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Amplitude and Phase of Image Frequencies

A bit of history . . . Oppenheim and Lim, 1981:

"What’s the most important information between
the spectral amplitude and phase of signals?"

A simple experiment: Let F the (2-D) discrete Fourier transform (DFT)

Original image f ∈ RNx×Ny ;
& we compute F f ∈ CNx×Ny

Image reconstructed with
spectral amplitude

f ′ = F−1( |F f |︸ ︷︷ ︸
∗

)

*: applied component-wise

Image reconstructed with
spectral phase

f ′ = F−1( F f
|F f |︸ ︷︷ ︸
∗

)
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Reconstructing an image from its spectral phases (1/2)

Fact: ∃ algorithm to recover certain images from their spectral phase
(up to a global amplitude).

⇒ Use alternate projections onto convex sets, i.e.,

• given z0 = F(f )/|F(f )|, the observed spectral phases,
• assuming f ∈ S := set of images supported on Ω ⊂ R2 (with |Ω| 6 NxNy ).

f (n+1) = PBPCf (n), f (0) = f0 ∈ Cn, lim
n→+∞

f (n) = c f .

2
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Reconstructing an image from its spectral phases (2/2)

Applying this method to our example . . . (i.e., with Ω set from *)

1st iteration (init with ones)
(normalized SNR: 6.6 dB)

10 iterations
(normalized SNR: 11.6 dB)

100 iterations
(normalized SNR: 19.6 dB)

1 000 iterations
(normalized SNR: 41 dB)

original

1 2 3 4 5 6 7 8
(NxNy) /| |

5
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NR

SNR vs oversampling
(1 000 iter. per point)

*: This is equivalent to oversampling the Fourier domain of f . 3
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Why could it be useful?

Numerous Fourier/spectral sensing applications:
• Magnetic resonance imaging (MRI);

• Radar systems;

• Michelson interferometry / Fourier transform imaging;

• Aperture synthesis by radio interferometry.

Challenges:

• Massive data stream imposes new data compression strategies.

• Compress but keep useful information (e.g., for subsequent imaging).

• Large magnitude variations ⇒ different compression impact.

Questions: Which systems are compatible with phase-only signal estimation?
B (this talk) Is Complex compressive sensing compatible?

Why asking?

• If compatible, insensitive to large amplitudes variations (by definition).

• If robust, easy to compress information: quantize the spectral phase!
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(Complex) Compressive Sensing: a quick overview (1/3)

Let’s collect m < n measurements about x from this linear model:

y = Ax + ε ∈ Cm, (CS)

with: • a low-complexity vector x ∈ L ⊂ Cn (e.g., a vectorized image)

with L the set of, such as sparse signals, low-rank matrices, . . .

• a complex sensing matrix A ∈ Cm×n,

• a given (additive) noise ε ∈ Cm and ‖ε‖ 6 ε.

Compressive sensing:

Despite m < n, if m larger than L’s "dimension", and A is "random",
the vector x can be exactly recovered (or estimated if ε 6= 0).

[Candès and Tao, 2005; Foucart and Rauhut, 2013]
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(Complex) Compressive Sensing: a quick overview (2/3)

Let’s be more specific . . . let’s focus on the Gaussian case.

Restricted isometry property

For some 0 < δ < 1 and k < m < n, if

m > C δ−2k log(n/k),

and
√
mAij ∼i.i.d. CN (0, 2) ∼ N (0, 1) + iN (0, 1),

then, with high probability (w.h.p.),

(1− δ)‖v‖2 6 ‖Av‖2 6 (1 + δ)‖v‖2, ∀k-sparse v . (RIP(k, δ))

So, why does CS work? Given y = Ax with x a k-sparse signal, we have

• RIP(2k, δ) ⇒ ‖y − Au‖2 = ‖A(x − u)‖2 ≈ ‖x − u‖2, for all k-sparse u.

⇒ A is essentially invertible over the set of sparse vectors;
just estimate x by finding a sparse u zeroing or minimizing ‖y − Au‖2 !
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(Complex) Compressive Sensing: a quick overview (3/3)

The RIP supports (one of) the "fundamental theorem(s) of CS"

Theorem: If A is RIP(2k, δ) with 0 < δ < δ0 (e.g., δ0 = 1/
√
2),

then the basis pursuit denoise estimate:

x̂ = arg min
u∈Cn

‖u‖1︸ ︷︷ ︸
sparsity promoting

s.t. ‖y − Au‖ 6 ε︸ ︷︷ ︸
data fidelity

, (BPDN)

satisfies the instance optimality

‖x − x̂‖︸ ︷︷ ︸
Rec. error; ≈ MSE

6 C
‖x − xk‖1√

k︸ ︷︷ ︸
deviation to sparsity

+ D ε︸︷︷︸
noise

.

