Quantized compressed sensing and quasi-isometric embeddings

Laurent Jacques UCLouvain, Belgium

May 18th, 2015

Outline

- Ultra brief intro to CS facts
- II. Quantization context
- III. Initial approaches for quantized CS
- IV. Toward consistency in QCS
- V. 1-bit CS and Binary ε -Stable Embedding (B ε SE)
- VI. Quantized Embeddings

Take-away messages & open questions

I. Ultra brief intro to CS

Compressed Sensing...

... in a nutshell:

Generalize Dirac/Nyquist sampling:
1°) ask few (linear) questions
about your informative signal
2°) and recover it differently (non-linearly)"

e.g., sparse, structured, low-rank, ...

2nd, CS \ni Non-linear reconstruction!

<u>Possible reconstruction:</u> (others exist)

(Basis Pursuit DeNoise)

[Chen, Donoho, Saunders, 1998]

2nd, CS \ni Non-linear reconstruction!

BPDN instance optimality:

If $\frac{1}{\sqrt{M}}\Phi$ respects the Restricted Isometry Property (RIP)

$$(1-\delta) \| \boldsymbol{u} \|^2 \le \frac{1}{M} \| \boldsymbol{\Phi} \boldsymbol{u} \|^2 \le (1+\delta) \| \boldsymbol{u} \|^2$$

for all $\boldsymbol{u} \in \Sigma_{2K} := \{ \boldsymbol{u} : \|\boldsymbol{u}\|_0 := |\operatorname{supp} \boldsymbol{u}| \le 2K \}$

Then, if $\delta < \sqrt{2} - 1$ [Candès, 09],

Robustness:
$$vs$$
 sparse deviation + noise. $\|m{x} - \hat{m{x}}\| \lesssim rac{1}{\sqrt{K}} \|m{x} - m{x}_K\|_1 + rac{\epsilon}{\sqrt{M}}$

 $(\text{with } f \lesssim g \ \equiv \ \exists c > 0 : f \leqslant c \, g)$

2nd, CS \ni Non-linear reconstruction!

Matrices with RIP?

$\mathbf{\Phi} \in \mathbb{R}^{M \times N}$, with $\Phi_{ij} \sim_{\text{iid}} \mathcal{N}(0,1)$ and $M \gtrsim K \log N/K$.

but also:

. . .

- Random sub-Gaussian ensembles (e.g., Bernoulli);
- random Fourier/Hadamard ensembles (structured sensing);
- random convolutions, spread-spectrum;

(see, e.g., "A Mathematical Introduction to Compressive Sensing", Rauhut, Foucart, Springer, 2013)

II. Quantization context (Restricted to scalar quantization)

Caveat: not covered here:

- Sigma-Delta quantization for CS
 (see, e.g., Kramer, Saab, Guntürk, Powell, Ward, ...)
- Vector quantization

(see, e.g., Goyal, Nguyen, Sun, ...)

Universal quantization (periodic)
 (see, e.g., Boufounos, Rane, ...)

Compressive Sampling and Quantization

Compressed sensing theory says: "Linearly sample a signal at a rate function of

its intrinsic dimensionality"

Information theory and sensor designer say: "Okay, but I need to quantize/digitize my measurements!" (e.g., in ADC)

Integration? QCS theory? Theoretical Bounds

What is quantization?

• <u>Generality</u>:

Intuitively: "Quantization maps a bounded continuous domain to a set of finite elements (or codebook)"

$\mathcal{Q}[x] \in \{q_1, q_2, \cdots\}$

• Oldest example: rounding off $[x], [x], \dots \mathbb{R} \to \mathbb{Z}$

Scalar quantization

Pulse Code Modulation - PCMMemoryless Scalar Quantization - MSQ

Applied on each component of M-dimensional vectors:

Scalar quantization

Pulse Code Modulation - PCMMemoryless Scalar Quantization - MSQ

Applied on each component of M-dimensional vectors:

... with possible non-uniform adaption (Lloyd-Max)

Quantizing Compressed Sensing?

