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Fact: 3 algorithm to recover certain images from their spectral phase
(up to a global amplitude).
= Use alternate projections onto convex sets, i.e.,
e given zo = F(f)/|F(f)
e assuming f € S := set of images supported on Q C R? (with [2] < NyNy).

, the observed spectral phases,
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o

*: This is equivalent to oversampling the Fourier domain of f. 3



Reconstructing an image from its spectral phases (2/2)

(]

=y
Applying this method to our example ... (ie., with Q set from o @ o ¥)

o

15% jteration (init with ones) 10 iterations
(normalized SNR: 6.6 dB) (normalized SNR: 11.6 dB)

*: This is equivalent to oversampling the Fourier domain of f. 3



Reconstructing an image from its spectral phases

0

=y
Applying this method to our example ... (ie., with Q set from o @ o ¥)

15% jteration (init with ones) 10 iterations 100 iterations
(normalized SNR: 6.6 dB) (normalized SNR: 11.6 dB) (normalized SNR: 19.6 dB)

1000 iterations original
(normalized SNR: 41 dB)

*: This is equivalent to oversampling the Fourier domain of f.



Reconstructing an image from its spectral phases

0

=y
Applying this method to our example ... (ie., with Q set from o @ o ¥)

15% jteration (init with ones) 10 iterations

100 iterations
(normalized SNR: 6.6 dB) (normalized SNR: 11.6 dB)

(normalized SNR: 19.6 dB)

Norm. SNR

1 5 678

2 3 4
(NxNy) /19|

1000 iterations original
(normalized SNR: 41 dB)

SNR vs oversampling
(1000 iter. per point)

*: This is equivalent to oversampling the Fourier domain of f.
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Why could it be useful?

Numerous Fourier/spectral sensing applications:
e Magnetic resonance imaging (MRI);
e Radar systems;
e Michelson interferometry / Fourier transform imaging;

e Aperture synthesis by radio interferometry.

Challenges:
e Massive data stream imposes new data compression strategies.
e Compress but keep useful information (e.g., for subsequent imaging).

e Large magnitude variations = different compression impact.

Questions: Which systems are compatible with phase-only signal estimation?
> (this talk) Is Complex compressive sensing compatible?

Why asking?
e If compatible, insensitive to large amplitudes variations (by definition).

e If robust, easy to compress information: quantize the spectral phase!
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e a given (additive) noise € € C™ and ||| < e.
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Let's collect m < n measurements about x from this linear model:
y=Ax+ecC", (C9S)

with: e a low-com plexity vector x € L C (o (e.g., a vectorized image)
with £ the set of, such as sparse signals, low-rank matrices, ...

e a complex sensing matrix A € C™*",
e a given (additive) noise € € C™ and ||| < e.
Compressive sensing:

Despite m < n, if m larger than L’s "dimension", and A is "random",
the vector x can be exactly recovered (or estimated if € # 0).

[Candés and Tao, 2005; Foucart and Rauhut, 2013]



(Complex) Compressive Sensing: a quick overview (2/3)

Let's be more specific ... let's focus on the Gaussian case.

Restricted isometry property

Forsome 0 <d <1land k< m< n,if

m > C& 2k log(n/k),

and v/m Aj ~ii.a. CN(0,2) ~ N(0,1) +iN(0, 1),

then, with high probability (w.h.p.),
(L= O)vI* < l|Av]* < (1 +0)|vI*, Vk-sparse v. (RIP(k, )
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Let's be more specific ... let's focus on the Gaussian case.

Restricted isometry property

Forsome 0 <d <1land k< m< n,if

m > C& 2k log(n/k),

and v/m Ajj ~ii.a. CN(0,2) ~ N(0,1) +iN(0,1),

then, with high probability (w.h.p.),
(L= O)vI* < l|Av]* < (1 +0)|vI*, Vk-sparse v. (RIP(k, )

So, why does CS work? Given y = Ax with x a k-sparse signal, we have
e RIP(2k,0) = |ly — Aul> = ||A(x — u)||* =~ ||x — ul|?, for all k-sparse u.

=- A is essentially invertible over the set of sparse vectors;
just estimate x by finding a sparse u zeroing or minimizing ||y — Aul? !



(Complex) Compressive Sensing: a quick overview (3/3)

The RIP supports (one of) the "fundamental theorem(s) of CS"

Theorem: If A is RIP(2k, ) with 0 < § < do (e.g., o = 1/3/2),
then the basis pursuit denoise estimate:

£ = arg min llul|1 st. |ly — Aul| <, (BPDN)
ueCr SN~ N —’
sparsity promoting data fidelity

See, e.g., Candés, 2008; Foucart and Rauhut, 2013; Cai and Zhang, 2013.
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The RIP supports (one of) the "fundamental theorem(s) of CS"

Theorem: If A is RIP(2k, ) with 0 < § < do (e.g., o = 1/3/2),
then the basis pursuit denoise estimate:

