1� ⇠.

This result extends Theorem 2 in [5], which holds for k-sparse sets only, to general low-dimensional
sets and is included in the Appendix. For example, if X is the intersection of L (s+ 1)-dimensional

subspaces with the unit sphere, Theorem 1 holds with constant ✏0 = (3sL)�
1

k�s and k > s. This
theorem tells us that we can recover sparse signals from binary measurements up to an error of

O( k
m log nm

k )

which is sharp, up to the logarithmic factor [5]. Oymak and Recht [12] present a similar result,
stated in terms of the Gaussian width3 of the signal set instead of the box-counting dimension.

3 Model Identification from Binary Observations

In this section, we study how well we can identify the signal set from binary measurement data
associated with G di↵erent measurement operators A1, . . . , AG 2 Rm⇥n. We focus on the problem
of identifying the set X from the binary sets {sign (AgX )}Gg=1. In practice, we observe a subset of

3The Gaussian width of a set S is defined as Es{supx2S x>s} where s is distributed as a standard Gaussian vector.
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Figure 3: Illustration of the model identification problem from binary measurements with n = 3,
m = 4, and G = 3. A signal set with box-counting dimension 1 is depicted in black. From left to

right: The red lines define the frontiers of the consistency cells associated with operators A1, . . . , A3.

union of subspaces [23, 17]. For example, the set of (k+1)-sparse vectors with unit norm has a box-
counting dimension equal to k. The upper box-counting dimension is particularly useful to obtain
an upper bound on the covering number of a set: if boxdim (X ) < k, there exists a set-dependent
constant ✏0 2 (0, 1

2 ) for which

N(X , ✏)  ✏
�k (6)

holds for all ✏  ✏0 [21]. The following theorem exploits this fact to provide a bound on the number
of measurements needed for recovering a signal with an error smaller than � from generic binary
observations:

Theorem 1. Let A be a matrix with iid entries sampled from a standard Gaussian distribution and
assume that boxdim (X ) < k, such that N(X , ✏)  ✏

�k for all ✏ < ✏0 with ✏0 2 (0, 1
2 ). If the number

of measurements verifies

m �
2
�

�
2k log 4

p
n

� + log 1
⇠

�
(7)

then for all x, s 2 X and �  min{4
p
n✏0,

1
2}, we have that

sign (Ax) 6= sign (As) =) kx� sk < � (8)

with probability greater than 1� ⇠.

This result extends Theorem 2 in [5], which holds for k-sparse sets only, to general low-dimensional
sets and is included in the Appendix. For example, if X is the intersection of L (s+ 1)-dimensional

subspaces with the unit sphere, Theorem 1 holds with constant ✏0 = (3sL)�
1

k�s and k > s. This
theorem tells us that we can recover sparse signals from binary measurements up to an error of

O( k
m log nm

k )

which is sharp, up to the logarithmic factor [5]. Oymak and Recht [12] present a similar result,
stated in terms of the Gaussian width3 of the signal set instead of the box-counting dimension.

3 Model Identification from Binary Observations

In this section, we study how well we can identify the signal set from binary measurement data
associated with G di↵erent measurement operators A1, . . . , AG 2 Rm⇥n. We focus on the problem
of identifying the set X from the binary sets {sign (AgX )}Gg=1. In practice, we observe a subset of

3The Gaussian width of a set S is defined as Es{supx2S x>s} where s is distributed as a standard Gaussian vector.
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A1Figure 3: Illustration of the model identification problem from binary measurements with n = 3,
m = 4, and G = 3. A signal set with box-counting dimension 1 is depicted in black. From left to

right: The red lines define the frontiers of the consistency cells associated with operators A1, . . . , A3.

union of subspaces [23, 17]. For example, the set of (k+1)-sparse vectors with unit norm has a box-
counting dimension equal to k. The upper box-counting dimension is particularly useful to obtain
an upper bound on the covering number of a set: if boxdim (X ) < k, there exists a set-dependent
constant ✏0 2 (0, 1

2 ) for which

N(X , ✏)  ✏
�k (6)

holds for all ✏  ✏0 [21]. The following theorem exploits this fact to provide a bound on the number
of measurements needed for recovering a signal with an error smaller than � from generic binary
observations:

Theorem 1. Let A be a matrix with iid entries sampled from a standard Gaussian distribution and
assume that boxdim (X ) < k, such that N(X , ✏)  ✏

�k for all ✏ < ✏0 with ✏0 2 (0, 1
2 ). If the number

of measurements verifies

m �
2
�

�
2k log 4

p
n

� + log 1
⇠

�
(7)

then for all x, s 2 X and �  min{4
p
n✏0,

1
2}, we have that

sign (Ax) 6= sign (As) =) kx� sk < � (8)

with probability greater than 1� ⇠.

This result extends Theorem 2 in [5], which holds for k-sparse sets only, to general low-dimensional
sets and is included in the Appendix. For example, if X is the intersection of L (s+ 1)-dimensional

subspaces with the unit sphere, Theorem 1 holds with constant ✏0 = (3sL)�
1

k�s and k > s. This
theorem tells us that we can recover sparse signals from binary measurements up to an error of

O( k
m log nm

k )

which is sharp, up to the logarithmic factor [5]. Oymak and Recht [12] present a similar result,
stated in terms of the Gaussian width3 of the signal set instead of the box-counting dimension.

3 Model Identification from Binary Observations

In this section, we study how well we can identify the signal set from binary measurement data
associated with G di↵erent measurement operators A1, . . . , AG 2 Rm⇥n. We focus on the problem
of identifying the set X from the binary sets {sign (AgX )}Gg=1. In practice, we observe a subset of

3The Gaussian width of a set S is defined as Es{supx2S x>s} where s is distributed as a standard Gaussian vector.
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A2Figure 3: Illustration of the model identification problem from binary measurements with n = 3,
m = 4, and G = 3. A signal set with box-counting dimension 1 is depicted in black. From left to

right: The red lines define the frontiers of the consistency cells associated with operators A1, . . . , A3.

union of subspaces [23, 17]. For example, the set of (k+1)-sparse vectors with unit norm has a box-
counting dimension equal to k. The upper box-counting dimension is particularly useful to obtain
an upper bound on the covering number of a set: if boxdim (X ) < k, there exists a set-dependent
constant ✏0 2 (0, 1

2 ) for which

N(X , ✏)  ✏
�k (6)

holds for all ✏  ✏0 [21]. The following theorem exploits this fact to provide a bound on the number
of measurements needed for recovering a signal with an error smaller than � from generic binary
observations:

Theorem 1. Let A be a matrix with iid entries sampled from a standard Gaussian distribution and
assume that boxdim (X ) < k, such that N(X , ✏)  ✏

�k for all ✏ < ✏0 with ✏0 2 (0, 1
2 ). If the number

of measurements verifies

m �
2
�

�
2k log 4

p
n

� + log 1
⇠

�
(7)

then for all x, s 2 X and �  min{4
p
n✏0,

1
2}, we have that

sign (Ax) 6= sign (As) =) kx� sk < � (8)

with probability greater than 1� ⇠.