See, e.g., Candès, 2008; Foucart and Rauhut, 2013; Cai and Zhang, 2013.
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Phase-Only Sensing Model for CS

Inspired by Oppenheim and Lim, 1981; Boufounos, 2013,

let’s consider the phase-only (non-linear) compressive sensing model:

z = signC(Ax) + ε ∈ Cm, (PO-CS)

where: • x is real and k-sparse†;

• signC(re iθ) := e iθ (and 0 if r = 0), applied pointwise;

• and ε ∈ Cm a bounded noise with ‖ε‖∞ 6 τ for some τ > 0.

Key observations:

1. If x → Cx with C > 0, z is unchanged (Signal amplitude is lost)

2. If both A and x are real, then z ∈ {±1}m (Real PO-CS → 1-bit CS)

Fact: In noiseless 1-bit CS, best estimate s.t. ‖x̂ − x‖ = Ω(1/m) if m ↑.
[Boufounos and Baraniuk, 2008; Jacques et al., 2013; Plan and Vershynin, 2012]
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(Note†: simplifying hypotheses applied here)

1. We consider the sensing of real vectors x ∈ Rn.

Note: If complex signal x , we can always rewrite

Ax = (A< + iA=)(x< + ix=) =
(
A, iA

)(x<

x=

)
= A x̄ ,

with x̄ ∈ R2n and A ∈ Cm×2n.

Caveat: This can impact the signal model
e.g., sparse in Cn ≡ group sparse in R2n.

2. We focus here on the case of sparse vectors in Rn.

However, extension to any low-complexity signals is possible
(with small "dimension", that is Gaussian mean width)
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Noiseless Signal Recovery for PO-CS (ε = 0) (1/3)

Principle: Turn the non-linear PO model into linear one.

Step by step . . .

A. Let’s normalize x : Since signal amplitude is lost, the renormalized signal

x? := κ
√
m

‖Ax‖1 x , with κ :=
√

π
2 .

preserves PO measurements, i.e., signC(Ax) = signC(Ax?).

Therefore, we focus on the recovery of x? (→ encodes signal direction) with

‖Ax?‖1 = κ
√
m.

Rationale:

• Well, it’s useful for our proofs

• For complex Gaussian
√
mA ∼ CNm×n(0, 2) and g ∼ N (0, 1),

E|g | = κ ⇒ E‖Ax‖1 = κ
√
m ‖x‖ ⇒ ‖x?‖ ≈ 1.

⇒ x? is (almost) a unit length vector, a direction
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Noiseless Signal Recovery for PO-CS (ε = 0) (2/3)

Principle: Turn the non-linear PO model into linear one. Step by step . . .

B. Let’s find linear constraints: From the noiseless model

z = signC(Ax?),

we see that the vector u = x? ∈ Rn respects both:



〈z ,Au〉︸ ︷︷ ︸
=〈signC(Ax?),Ax?〉
=‖Ax?‖1 if u=x?

= κ
√
m ⇔

〈 1
κ
√

m
A∗z︸ ︷︷ ︸

:=αz

, u
〉

= 1

diag(z)∗ Au =
(

z∗1 · (Au)1︸ ︷︷ ︸
=|(Ax?)1| if u=x?

, · · · , z∗m · (Au)m︸ ︷︷ ︸
=|(Ax?)m| if u=x?

)>∈ Rm

6 6 6 6

+

(normalization)

(phase consistency)

Let’s relax the phase consistency: just impose diag(z)∗ Au ∈ Rm, that is

0 = =(diag(z)∗ Au) = (diag(z)<A= − diag(z)=A<)u =: Hzu.

Moreover, our normalization means

〈αz , u〉 = 1 ⇔ 〈α<z , u〉 = 1, 〈α=z , u〉 = 0.

11
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Let’s relax the phase consistency: just impose diag(z)∗ Au ∈ Rm, that is

0 = =(diag(z)∗ Au)

= (diag(z)<A= − diag(z)=A<)u =: Hzu.

Moreover, our normalization means

〈αz , u〉 = 1 ⇔ 〈α<z , u〉 = 1, 〈α=z , u〉 = 0.
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Noiseless Signal Recovery for PO-CS (ε = 0) (2/3)
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Noiseless Signal Recovery for PO-CS (ε = 0) (3/3)

In summary, u = x? respects the relaxed, real m + 2 constraints . . .

Azu = e1 := (1, 0, · · · , 0)> ⇒
This is a linear
sensing model!
Like "Ax = y"

with
Az := (α<z ,α

=
z ,H

>
z )> ∈ R(m+2)×n.