£ = arg min llul|1 st. |ly — Aul| <, (BPDN)
ueCr SN~ N —’
sparsity promoting data fidelity

satisfies the instance optimality

lIx = xkll2

— X < C De .
Ix— | < o +&e
Rec. error; =~ MSE N——— noise

deviation to sparsity

See, e.g., Candés, 2008; Foucart and Rauhut, 2013; Cai and Zhang, 2013.
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e and € € C™ a bounded noise with ||€]|sc < 7 for some 7 > 0.
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Phase-Only Sensing Model for CS

Inspired by Oppenheim and Lim, 1981; Boufounos, 2013,

let's consider the phase-only (non-linear) compressive sensing model:

z =signc(Ax) + e € C™, (PO-CS)

where: ¢ x is real and k-sparse';

e signc(re'?) ;= € (and 0 if r = 0), applied pointwise;

e and € € C™ a bounded noise with ||€]|sc < 7 for some 7 > 0.
Key observations:

1. If x — Cx with C > 0, z is unchanged (Signal amplitude is lost)

2. If both A and x are real, then z € {£1}™ (Real PO-CS — 1-bit CS)

Fact: In noiseless 1-bit CS, best estimate s.t. ||X — x| = Q(1/m) if m 1.

[Boufounos and Baraniuk, 2008; Jacques et al., 2013; Plan and Vershynin, 2012]
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(Note': simplifying hypotheses applied here)

1. We consider the sensing of real vectors x € R".

Note: If complex signal x, we can always rewrite
< 9 I X% —
Ax = (A" +iA%)(x" +ix¥) = (A,iA) | "4 | = Ax,
x

with x € R?" and A € C™*?",

Caveat: This can impact the signal model
e.g., sparse in C" = group sparse in R?".

2. We focus here on the case of sparse vectors in R".

However, extension to any low-complexity signals is possible
(with small "dimension", that is Gaussian mean width)
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Principle: Turn the non-linear PO model into linear one. Step by step ...
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Noiseless Signal Recovery for PO-CS (e = 0)

Principle: Turn the non-linear PO model into linear one. Step by step ...
A. Let’s normalize x: Since signal amplitude is lost, the renormalized signal

* . kyYm
A

x, withk:=,/Z.

% 2

preserves PO measurements, i.e., signc(Ax) = signc(Ax™).

Therefore, we focus on the recovery of x* (— encodes signal direction) with
|AX* |1 = Kv/m.

Rationale:
e Well, it's useful for our proofs @

e For complex Gaussian /m A ~ CN'™*"(0,2) and g ~ N(0, 1),
Elgl=r = E|Ax|i=rvmlx]| = [x[|~1.

= x* is (almost) a unit length vector, a direction

10



Noiseless Signal Recovery for PO-CS (e =

Principle: Turn the non-linear PO model into linear one. Step by step ...
B. Let’s find linear constraints: From the noiseless model
z = signc(Ax™),

we see that the vector u = x* € R" respects both:

<Z,AU> = K\/ﬁ <~ < A 1z l.l> =]l (normalization)
=(signc(Ax*),Ax*) =oy

=[|Ax* |1 if u=x*
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Noiseless Signal Recovery for PO-CS (e =

Principle: Turn the non-linear PO model into linear one. Step by step ...
B. Let’s find linear constraints: From the noiseless model
z = signc(Ax™),

we see that the vector u = x* € R" respects both:

<Z,AU> = K\/ﬁ <~ < A 1z ll> =]l (normalization)
- \—\/—’
=(signc(Ax*),Ax*) =oy

=[|Ax* ||z if u=x*

diag(z)* Au = ( Zf ° (AU)]_ 5 °°°g Z:., 0 (Au)m )TE Rﬂn} (phase consistency)
—_——— —_———
=|(Ax*)q1| if u=x* =|(Ax*) | if u=x*

Let's relax the phase consistency: just impose diag(z)* Au € R™, that is
0 = S(diag(z)* Au) = (diag(z)" A® — diag(2)*A™)u =: H.u.
Moreover, our normalization means

(al,u)=1 & (aF uy=1, (o, u)=0.

akil,



Noiseless Signal Recovery for PO-CS (e = 0)

In summary, u = x* respects the relaxed, real m + 2 constraints
This is a linear

, 0)T = sensing model!

A;u=e;:= (1,0, ---
Like "Ax = y"

with
A, = (a?,a?, HZT)T c R(m+2)xn

In other words,
e A good estimate X of x* should respect the linear model A% = e;

since x* € {u e R": A,ii = e1}.

e We know this estimate should be sparse (as x* is)
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Noiseless Signal Recovery for PO-CS (e = 0)

In summary, u = x* respects the relaxed, real m + 2 constraints

Azu = e1

T This is a linear
- (1707 50)

—>  sensing model!

Like "Ax = y"
with

A;:=(a], a7 H] )" e RU"Dxn
In other words,

e A good estimate X of x* should respect the linear model A% = e;
since x* € {u e R": A,ii = e1}.

e We know this estimate should be sparse (as x* is)
= As in linear CS, we can compute X from a basis pursuit program (BP)

X =argmin||ul]; st. Au=eq,

(BP(A;, e1))
ueCr

Question: How far is X from x*? Well, let's see if A, respects the RIP!

12



Restricted isometry property for A,?