This result extends Theorem 2 in [5], which holds for k-sparse sets only, to general low-dimensional
sets and is included in the Appendix. For example, if X is the intersection of L (s+ 1)-dimensional

subspaces with the unit sphere, Theorem 1 holds with constant ✏0 = (3sL)�
1

k�s and k > s. This
theorem tells us that we can recover sparse signals from binary measurements up to an error of

O( k
m log nm

k )

which is sharp, up to the logarithmic factor [5]. Oymak and Recht [12] present a similar result,
stated in terms of the Gaussian width3 of the signal set instead of the box-counting dimension.

3 Model Identification from Binary Observations

In this section, we study how well we can identify the signal set from binary measurement data
associated with G di↵erent measurement operators A1, . . . , AG 2 Rm⇥n. We focus on the problem
of identifying the set X from the binary sets {sign (AgX )}Gg=1. In practice, we observe a subset of

3The Gaussian width of a set S is defined as Es{supx2S x>s} where s is distributed as a standard Gaussian vector.
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Model identification: geometric intuition

Toy example: ,  black line n = 3, G = 3, m = 4 𝒳 =

20

Figure 3: Illustration of the model identification problem from binary measurements with n = 3,
m = 4, and G = 3. A signal set with box-counting dimension 1 is depicted in black. From left to

right: The red lines define the frontiers of the consistency cells associated with operators A1, . . . , A3.

union of subspaces [23, 17]. For example, the set of (k+1)-sparse vectors with unit norm has a box-
counting dimension equal to k. The upper box-counting dimension is particularly useful to obtain
an upper bound on the covering number of a set: if boxdim (X ) < k, there exists a set-dependent
constant ✏0 2 (0, 1

2 ) for which

N(X , ✏)  ✏
�k (6)

holds for all ✏  ✏0 [21]. The following theorem exploits this fact to provide a bound on the number
of measurements needed for recovering a signal with an error smaller than � from generic binary
observations:

Theorem 1. Let A be a matrix with iid entries sampled from a standard Gaussian distribution and
assume that boxdim (X ) < k, such that N(X , ✏)  ✏

�k for all ✏ < ✏0 with ✏0 2 (0, 1
2 ). If the number

of measurements verifies

m �
2
�

�
2k log 4

p
n

� + log 1
⇠

�
(7)

then for all x, s 2 X and �  min{4
p
n✏0,

1
2}, we have that

sign (Ax) 6= sign (As) =) kx� sk < � (8)

with probability greater than 1� ⇠.

This result extends Theorem 2 in [5], which holds for k-sparse sets only, to general low-dimensional
sets and is included in the Appendix. For example, if X is the intersection of L (s+ 1)-dimensional

subspaces with the unit sphere, Theorem 1 holds with constant ✏0 = (3sL)�
1

k�s and k > s. This
theorem tells us that we can recover sparse signals from binary measurements up to an error of

O( k
m log nm

k )

which is sharp, up to the logarithmic factor [5]. Oymak and Recht [12] present a similar result,
stated in terms of the Gaussian width3 of the signal set instead of the box-counting dimension.

3 Model Identification from Binary Observations

In this section, we study how well we can identify the signal set from binary measurement data
associated with G di↵erent measurement operators A1, . . . , AG 2 Rm⇥n. We focus on the problem
of identifying the set X from the binary sets {sign (AgX )}Gg=1. In practice, we observe a subset of

3The Gaussian width of a set S is defined as Es{supx2S x>s} where s is distributed as a standard Gaussian vector.
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Figure 3: Illustration of the model identification problem from binary measurements with n = 3,
m = 4, and G = 3. A signal set with box-counting dimension 1 is depicted in black. From left to

right: The red lines define the frontiers of the consistency cells associated with operators A1, . . . , A3.

union of subspaces [23, 17]. For example, the set of (k+1)-sparse vectors with unit norm has a box-
counting dimension equal to k. The upper box-counting dimension is particularly useful to obtain
an upper bound on the covering number of a set: if boxdim (X ) < k, there exists a set-dependent
constant ✏0 2 (0, 1

2 ) for which

N(X , ✏)  ✏
�k (6)

holds for all ✏  ✏0 [21]. The following theorem exploits this fact to provide a bound on the number
of measurements needed for recovering a signal with an error smaller than � from generic binary
observations:

Theorem 1. Let A be a matrix with iid entries sampled from a standard Gaussian distribution and
assume that boxdim (X ) < k, such that N(X , ✏)  ✏

�k for all ✏ < ✏0 with ✏0 2 (0, 1
2 ). If the number

of measurements verifies

m �
2
�

�
2k log 4

p
n

� + log 1
⇠

�
(7)

then for all x, s 2 X and �  min{4
p
n✏0,

1
2}, we have that

sign (Ax) 6= sign (As) =) kx� sk < � (8)

with probability greater than 1� ⇠.

This result extends Theorem 2 in [5], which holds for k-sparse sets only, to general low-dimensional
sets and is included in the Appendix. For example, if X is the intersection of L (s+ 1)-dimensional

subspaces with the unit sphere, Theorem 1 holds with constant ✏0 = (3sL)�
1

k�s and k > s. This
theorem tells us that we can recover sparse signals from binary measurements up to an error of

O( k
m log nm

k )

which is sharp, up to the logarithmic factor [5]. Oymak and Recht [12] present a similar result,
stated in terms of the Gaussian width3 of the signal set instead of the box-counting dimension.