In other words,

• A good estimate x̂ of x? should respect the linear model Az x̂ = e1
since x? ∈ {u ∈ Rn : Az û = e1}.

• We know this estimate should be sparse (as x? is)

⇒ As in linear CS, we can compute x̂ from a basis pursuit program (BP)

x̂ = argmin
u∈Cn

‖u‖1 s.t. Azu = e1, (BP(Az , e1))

Question: How far is x̂ from x?? Well, let’s see if Az respects the RIP!
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Restricted isometry property for Az?

How could Az := (α<z ,α
=
z ,H>z )> respect the RIP?

For a sparse v , ‖Azv‖2 := |〈αz , v〉|2 + ‖Hzv‖2

≈ 〈 x
‖x‖ , v〉

2 + ‖v⊥‖2 = ‖v‖2

you can show that, for complex Gaussian A:

(i) 〈αz , v〉 ≈ 〈 x
‖x‖ , v〉 ≈ projection of v onto X := R x .

(ii) Hzx = 0, and Hz RIP on X⊥∩ 2k-sparse signals.

Theorem: Given x and 0 < δ < 1,
√
mA ∼ CNm×n(0, 2), if

m > Cδ−2k log(n/k),

then, w.h.p., Az satisfies the RIP (k, δ).

Consequences:

• For x̂ = BP(Az , e1), if Az is RIP(δ < δ0, 2k),
we get exact reconstruction of signal direction, i.e., x̂ = x?!

• + Stability & robustness (aka instance optimality) with BPDN (see paper)
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Simulations (1/2)

Let’s plot a phase-transition curve: we generate
√
mA ∼ CNm×256(0, 2) &

• 20-sparse vectors in R256;

• m ∈ [1, 256] and average over 100 trials;

• Reconstruction successful if SNR > 60 dB.
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Simulations (2/2)

Let’s be a little more daring . . . and forget Gauss

Bernoulli random matrix
Aij ∼iid {±1}

Random partial Fourier
(A = sub-sampled F(x))

Interestingly:

• These results are not covered by theory.
• Bernoulli random matrices do not work for 1-bit CS.
• PO-CS with Fourier ⊃ unrecoverable counter-examples!

e.g., for x ′ := h ∗ x with ĥk > 0, ∀k, signC(Ax ′) = signC(Ax).
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Extra simulations: noisy case

We generate
√
mA ∼ CNm×256(0, 2) and . . .

• 20-sparse vectors in R256;
• m ∈ [1, 256] and average over 100 trials;
• z = signC(Ax) + ξ, with ξ ∈ Cm and ‖ξ‖∞ 6 τ < 2 (Question: why 2?).
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Take-Away Messages

1. In Gauss’ world, despite:

• the non-linearity of its sensing model,

• and the bad example of 1-bit CS (the "real" PO-CS),

phase-only compressive sensing works "as well as" (linear) CS.

2. What is recovered/estimated is the signal direction (via x?).

3. Applications: phase-quantization procedures with bounded distortion
e.g., in radar, MRI, . . .

4. Open questions:

• (minor) Extension to complex signals.

• (major) Theoretical extension to other random sensing matrices.

· — · — ·
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RIP for Az? (1/2)

How could Az := (α<z ,α
=
z ,H>z )> respect the RIP?

1. Limited Projection Distortion (LPD)

Given x̄ := x/‖x‖, for complex Gaussian matrix
√
mA ∼ CNm×n(0, 2), w.h.p.,

〈αz , v〉 = 1
κ
√
m

〈
signC(Ax̄),Av

〉
≈ 〈x̄ , v〉, ∀k-sparse v , (LPD)

provided m = O(k log n/k) and up to an additive error.

⇒ 〈αz , v〉 ≈ projection of v onto the line X := R x ⊂ Rn.

19



RIP for Az? (2/2)

How could Az := (α<z ,α
=
z ,H>z )> respect the RIP?

2. Since Hz := (diag(z)<A= − diag(z)=A<), we have both:

• Hzx = Hz x̄ = 0

• given x ,
√
mHz Gaussian over X⊥ = {v : 〈x̄ , v〉 = 0} with unit variance.

⇒ Hz can be RIP on X⊥∩ 2k-sparse signals.

Therefore, provided m is big enough, w.h.p.

‖Azv‖2 := |〈αz , v〉|2 + ‖Hzv‖2 ≈ |〈x̄ , v〉|2 + ‖Hzv⊥‖2

≈ |〈x̄ , v〉|2 + ‖v⊥‖2

= ‖v‖2.

RIP of Hz
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