How could A, := (af, a, H])" respect the RIP?
For a sparse v, ||A.v|? := [{cz, v)|* + ||H.v|]?
you can show that, for complex Gaussian A:
() {az,v) = (75, v) = projection of v onto X := R x.

@) H,x =0, and H, RIP on XN 2k-sparse signals.
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Restricted isometry property for A,?

How could A, := (af, a, H])" respect the RIP?

For a sparse v, [|A;v||? := [{az, v)|* + [[Hov|* = (. v)2 + v |* = [Iv|]?
you can show that, for complex Gaussian A:
() {az,v) = (75, v) = projection of v onto X := R x.

@) H,x =0, and H, RIP on XN 2k-sparse signals.

Theorem: Given x and 0 < 6 < 1, /mA ~ CN™*"(0,2), if

> C6 %klog(n/k),

then, w.h.p., A; satisfies the RIP (k,4).

Consequences:
e For X = BP(A., e1), if A, is RIP(§ < do, 2k),
we get exact reconstruction of signal direction, i.e., X = x*!

e -+ Stability & robustness (aka instance optimality) with BPDN (see paper)

'3}



Simulations (1/2)

Let's plot a phase-transition curve: we generate \/mA ~ CN™*?%¢(0,2) &
e 20-sparse vectors in R%°;
e m € [1,256] and average over 100 trials;
e Reconstruction successful if SNR > 60 dB.
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Let's plot a phase-transition curve: we generate \/mA ~ CN™*?%¢(0,2) &
e 20-sparse vectors in R%°;
e m € [1,256] and average over 100 trials;
e Reconstruction successful if SNR > 60 dB.
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Simulations (2/2)

Let's be a little more daring ... and forget Gauss
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Simulations

Let's be a little more daring ... and forget Gauss
Bernoulli random matrix Random partial Fourier
Aj ~ija {£1} (A = sub-sampled F(x))
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Simulations

Let's be a little more daring ... and forget Gauss
Bernoulli random matrix Random partial Fourier
Aj ~ia {1} (A = sub-sampled F(x))
1.01 »
!
D o. D 0.8 I
T T I
o 2 !
> >‘0,5*
= =
(9] [}
> 2 0.4+
[e} o
9 3
&J o 0.2
—-- Success rate of CS —-- Success rate of CS
—— Success rate of PO-CS 0.04 —— Success rate of PO-CS
] 2 4 8 10 12 0 2 4 8 10 12

6 6
m/s mis
Interestingly:

e These results are not covered by theory.
e Bernoulli random matrices do not work for 1-bit CS.
e PO-CS with Fourier D unrecoverable counter-examples!

e.g., for x' := h* x with by > 0,Vk, signc(Ax’) = signc(Ax).

15



Extra simulations: noisy case

We generate v/mA ~ CN™%%(0,2) and ...

e 20-sparse vectors in R?°°;
e m € [1,256] and average over 100 trials;
o z =signc(Ax) + &, with £ € C™ and ||€]|oc < 7 < 2 (Question: why 27).
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Extra simulations: noisy case

We generate v/mA ~ CN™%%(0,2) and ...
e 20-sparse vectors in R?°°;
e m € [1,256] and average over 100 trials;
o z =signc(Ax) + &, with £ € C™ and ||€]|oc < 7 < 2 (Question: why 27).
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Take-Away Messages

1. In Gauss’ world, despite:
e the non-linearity of its sensing model,

e and the bad example of 1-bit CS (the "real" PO-CS),

phase-only compressive sensing works "as well as" (linear) CS.
2. What is recovered/estimated is the signal direction (via x*).

3. Applications: phase-quantization procedures with bounded distortion
e.g., in radar, MRI, ...

4. Open questions:
e (minor) Extension to complex signals.

e (major) Theoretical extension to other random sensing matrices.

17
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Thank you!
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RIP for A,? (1/2)

How could A, := (af, a, H])" respect the RIP?
1. Limited Projection Distortion (LPD)
|, for complex Gaussian matrix /mA ~ CN™*"(0,2), w.h.p.,

Given X := x/||x
(az,v) = T (signc(Ax), Av) ~ (,v), Vk-sparse v, (LPD)

provided m = O(klog n/k) and up to an additive error.

= (@, v) & projection of v onto the line X :=Rx C R".
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RIP for A,? (2/2)

How could A, := (af, a, H])" respect the RIP?

2. Since H, := (diag(z)®A® — diag(z)®A"), we have both:
e Hx=H.x=0
e given x, \/mH, Gaussian over X = {v : (X, v) = 0} with unit variance.

= H, can be RIP on XN 2k-sparse signals.
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RIP for A,? (2/2)

How could A, := (af, a, H])" respect the RIP?

2. Since H, := (diag(z)®A® — diag(z)®A"), we have both:
e Hx=H,x=0

e given x, \/mH, Gaussian over X = {v : (X, v) = 0} with unit variance.
= H, can be RIP on XN 2k-sparse signals.
Therefore, provided m is big enough, w.h.p.

1Azv][* := [oez, V)2 + [|Hov | = [(%, v)[* + || Hzv |2

QRIP of H,
~ (& v)]? + v ?
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