3 Model Identification from Binary Observations

In this section, we study how well we can identify the signal set from binary measurement data
associated with G di↵erent measurement operators A1, . . . , AG 2 Rm⇥n. We focus on the problem
of identifying the set X from the binary sets {sign (AgX )}Gg=1. In practice, we observe a subset of

3The Gaussian width of a set S is defined as Es{supx2S x>s} where s is distributed as a standard Gaussian vector.
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A1Figure 3: Illustration of the model identification problem from binary measurements with n = 3,
m = 4, and G = 3. A signal set with box-counting dimension 1 is depicted in black. From left to

right: The red lines define the frontiers of the consistency cells associated with operators A1, . . . , A3.

union of subspaces [23, 17]. For example, the set of (k+1)-sparse vectors with unit norm has a box-
counting dimension equal to k. The upper box-counting dimension is particularly useful to obtain
an upper bound on the covering number of a set: if boxdim (X ) < k, there exists a set-dependent
constant ✏0 2 (0, 1

2 ) for which

N(X , ✏)  ✏
�k (6)

holds for all ✏  ✏0 [21]. The following theorem exploits this fact to provide a bound on the number
of measurements needed for recovering a signal with an error smaller than � from generic binary
observations:

Theorem 1. Let A be a matrix with iid entries sampled from a standard Gaussian distribution and
assume that boxdim (X ) < k, such that N(X , ✏)  ✏

�k for all ✏ < ✏0 with ✏0 2 (0, 1
2 ). If the number

of measurements verifies

m �
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�

�
2k log 4

p
n

� + log 1
⇠

�
(7)

then for all x, s 2 X and �  min{4
p
n✏0,

1
2}, we have that

sign (Ax) 6= sign (As) =) kx� sk < � (8)

with probability greater than 1� ⇠.

This result extends Theorem 2 in [5], which holds for k-sparse sets only, to general low-dimensional
sets and is included in the Appendix. For example, if X is the intersection of L (s+ 1)-dimensional

subspaces with the unit sphere, Theorem 1 holds with constant ✏0 = (3sL)�
1

k�s and k > s. This
theorem tells us that we can recover sparse signals from binary measurements up to an error of

O( k
m log nm

k )

which is sharp, up to the logarithmic factor [5]. Oymak and Recht [12] present a similar result,
stated in terms of the Gaussian width3 of the signal set instead of the box-counting dimension.

3 Model Identification from Binary Observations

In this section, we study how well we can identify the signal set from binary measurement data
associated with G di↵erent measurement operators A1, . . . , AG 2 Rm⇥n. We focus on the problem
of identifying the set X from the binary sets {sign (AgX )}Gg=1. In practice, we observe a subset of

3The Gaussian width of a set S is defined as Es{supx2S x>s} where s is distributed as a standard Gaussian vector.

6

<latexit sha1_base64="KLD2M4p11xwCXGZZiGLv5AXdi4k=">AAACdXicbZHJTsMwEIbdsJethSNCsmhBnEpSIeDIcuEIEl1EU1WO4xSrXiLbAVVRnoErPBpPwhWn5EBTRrL16/9mNGNPEDOqjet+VZyl5ZXVtfWN6ubW9s5urb7X1TJRmHSwZFL1A6QJo4J0DDWM9GNFEA8Y6QWTu5z3XonSVIonM43JkKOxoBHFyFir07wZtZujWsNtubOAi8IrRAMU8TCqV579UOKEE2EwQ1oPPDc2wxQpQzEjWdVPNIkRnqAxGVgpECd6mM6mzeCxdUIYSWWPMHDm/q1IEdd6ygObyZF50WWWm/+xQWKiq2FKRZwYIvBvoyhh0EiYPx2GVBFs2NQKhBW1s0L8ghTCxn5Q1RfkDUvOkQhTP9CZvSQL80Eky0o0sDTvb8U8wawgGJWLKC+QjiAtsSTM0tRXHIZZZrfhlf9+UXTbLe+idf7YblzfFntZBwfgCJwCD1yCa3APHkAHYEDBO/gAn5Vv59BpOie/qU6lqNkHc+Gc/QDId8MO</latexit>

A2Figure 3: Illustration of the model identification problem from binary measurements with n = 3,
m = 4, and G = 3. A signal set with box-counting dimension 1 is depicted in black. From left to

right: The red lines define the frontiers of the consistency cells associated with operators A1, . . . , A3.

union of subspaces [23, 17]. For example, the set of (k+1)-sparse vectors with unit norm has a box-
counting dimension equal to k. The upper box-counting dimension is particularly useful to obtain
an upper bound on the covering number of a set: if boxdim (X ) < k, there exists a set-dependent
constant ✏0 2 (0, 1

2 ) for which

N(X , ✏)  ✏
�k (6)

holds for all ✏  ✏0 [21]. The following theorem exploits this fact to provide a bound on the number
of measurements needed for recovering a signal with an error smaller than � from generic binary
observations:

Theorem 1. Let A be a matrix with iid entries sampled from a standard Gaussian distribution and
assume that boxdim (X ) < k, such that N(X , ✏)  ✏

�k for all ✏ < ✏0 with ✏0 2 (0, 1
2 ). If the number

of measurements verifies

m �
2
�

�
2k log 4

p
n

� + log 1
⇠

�
(7)

then for all x, s 2 X and �  min{4
p
n✏0,

1
2}, we have that

sign (Ax) 6= sign (As) =) kx� sk < � (8)

with probability greater than 1� ⇠.

This result extends Theorem 2 in [5], which holds for k-sparse sets only, to general low-dimensional
sets and is included in the Appendix. For example, if X is the intersection of L (s+ 1)-dimensional

subspaces with the unit sphere, Theorem 1 holds with constant ✏0 = (3sL)�
1

k�s and k > s. This
theorem tells us that we can recover sparse signals from binary measurements up to an error of

O( k
m log nm

k )

which is sharp, up to the logarithmic factor [5]. Oymak and Recht [12] present a similar result,
stated in terms of the Gaussian width3 of the signal set instead of the box-counting dimension.