Finite codebook $\Rightarrow \hat{x} \neq x$

i.e., impossibility to encode continuous domain in a finite number of elements.

Quantizing Compressed Sensing?

III. Initial Approaches for Quantized CS

• (scalar) Quantization is like a noise

$$q \;=\; \mathcal{Q}ig[\Phi xig] = \Phi x + n$$

quantization distortion

• (scalar) Quantization is like a noise

$$q ~=~ \mathcal{Q}ig[\Phi xig] = \Phi x + n$$

▶ and CS is robust (e.g., with *basis pursuit denoise*)

 $\hat{\boldsymbol{x}} = \operatorname*{argmin}_{\boldsymbol{u} \in \mathbb{R}^N} \|\boldsymbol{u}\|_1 \text{ s.t. } \|\boldsymbol{\Phi}\boldsymbol{u} - \boldsymbol{q}\| \leqslant \epsilon \quad (\text{BPDN})$

 $\frac{\ell_2 - \ell_1 \text{ instance optimality:}}{\text{If } \|\boldsymbol{n}\| \leqslant \epsilon \text{ and } \frac{1}{\sqrt{M}} \boldsymbol{\Phi} \text{ is RIP}(\delta, 2K) \text{ with } \delta \leqslant \sqrt{2} - 1, \text{ then}$ $\|\hat{\boldsymbol{x}} - \boldsymbol{x}\| \lesssim \frac{\epsilon}{\sqrt{M}} + e_0(K),$ with $e_0(K) = \|\boldsymbol{x} - \boldsymbol{x}_K\|_1 / \sqrt{K}.$

• (scalar) Quantization is like a noise

$$egin{array}{rcl} q &=& \mathcal{Q}ig[\Phi xig] = \Phi x + n \end{array}$$

and CS is robust (e.g., with basis pursuit denoise)

$$\hat{\boldsymbol{x}} = \operatorname*{argmin}_{\boldsymbol{u} \in \mathbb{R}^N} \|\boldsymbol{u}\|_1 \text{ s.t. } \|\boldsymbol{\Phi}\boldsymbol{u} - \boldsymbol{q}\| \leqslant \epsilon \quad (\text{BPDN})$$

$$\begin{aligned} \hat{\ell}_{2} - \ell_{1} \text{ instance optimality:} \\ \text{If } \|\boldsymbol{n}\| \leqslant \epsilon \text{ and } \frac{1}{\sqrt{M}} \boldsymbol{\Phi} \text{ is } \text{RIP}(\delta, 2K) \text{ with } \delta \leqslant \sqrt{2} - 1, \text{ then} \\ \|\hat{\boldsymbol{x}} - \boldsymbol{x}\| \lesssim \frac{\epsilon}{\sqrt{M}} + e_{0}(K), \end{aligned}$$

$$\text{with } e_{0}(K) = \|\boldsymbol{x} - \boldsymbol{x}_{K}\|_{1}/\sqrt{K}. \quad \text{Deterministic: } \epsilon^{2} \leq M\alpha^{2}/4 \\ \text{Stochastic: } \epsilon^{2} \leq M\alpha^{2}/12 + c\sqrt{M} \text{ (w.h.p)}. \end{aligned}$$

From BPDN $\ell_2 - \ell_1$ instance optimality:

$$\|\hat{\boldsymbol{x}} - \boldsymbol{x}\| \lesssim \boldsymbol{\alpha} + e_0(K),$$

- <u>Other reading</u> :
 - *B* bits per measurements $\Rightarrow \alpha \propto 2^{-B}$

$$\Rightarrow$$
 BPDN RMSE $\lesssim 2^{-B} + e_0(K)$

when RIP holds, *i.e.*, for $M = O(K \log N/K)$

From BPDN $\ell_2 - \ell_1$ instance optimality:

$$\|\hat{\boldsymbol{x}} - \boldsymbol{x}\| \lesssim \alpha + e_0(K),$$
Other reading:
B bits per measurements $\Rightarrow \alpha \propto 2^{-B}$
 \Rightarrow BPDN RMSE $\lesssim 2^{-B} + e_0(K)$
when RIP holds, *i.e.*, for $M = O(K \log N/K)$

But quantization error doesn't decay with M !?