3 Model Identification from Binary Observations

In this section, we study how well we can identify the signal set from binary measurement data
associated with G di↵erent measurement operators A1, . . . , AG 2 Rm⇥n. We focus on the problem
of identifying the set X from the binary sets {sign (AgX )}Gg=1. In practice, we observe a subset of

3The Gaussian width of a set S is defined as Es{supx2S x>s} where s is distributed as a standard Gaussian vector.
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union of subspaces [23, 17]. For example, the set of (k+1)-sparse vectors with unit norm has a box-
counting dimension equal to k. The upper box-counting dimension is particularly useful to obtain
an upper bound on the covering number of a set: if boxdim (X ) < k, there exists a set-dependent
constant ✏0 2 (0, 1

2 ) for which

N(X , ✏)  ✏
�k (6)

holds for all ✏  ✏0 [21]. The following theorem exploits this fact to provide a bound on the number
of measurements needed for recovering a signal with an error smaller than � from generic binary
observations:

Theorem 1. Let A be a matrix with iid entries sampled from a standard Gaussian distribution and
assume that boxdim (X ) < k, such that N(X , ✏)  ✏

�k for all ✏ < ✏0 with ✏0 2 (0, 1
2 ). If the number

of measurements verifies

m �
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�

�
2k log 4

p
n

� + log 1
⇠

�
(7)

then for all x, s 2 X and �  min{4
p
n✏0,

1
2}, we have that

sign (Ax) 6= sign (As) =) kx� sk < � (8)

with probability greater than 1� ⇠.

This result extends Theorem 2 in [5], which holds for k-sparse sets only, to general low-dimensional
sets and is included in the Appendix. For example, if X is the intersection of L (s+ 1)-dimensional

subspaces with the unit sphere, Theorem 1 holds with constant ✏0 = (3sL)�
1

k�s and k > s. This
theorem tells us that we can recover sparse signals from binary measurements up to an error of

O( k
m log nm

k )

which is sharp, up to the logarithmic factor [5]. Oymak and Recht [12] present a similar result,
stated in terms of the Gaussian width3 of the signal set instead of the box-counting dimension.

3 Model Identification from Binary Observations

In this section, we study how well we can identify the signal set from binary measurement data
associated with G di↵erent measurement operators A1, . . . , AG 2 Rm⇥n. We focus on the problem
of identifying the set X from the binary sets {sign (AgX )}Gg=1. In practice, we observe a subset of

3The Gaussian width of a set S is defined as Es{supx2S x>s} where s is distributed as a standard Gaussian vector.
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Figure 3: Illustration of the model identification problem from binary measurements with n = 3,
m = 4, and G = 3. A signal set with box-counting dimension 1 is depicted in black. From left to

right: The red lines define the frontiers of the consistency cells associated with operators A1, . . . , A3.

union of subspaces [23, 17]. For example, the set of (k+1)-sparse vectors with unit norm has a box-
counting dimension equal to k. The upper box-counting dimension is particularly useful to obtain
an upper bound on the covering number of a set: if boxdim (X ) < k, there exists a set-dependent
constant ✏0 2 (0, 1

2 ) for which

N(X , ✏)  ✏
�k (6)

holds for all ✏  ✏0 [21]. The following theorem exploits this fact to provide a bound on the number
of measurements needed for recovering a signal with an error smaller than � from generic binary
observations:

Theorem 1. Let A be a matrix with iid entries sampled from a standard Gaussian distribution and
assume that boxdim (X ) < k, such that N(X , ✏)  ✏

�k for all ✏ < ✏0 with ✏0 2 (0, 1
2 ). If the number

of measurements verifies
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⇠
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(7)

then for all x, s 2 X and �  min{4
p
n✏0,

1
2}, we have that

sign (Ax) 6= sign (As) =) kx� sk < � (8)

with probability greater than 1� ⇠.

This result extends Theorem 2 in [5], which holds for k-sparse sets only, to general low-dimensional
sets and is included in the Appendix. For example, if X is the intersection of L (s+ 1)-dimensional

subspaces with the unit sphere, Theorem 1 holds with constant ✏0 = (3sL)�
1

k�s and k > s. This
theorem tells us that we can recover sparse signals from binary measurements up to an error of

O( k
m log nm

k )

which is sharp, up to the logarithmic factor [5]. Oymak and Recht [12] present a similar result,
stated in terms of the Gaussian width3 of the signal set instead of the box-counting dimension.

3 Model Identification from Binary Observations

In this section, we study how well we can identify the signal set from binary measurement data
associated with G di↵erent measurement operators A1, . . . , AG 2 Rm⇥n. We focus on the problem
of identifying the set X from the binary sets {sign (AgX )}Gg=1. In practice, we observe a subset of

3The Gaussian width of a set S is defined as Es{supx2S x>s} where s is distributed as a standard Gaussian vector.
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union of subspaces [23, 17]. For example, the set of (k+1)-sparse vectors with unit norm has a box-
counting dimension equal to k. The upper box-counting dimension is particularly useful to obtain
an upper bound on the covering number of a set: if boxdim (X ) < k, there exists a set-dependent
constant ✏0 2 (0, 1

2 ) for which

N(X , ✏)  ✏
�k (6)

holds for all ✏  ✏0 [21]. The following theorem exploits this fact to provide a bound on the number
of measurements needed for recovering a signal with an error smaller than � from generic binary
observations:

Theorem 1. Let A be a matrix with iid entries sampled from a standard Gaussian distribution and
assume that boxdim (X ) < k, such that N(X , ✏)  ✏

�k for all ✏ < ✏0 with ✏0 2 (0, 1
2 ). If the number

of measurements verifies
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⇠
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then for all x, s 2 X and �  min{4
p
n✏0,

1
2}, we have that

sign (Ax) 6= sign (As) =) kx� sk < � (8)

with probability greater than 1� ⇠.

This result extends Theorem 2 in [5], which holds for k-sparse sets only, to general low-dimensional
sets and is included in the Appendix. For example, if X is the intersection of L (s+ 1)-dimensional

subspaces with the unit sphere, Theorem 1 holds with constant ✏0 = (3sL)�
1

k�s and k > s. This
theorem tells us that we can recover sparse signals from binary measurements up to an error of

O( k
m log nm

k )

which is sharp, up to the logarithmic factor [5]. Oymak and Recht [12] present a similar result,
stated in terms of the Gaussian width3 of the signal set instead of the box-counting dimension.

3 Model Identification from Binary Observations

In this section, we study how well we can identify the signal set from binary measurement data
associated with G di↵erent measurement operators A1, . . . , AG 2 Rm⇥n. We focus on the problem
of identifying the set X from the binary sets {sign (AgX )}Gg=1. In practice, we observe a subset of

3The Gaussian width of a set S is defined as Es{supx2S x>s} where s is distributed as a standard Gaussian vector.
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Figure 3: Illustration of the model identification problem from binary measurements with n = 3,
m = 4, and G = 3. A signal set with box-counting dimension 1 is depicted in black. From left to

right: The red lines define the frontiers of the consistency cells associated with operators A1, . . . , A3.

union of subspaces [23, 17]. For example, the set of (k+1)-sparse vectors with unit norm has a box-
counting dimension equal to k. The upper box-counting dimension is particularly useful to obtain
an upper bound on the covering number of a set: if boxdim (X ) < k, there exists a set-dependent
constant ✏0 2 (0, 1

2 ) for which

N(X , ✏)  ✏
�k (6)

holds for all ✏  ✏0 [21]. The following theorem exploits this fact to provide a bound on the number
of measurements needed for recovering a signal with an error smaller than � from generic binary
observations:

Theorem 1. Let A be a matrix with iid entries sampled from a standard Gaussian distribution and
assume that boxdim (X ) < k, such that N(X , ✏)  ✏

�k for all ✏ < ✏0 with ✏0 2 (0, 1
2 ). If the number

of measurements verifies
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⇠
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(7)

then for all x, s 2 X and �  min{4
p
n✏0,

1
2}, we have that

sign (Ax) 6= sign (As) =) kx� sk < � (8)

with probability greater than 1� ⇠.

This result extends Theorem 2 in [5], which holds for k-sparse sets only, to general low-dimensional
sets and is included in the Appendix. For example, if X is the intersection of L (s+ 1)-dimensional

subspaces with the unit sphere, Theorem 1 holds with constant ✏0 = (3sL)�
1

k�s and k > s. This
theorem tells us that we can recover sparse signals from binary measurements up to an error of

O( k
m log nm

k )

which is sharp, up to the logarithmic factor [5]. Oymak and Recht [12] present a similar result,
stated in terms of the Gaussian width3 of the signal set instead of the box-counting dimension.

3 Model Identification from Binary Observations

In this section, we study how well we can identify the signal set from binary measurement data
associated with G di↵erent measurement operators A1, . . . , AG 2 Rm⇥n. We focus on the problem
of identifying the set X from the binary sets {sign (AgX )}Gg=1. In practice, we observe a subset of

3The Gaussian width of a set S is defined as Es{supx2S x>s} where s is distributed as a standard Gaussian vector.
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A1Figure 3: Illustration of the model identification problem from binary measurements with n = 3,
m = 4, and G = 3. A signal set with box-counting dimension 1 is depicted in black. From left to

right: The red lines define the frontiers of the consistency cells associated with operators A1, . . . , A3.

union of subspaces [23, 17]. For example, the set of (k+1)-sparse vectors with unit norm has a box-
counting dimension equal to k. The upper box-counting dimension is particularly useful to obtain
an upper bound on the covering number of a set: if boxdim (X ) < k, there exists a set-dependent
constant ✏0 2 (0, 1

2 ) for which

N(X , ✏)  ✏
�k (6)

holds for all ✏  ✏0 [21]. The following theorem exploits this fact to provide a bound on the number
of measurements needed for recovering a signal with an error smaller than � from generic binary
observations:

Theorem 1. Let A be a matrix with iid entries sampled from a standard Gaussian distribution and
assume that boxdim (X ) < k, such that N(X , ✏)  ✏

�k for all ✏ < ✏0 with ✏0 2 (0, 1
2 ). If the number

of measurements verifies
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then for all x, s 2 X and �  min{4
p
n✏0,

1
2}, we have that

sign (Ax) 6= sign (As) =) kx� sk < � (8)

with probability greater than 1� ⇠.

This result extends Theorem 2 in [5], which holds for k-sparse sets only, to general low-dimensional
sets and is included in the Appendix. For example, if X is the intersection of L (s+ 1)-dimensional

subspaces with the unit sphere, Theorem 1 holds with constant ✏0 = (3sL)�
1

k�s and k > s. This
theorem tells us that we can recover sparse signals from binary measurements up to an error of

O( k
m log nm

k )

which is sharp, up to the logarithmic factor [5]. Oymak and Recht [12] present a similar result,
stated in terms of the Gaussian width3 of the signal set instead of the box-counting dimension.

3 Model Identification from Binary Observations

In this section, we study how well we can identify the signal set from binary measurement data
associated with G di↵erent measurement operators A1, . . . , AG 2 Rm⇥n. We focus on the problem
of identifying the set X from the binary sets {sign (AgX )}Gg=1. In practice, we observe a subset of

3The Gaussian width of a set S is defined as Es{supx2S x>s} where s is distributed as a standard Gaussian vector.
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A2Figure 3: Illustration of the model identification problem from binary measurements with n = 3,
m = 4, and G = 3. A signal set with box-counting dimension 1 is depicted in black. From left to

right: The red lines define the frontiers of the consistency cells associated with operators A1, . . . , A3.

union of subspaces [23, 17]. For example, the set of (k+1)-sparse vectors with unit norm has a box-
counting dimension equal to k. The upper box-counting dimension is particularly useful to obtain
an upper bound on the covering number of a set: if boxdim (X ) < k, there exists a set-dependent
constant ✏0 2 (0, 1

2 ) for which

N(X , ✏)  ✏
�k (6)

holds for all ✏  ✏0 [21]. The following theorem exploits this fact to provide a bound on the number
of measurements needed for recovering a signal with an error smaller than � from generic binary
observations:

Theorem 1. Let A be a matrix with iid entries sampled from a standard Gaussian distribution and
assume that boxdim (X ) < k, such that N(X , ✏)  ✏

�k for all ✏ < ✏0 with ✏0 2 (0, 1
2 ). If the number

of measurements verifies
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⇠
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(7)

then for all x, s 2 X and �  min{4
p
n✏0,

1
2}, we have that

sign (Ax) 6= sign (As) =) kx� sk < � (8)

with probability greater than 1� ⇠.

This result extends Theorem 2 in [5], which holds for k-sparse sets only, to general low-dimensional
sets and is included in the Appendix. For example, if X is the intersection of L (s+ 1)-dimensional

subspaces with the unit sphere, Theorem 1 holds with constant ✏0 = (3sL)�
1

k�s and k > s. This
theorem tells us that we can recover sparse signals from binary measurements up to an error of

O( k
m log nm

k )

which is sharp, up to the logarithmic factor [5]. Oymak and Recht [12] present a similar result,
stated in terms of the Gaussian width3 of the signal set instead of the box-counting dimension.