Solution: be consistent!

IV. Toward consistency in Quantized CS

under High Resolution Assumption (HRA)

UCL Université de Louvain

Consistent reconstructions in CS?

Issue: if \hat{x} solution of BPDN,

 $\hat{\boldsymbol{x}} = \operatorname*{argmin}_{\boldsymbol{u} \in \mathbb{R}^N} \|\boldsymbol{u}\|_1 \text{ s.t. } \|\boldsymbol{\Phi}\boldsymbol{u} - \boldsymbol{q}\| \leqslant \epsilon \quad (\mathrm{BPDN})$

(i) No Quantization Consistency (QC) !

$$\| \Phi \hat{\boldsymbol{x}} - \mathcal{Q}[\boldsymbol{\Phi} \boldsymbol{x}] \| \leqslant \epsilon_2 \quad \Rightarrow \mathcal{Q}[\boldsymbol{\Phi} \hat{\boldsymbol{x}}] = Q[\boldsymbol{\Phi} \boldsymbol{x}]$$
(from BPDN constraint)

$$\Rightarrow \mathcal{Q}[\mathbf{\Phi}\hat{x}] \neq Q[\mathbf{\Phi}x]$$

 \Rightarrow Sensing information is fully not exploited!

(*ii*) ℓ_2 constraint in BPDN \approx Gaussian distribution (MAP - cond. log. lik.)

But why looking for consistency?

<u>First</u>: Let T the support of $\boldsymbol{x} \in \mathbb{R}^N$, r = M/K, $\boldsymbol{\Phi} \in \mathbb{R}^{M \times N}$, and $\boldsymbol{y} = \boldsymbol{\Phi} \boldsymbol{x}$. oversampling rate

Proposition (Goyal, Vetterli, Thao, 98) If T is known (with |T| = K), the best decoder Dec() provides a $\hat{x} = \text{Dec}(y, \Phi)$ such that: $\text{RMSE} = (\mathbb{E} || \boldsymbol{x} - \hat{\boldsymbol{x}} ||^2)^{1/2} \gtrsim r^{-1} \alpha,$

where \mathbb{E} is wrt a probability measure on \mathbf{x}_T in a bounded set $S \subset \mathbb{R}^K$. This bound is achieved, at least, for $\mathbf{\Phi}_T = \text{DFT} \in \mathbb{R}^{M \times K}$, when Dec() is **consistent**.

> V. K Goyal, M. Vetterli, N. T. Thao, "Quantized Overcomplete Expansions in R^N: Analysis, Synthesis, and Algorithms", IEEE Tran. IT, 44(1), 1998

But why looking for consistency?

N

In quest of consistency...

$$\ell_2 \to \ell_\infty$$

Modify BPDN [W. Dai, O. Milenkovic, 09]

$$\hat{\boldsymbol{x}} = \operatorname*{argmin}_{\boldsymbol{u} \in \mathbb{R}^N} \| \boldsymbol{u} \|_1 ext{ s.t. } \mathcal{Q}[\boldsymbol{\Phi} \boldsymbol{u}] = \boldsymbol{q} \ \Leftrightarrow \| \boldsymbol{\Phi} \boldsymbol{u} - \boldsymbol{q} \|_{\infty} \leq lpha / 2$$

+ modified greedy algo: "subspace pursuit"

W. Dai, H. V. Pham, and O. Milenkovic, "Quantized Compressive Sensing", preprint, 2009

In quest of consistency...