3 Model Identification from Binary Observations

In this section, we study how well we can identify the signal set from binary measurement data
associated with G di↵erent measurement operators A1, . . . , AG 2 Rm⇥n. We focus on the problem
of identifying the set X from the binary sets {sign (AgX )}Gg=1. In practice, we observe a subset of

3The Gaussian width of a set S is defined as Es{supx2S x>s} where s is distributed as a standard Gaussian vector.
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Identify signal set up to global error    →    is in a -tube  δ �̂� δ 𝒳δ
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X̂ ✓ X� := {v 2 Sn�1 : kx� vk  �, x 2 X}

Identification error definition: (adapted to one-bit sensing)



Lower bound  (via an oracle standpoint)

Oracle estimation: We access to  observation of each G x ∈ 𝒳
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X̂oracle =
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v 2 Sn�1 | 9x 2 X , sign(Āv) = sign(Āx)
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Figure 4: Illustration of the oracle argument in the example of Figure 3. Left: The signal set
X ⇢ S2 is depicted in black. Middle: Cells intersected by the oracle system are indicated in green.
Right: The identified set X̂ is indicated in green, and is larger than the oracle counterpart.

This oracle measurement operator provides a refined approximation of the signal set, specified as

X̂oracle = {v 2 Sn�1
| 9x 2 X , sign (Mv) = sign (Mx)}, (14)

which is again a dilation of X .
Figure 4 shows an example with the oracle set X̂oracle, which provides a better (or equal) approx-

imation of the signal set than (11), due to the fact that X ⇢ X̂oracle ✓ X̂ by the construction of these
sets. As the oracle estimate is composed of the cells associated with sign (M ·) which are intersected
by the signal set, the oracle approximation error depends on the diameter of the intersected cells.
Given a certain oracle tesselation of Sn�1, the worst estimate of X is obtained when it intersects the
largest cells in the tessellation. The following proposition formalizes the intuition that the maximum
consistency cell diameter—i.e., the greatest distance separating two binary consistent vectors of X
according to M— serves as a lower bound on the model identification error �.

Proposition 2. Given M 2 RmG⇥n, and �0 as in Assumption 1, there exists a rotation matrix
R 2 SO(n) such that the rotated set

X
0 = {v 2 Sn�1

|v = Rx, x 2 X} = RX (15)

verifies X̂
0
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0
� for any � < min{d, �0} where 0 < d < 2 is the largest cell diameter of the

tesselation induced by sign (M ·).

Proof. Given � < �0, the proof consists in choosing an appropriate rotation matrix, such that we can
find a point v which belongs to the oracle estimate X̂

0
oracle of the rotated set X 0, but doesn’t belong

to the �-tube X 0
� of this set. From Assumption 1 and since the �-tube X� is open, there exists x 2 X

and v 62 X� such that kx � vk = � Let S denote the largest cell in the tesselation of Sn�1 induced
by sign (M ·), such that d = diam(S). If � < d, we can always pick a rotation R 2 SO(n) such that
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2 S, X 0 intersects S and we have that S ✓ X̂
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and thus that v0 2 X̂
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oracle.

In the rest of this subsection, we focus on bounding the maximum cell diameter, as it is directly
related to the model identification error through Proposition 2. We start with the following propo-
sition which shows that, if the stacked matrix is rank-deficient, all cells will have the maximum
possible diameter.
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Right: The identified set X̂ is indicated in green, and is larger than the oracle counterpart.
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Lower bound  (via an oracle standpoint)

diameter largest consistency cell of δ ≥ d := sign(Ā ⋅)

23

Theorem: 

Proof sketch:
<latexit sha1_base64="g+DKwAFdkcv3cleNVwSyJRi+AkI="></latexit>

Given X s.t. X� ( X�0 if � < �0, if � < min{d, �0},
then, 9R 2 SO(n) such that, for X 0 = RX , X̂ 0

oracle 6⇢ X 0
�.



Lower bound  (via an oracle standpoint)

diameter largest consistency cell of δ ≥ d := sign(Ā ⋅)

24

Theorem: 

1. If ,  consistency cells with diameter 2  
    → Model identification error is trivially large 

2. We need at least  measurements 

    → No learning with  for incomplete operator (w/o invariance) 

3. The maximum cell radius     (counting argument)

    →   cannot decrease faster than 

rank(Ā) < n ∃

m > n/G
G = 1

≥ 2n
3mG

δ ∝ 𝑚−1𝐺−1

Consequences:  we can show the following

Proof sketch:
<latexit sha1_base64="g+DKwAFdkcv3cleNVwSyJRi+AkI="></latexit>

Given X s.t. X� ( X�0 if � < �0, if � < min{d, �0},
then, 9R 2 SO(n) such that, for X 0 = RX , X̂ 0

oracle 6⇢ X 0
�.



Upper bound  (with randomness)

Assumption: The signal set  is low-dimensional 
        has box-counting dimension  

Examples: sparse dictionaries, manifold models, etc.

𝒳
↔ 𝒳 k ≪ n

25

<latexit sha1_base64="2CgCz6lkS9wgJZafSd927kgxorE="></latexit>

Theorem. If boxdim(X ) < k and A1, . . . , AG 2 Rm⇥n

have i.i.d. Gaussian entries with

m > 4
� (k + n

G ) log( 5
p
n

m ) + 1
G log 1

⇠ + n
G log 3,

then
P(X̂ ✓ X�) � 1� ⇠.

<latexit sha1_base64="PJigv8RKJcTvDo0aZKQwsIkCGNk="></latexit>

boxdim(S) = lim sup
✏!0+

logN(S, ✏)

log 1/✏
Definition: ϵ S



→ The identification error decreases as  

 

→ We require at least  measurements per operator 

→ For , error  signal recovery errors from one-bit CS

δ =
(k + n

G )
m log( nm

k + n
G

)

m ≥ k+ n
G

G > n
k ∼

Upper bound  (with randomness)

26

Consequences of the theorem: 



How many binary observations to obtain  ?  

      → upper bound on   

•

�̂�
N = ⋃G

g=1 |sign(Ag𝒳) |

Sample Complexity (with randomness)
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<latexit sha1_base64="8zEDvJcA7TUSXSyJboxe3wNQX/U="></latexit>

Theorem. If boxdim(X ) < k and A1, . . . , AG 2 Rm⇥n

have i.i.d. Gaussian entries,
then, with probability exceeding 1� 1024

9m2n , there are

N  G(m
p
n

k )8k

possible di↵erent measurements vectors.

→ Exponential on the model dim  and not the ambient dim  ! k n



Algorithms

Learning to reconstruct from binary measurements in practice? 

28

Learn reconstruction network  

   with a self-supervised loss  which uses 
̂x = fθ (y, Ag)

ℒ {(yi, Agi
)}N

i=1

Goal: 

Warning:

No clear link with the theory (yet)



Multi-operator case
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Self-supervised training loss:  given a reconstruction model  fθ
<latexit sha1_base64="+aOUvCA1iMdtPNzqYnrywKRz3eM="></latexit>

argmin
✓

LMC(✓) + LCC(✓)

with:
<latexit sha1_base64="X2w2+Hy+sYNlKUxNFrIkXHNgchU="></latexit>

LMC(✓) :=
PN

i=1 log
⇥
1 + exp

�
� yiAgif✓(yi, Agi)

�⇤

→ promotes measurement consistency yi ≈ sign(Agi
fθ(yi, Agi

))

 Problem: this is a consistent reconstruction fθ (y, Ag) = A†
gy



Multi-operator case
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<latexit sha1_base64="+aOUvCA1iMdtPNzqYnrywKRz3eM="></latexit>

argmin
✓

LMC(✓) + LCC(✓)

with:
<latexit sha1_base64="X2w2+Hy+sYNlKUxNFrIkXHNgchU="></latexit>

LMC(✓) :=
PN

i=1 log
⇥
1 + exp

�
� yiAgif✓(yi, Agi)

�⇤

<latexit sha1_base64="Rm+uA9OzelKgyJgQK/aooMfK8dY="></latexit>

LCC(✓) :=
PN

i=1

PG
s=1

��f✓
�
Asf✓(yi, Agi), As

�
� f✓(yi, Agi)

��

→ promotes measurement consistency yi ≈ sign(Agi
fθ(yi, Agi

))

→ promotes cross-operator consistency, e.g., prevents MC sol  fθ (y, Ag) = A†
gy

Self-supervised training loss:  given a reconstruction model  fθ

Remarks:  
- Network-agnostic scheme (applicable to any existing deep model) 
- We called this “Self-Supervised learning loss for training reconstruction 

networks from Binary Measurement data alone” (SSBM)



Single operator with equivariance
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with:
<latexit sha1_base64="X2w2+Hy+sYNlKUxNFrIkXHNgchU="></latexit>

LMC(✓) :=
PN

i=1 log
⇥
1 + exp

�
� yiAgif✓(yi, Agi)

�⇤

→ promotes measurement consistency yi ≈ sign(Agi
fθ(yi, Agi

))

Remarks:  
- Network-agnostic scheme (applicable to any existing deep model) 
- We called this “Self-Supervised learning loss for training reconstruction 

networks from Binary Measurement data alone” (SSBM)

→ promotes equivariance of  , i.e., fθ ∘ A ( f ∘ A)(Tg⋅) = Tg( f ∘ A)( ⋅ )

<latexit sha1_base64="WQQf6sgx/N5gnm88BRUQELHbRuc="></latexit>

argmin
✓

LMC(✓) + LEq(✓)

<latexit sha1_base64="ECLWjMY+06uRiErE7lxN6ihyvMo="></latexit>

LEq(✓) :=
PN

i=1

PG
g=1

��f✓
�
ATgf✓(yi, A), ATg

�
� Tgf✓(yi, A)

��

Self-supervised training loss:  given a reconstruction model  fθ



Experiments 
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Operators: 

‣  with Gaussian iid entries 

Network: 
‣  

where  is a U-net CNN 

Comparison: 
‣ Linear inverse  (no training) 
‣ Binary IHT (BIHT) with wavelets (no training) 
‣ Fully supervised loss 
‣ SSBM (proposed)

Ag

fθ (y, A) = gθ ∘ A⊤(y)
gθ

A⊤yi



MNIST

33

Multiple operators ( ), images have  pixels.G = 10 n = 784

Figure 6: Left: Average test PSNR of di↵erent supervised and unsupervised algorithms on the
MNIST dataset with G = 10 operators. Right: The performance of the SSBM method follows
closely the theoretical bounds developed in Section 3.

• Linear inverse (no learning), defined as x̂i = A
>
giyi. This reconstruction can fail to be mea-

surement consistent [11].

• Standard supervised learning loss, defined as
PN

i=1 kxi � f✓(yi, Agi)k
2
. We also evaluate this

loss together with the cross-operator consistency term in (21) which we denote as supervised+.

• Measurement consistency loss, defined as
PN

i=1 LMC (yi, Agif✓(yi, Agi)) using the logistic loss.

• The binary iterative hard-thresholding (BIHT) reconstruction algorithm [5] with a Daubechies4
orthonormal wavelet basis. The step size and sparsity level of the algorithm were chosen via
grid search. It is worth noting that the best-performing sparsity level increases as the number
of measurements m is increased.

• Proposed SSBM loss in (21) using the logistic loss for measurement consistency.

Test PSNR values obtained for the case of G = 10 operators are shown in Figure 6, where
the PSNR in dB is plotted against m/n in log-scale representation. The measurement consistency
approach obtains performance similar to simply applying a linear inverse for the incomplete m/n < 1
setting, whereas it obtains a significant improvement over the linear inverse in the overcomplete
case m/n � 1. This gap can be attributed to the lack of measurement consistency of the linear
reconstruction algorithm [11]. The proposed loss obtains a performance that is several dBs above
the linear inverse and BIHT for all sampling regimes. BIHT relies on the wavelet sparsity prior, which
does not capture well enough the MNIST digits. SSBM performs similarly to supervised learning
as the sampling ratio tends to 1, and perhaps surprisingly, it obtains slightly better performance
than supervised learning for m/n = 1.28. However, adding the cross-operator consistency loss to the
supervised method (i.e., the method supervised+ in Section 5.1) performs better for all sampling
regimes than SSBM. Section 5.1 compares the performance of the SSBM with the bounds provided
in section 3. These bounds behave almost linearly in this log-log plot of both the error—through
the PSNR—and the log-scale representation of m/n. We thus observe a good agreement between
the theoretical predictions and the performance in practice.

Figure 7 shows the average test PSNR and reconstructed images obtained by the proposed self-
supervised method for di↵erent values of G and m. The method fails to obtain good reconstructions
when G = 1, as the necessary condition in Proposition 3 is not fulfilled.