 $\ell_2 \to \ell_\infty$

Modify BPDN [W. Dai, O. Milenkovic, 09]

$$\hat{\boldsymbol{x}} = \operatorname*{argmin}_{\boldsymbol{u} \in \mathbb{R}^N} \| \boldsymbol{u} \|_1 ext{ s.t. } \mathcal{Q}[\boldsymbol{\Phi} \boldsymbol{u}] = \boldsymbol{q} \ \Leftrightarrow \| \boldsymbol{\Phi} \boldsymbol{u} - \boldsymbol{q} \|_{\infty} \leq lpha / 2$$

+ modified greedy algo: "subspace pursuit"

Simulations: M = 128, N = 256, K = 6,1000 trials $\Rightarrow \lambda \simeq 20$

W. Dai, H. V. Pham, and O. Milenkovic, "Quantized Compressive Sensing", preprint, 2009

[LJ, Hammond, Fadili, 2009, 2011]

- Distortion model: $\| \Phi x q \|_{\infty} \le \alpha/2$ $q = \mathcal{Q}[\Phi x] = \Phi x + n, \quad n_i \sim U(-\frac{\alpha}{2}, \frac{\alpha}{2})$
- Reconstruction: Basis Pursuit DeQuantizer

$$\hat{x} = rgmin_{oldsymbol{u} \in \mathbb{R}^N} \|oldsymbol{u}\|_1 ext{ s.t. } \|oldsymbol{q} - oldsymbol{\Phi}oldsymbol{u}\|_p \ \leq \epsilon_p$$

Towards $p = \infty$ Related to GGD MAP $\ell_2 \to \ell_p \ (p \ge 2)$

[LJ, Hammond, Fadili, 2009, 2011]

- Distortion model: $\| \Phi x q \|_{\infty} \le \alpha/2$ $q = \mathcal{Q}[\Phi x] = \Phi x + n, \quad n_i \sim U(-\frac{\alpha}{2}, \frac{\alpha}{2})$
- Reconstruction: Basis Pursuit DeQuantizer

$$\hat{\boldsymbol{x}} = \arg\min_{\boldsymbol{u} \in \mathbb{R}^N} \|\boldsymbol{u}\|_1 \text{ s.t. } \|\boldsymbol{q} - \boldsymbol{\Phi}\boldsymbol{u}\|_p \leq \epsilon_p$$

BPDQ Stability?

Ok, if $\mathbf{\Phi}$ is RIP_p of order K, *i.e.*, (for $\mu_p \simeq M^{1/p}$)

$$\exists \mu_p > 0, \ \delta \in (0,1),$$

$$\sqrt{1-\delta} \|\boldsymbol{v}\|_2 \leqslant \frac{1}{\mu_p} \|\boldsymbol{\Phi}\boldsymbol{v}\|_p \leqslant \sqrt{1+\delta} \|\boldsymbol{v}\|_2,$$

for all K sparse signals \boldsymbol{v} .

 $\ell_2 \to \ell_p \ (p \ge 2)$

[LJ, Hammond, Fadili, 2009, 2011]

- Distortion model: $\| \Phi x q \|_{\infty} \le \alpha/2$ $q = \mathcal{Q}[\Phi x] = \Phi x + n, \quad n_i \sim U(-\frac{\alpha}{2}, \frac{\alpha}{2})$
- Reconstruction: Basis Pursuit DeQuantizer

$$\hat{\boldsymbol{x}} = \underset{\boldsymbol{u} \in \mathbb{R}^{N}}{\operatorname{arg\,min}} \|\boldsymbol{u}\|_{1} \text{ s.t. } \|\boldsymbol{q} - \boldsymbol{\Phi}\boldsymbol{u}\|_{p} \leq \epsilon_{p}$$

BPDQ Stability?