Equivariant setting using shifts. We evaluate the setting of learning with a single operator by
using the unsupervised equivariant objective in (22) with 2D shifts as the group of transformations
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Test PSNR := 1
N 0

PN 0

i=1 PSNR (x0
i, f✓ (sign (Agix

0
i) , Agi)), x

0
i 2 “test set”



Fashion MNIST
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Multiple operators (G=10), with m=300, images have n=784 pixels. 

Dataset n m G Linear Inverse BIHT Supervised SSBM(ours)
FashionMNIST 784 300 10 6.38± 0.23 10.68± 0.31 17.63± 0.33 16.47± 0.22

CelebA 49152 9830 10 4.81± 0.32 16.26± 0.40 21.59± 0.31 19.53± 0.3
Flowers 49152 9830 shifts 5.31± 0.72 14.62± 0.92 18.26± 0.75 16.45± 0.71

Table 2: Average test PSNR in dB obtained by the compared methods for the FashionMNIST,
CelebA and Flowers datasets.

linear
inverse

proposed

BIHT

supervised

ground
truth

Figure 9: Reconstructed test images using the FashionMNIST dataset. Each column corresponds to
a di↵erent forward operator.

shows the average test PSNR of the proposed unsupervised method, standard supervised learning,
BIHT and the linear inverse. For BIHT, we use the Daubechies4 orthonormal wavelet basis and
optimize the step size and sparsity level via grid search.

The self-supervised method obtains an average test PSNR which is only 1 to 2 dB below the
supervised approach. Figures 9 and 10 show reconstructed test images by the evaluated approaches
for each forward operator. The proposed unsupervised method is able to provide good estimates
of the images, while only having access to highly incomplete binary information. The supervised
method obtains sharper images, however at the cost of hallucinating details, whereas the proposed
method obtains blurrier estimates with less hallucinated details.

6 Conclusions and Future Work

The theoretical analysis in this work characterizes the best approximation of a low-dimensional
set that can be obtained from binary measurements. The model identification bounds presented
here apply to a large class of signal models, as they only rely on the box-counting dimension, and
complement those existing for signal recovery from binary measurements [11, 5]. Moreover, the
proposed self-supervised loss provides a practical algorithm for learning to reconstruct signals from
binary measurements alone, which performs closely to fully supervised learning. This work paves
the way for deploying machine learning algorithms in scientific and medical imaging applications
with quantized observations, where no ground-truth references are available for training.

We leave the study of the e↵ect of noise in the observations and related dithering techniques
for future work. Another avenue of future research is the extension of Theorem 5 for the case of
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Fashion MNIST
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Multiple operators (G=10), with m=300, images have n=784 pixels. 

Dataset n m G Linear Inverse BIHT Supervised SSBM(ours)
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a di↵erent forward operator.
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BIHT and the linear inverse. For BIHT, we use the Daubechies4 orthonormal wavelet basis and
optimize the step size and sparsity level via grid search.

The self-supervised method obtains an average test PSNR which is only 1 to 2 dB below the
supervised approach. Figures 9 and 10 show reconstructed test images by the evaluated approaches
for each forward operator. The proposed unsupervised method is able to provide good estimates
of the images, while only having access to highly incomplete binary information. The supervised
method obtains sharper images, however at the cost of hallucinating details, whereas the proposed
method obtains blurrier estimates with less hallucinated details.

6 Conclusions and Future Work

The theoretical analysis in this work characterizes the best approximation of a low-dimensional
set that can be obtained from binary measurements. The model identification bounds presented
here apply to a large class of signal models, as they only rely on the box-counting dimension, and
complement those existing for signal recovery from binary measurements [11, 5]. Moreover, the
proposed self-supervised loss provides a practical algorithm for learning to reconstruct signals from
binary measurements alone, which performs closely to fully supervised learning. This work paves
the way for deploying machine learning algorithms in scientific and medical imaging applications
with quantized observations, where no ground-truth references are available for training.

We leave the study of the e↵ect of noise in the observations and related dithering techniques
for future work. Another avenue of future research is the extension of Theorem 5 for the case of
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CelebA
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Multiple operators (G=10) with m=9830, images have n=49152 pixels.

linear
inverse

proposed

BIHT

supervised

ground
truth

Figure 10: CelebA results. Reconstructed test images using the CelebA dataset. Each column
corresponds to a di↵erent forward operator.

operators related through a group actions.
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Appendix - Proofs

In our proofs, we will make use of the following useful lemma from [5].

Lemma 7 (Lemma 9 in [5]). Given 0  ✏ < 1 and two unit vectors x̃, ṽ 2 Sn�1
⇢ Rn and a 2 Rn

with ai ⇠i.i.d. N (0, 1), we have

p0 = P
⇥
8x 2 B✏(x̃), 8v 2 B✏(ṽ) | sign

�
a
>
v
�
= sign

�
a
>
x
�⇤

� 1� d(x̃, ṽ)�

r
n
⇡

2
✏ (29)

p1 = P
⇥
8x 2 B✏(x̃), 8v 2 B✏(ṽ) | sign

�
a
>
v
�
6= sign

�
a
>
x
�⇤

� d(x̃, ṽ)�

r
n
⇡

2
✏. (30)

where d(·, ·) denotes the angular distance.

Let C
0(S) denote the set of continuous functions on the set S. This lemma has the following

corollary:

Corollary 8. Given x̃ 2 Sn�1, 0 < ✏ < 1/2, a 2 Rn with a ⇠i.i.d. N (0, 1), we have

P
h
sign

�
a
>
·
�
/2 C

0
�
B✏(x̃) \ Sn�1

�i
 ⌘(✏) :=

p
n ✏.

Proof. The proof can be derived from the complement of the event associated with p0 in (29) when
x̃ = ṽ. Here is, however, a simplified proof for completeness. We first observe that sign

�
a
>
·
�
is
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Conclusion and take-away messages
New unsupervised learning framework for binary data 

Theory: Conditions for learning 
‣ Number of measurements 
‣ L/U Bounds on global identification error 

Practice: Deep learning approach 
‣ Self-supervised loss which can be applied to any model 

Ongoing/future work 
‣ Other non-linear inverse problems (e.g., phase retrieval) 
‣ Upper bounds for the invariant case 
‣ Noise/dither y = sign(Ax + ϵ)
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Thank you!
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