Gain over BPDN (for tight $\epsilon_p(\alpha, M)$) $\Rightarrow \|\boldsymbol{x} - \hat{\boldsymbol{x}}\| = O(\epsilon_p / \mu_p)$

 $\Rightarrow \| \boldsymbol{x} - \hat{\boldsymbol{x}} \| = O(\alpha / \sqrt{p+1})$

But no free lunch: for Φ Gaussian

 $\ell_2 \to \ell_p \ (p \ge 2)$

 $M = O((K \log N/K)^{p/2})$

 $\Rightarrow \text{ Another reading: limited range of valid } p \text{ for a given } M \text{ (and } K)!$ (note: RIP_p not required anymore, but diff. error bound. S. Dirksen et al, '15)

[LJ, Hammond, Fadili, 2009, 2011]

- * N=1024, K=16, Gaussian $\pmb{\Phi}$
- * 500 K-sparse (canonical basis)
- * Non-zero components follow $\mathcal{N}(0,1)$
- * Quantiz. bin width $\alpha = \| \boldsymbol{\Phi} \boldsymbol{x} \|_{\infty} / 40$

LJ, D. Hammond, J. Fadili "Dequantizing compressed sensing: When oversampling and non-gaussian constraints combine." Information Theory, IEEE Transactions on, 57(1), 559-571.

UCL Université activities de Louvain

UCL Université dal ourgin

icteam

ELEN

ISP Group

BPDN

1

1

LJ, D. Hammond, J. Fadili "Dequantizing compressed sensing: When oversampling and non-gaussian constraints combine." Information Theory, IEEE Transactions on, 57(1), 559-571.

V. 1-bit CS and Binary ε-Stable Embedding

(first observed quasi-isometry in CS)

Universite attorige citeam ELEN ISP Group

[FIG1] Stated number of bits versus sampling rate.

[From "Analog-to-digital converters" B. Le, T.W. Rondeau, J.H. Reed, and C.W.Bostian, IEEE Sig. Proc. Magazine, Nov 2005]

1-bit Compressed Sensing

 $\begin{array}{c} y \\ \bullet \\ M \end{array} = \begin{array}{c} \Phi \\ \bullet \\ M \times N \end{array} \end{array}$

N
1-bit Compressed Sensing

UCL Université actuologie

Lower Bound on Reconstruction Error

Not all quantization cells intersected! no more than $C = 2^{K} {N \choose K} {M \choose K}$

(e.g., [Cover 65, Flatto 70])

Lower Bound on Reconstruction Error

Not all quantization cells intersected! no more than $C = 2^{K} {N \choose K} {M \choose K}$

(e.g., [Cover 65, Flatto 70])

For an error $\epsilon > 0$,

$$C \operatorname{vol}(\epsilon - \operatorname{cap}) \ge \operatorname{vol}(S^{N-1} \cap \Sigma_K)$$

and $\operatorname{vol}(S^{N-1} \cap \Sigma_K)/\operatorname{vol}(\epsilon - \operatorname{cap}) \simeq {N \choose K} \epsilon^{-K}$

Lower bound on any 1-bit reconstruction error: $\Rightarrow \epsilon = \Omega(K/M)$

Reaching this bound?

Reaching this bound?

 \boldsymbol{x} on S^2

M vectors:

 $\{\boldsymbol{\varphi}_i : 1 \leqslant i \leqslant M\}$

iid Gaussian

Reaching this bound?

Let
$$A(\cdot) := \operatorname{sign}(\boldsymbol{\Phi} \cdot) \text{ with } \boldsymbol{\Phi} \sim \mathcal{N}^{M \times N}(0, 1).$$

If $M = O(\epsilon^{-1} K \log N)$, then, w.h.p, for any two unit K-sparse vectors \boldsymbol{x} and \boldsymbol{s} ,

$$\begin{array}{ll} A(\boldsymbol{x}) = A(\boldsymbol{s}) & \Rightarrow & \|\boldsymbol{x} - \boldsymbol{s}\| \leq \epsilon \\ \Leftrightarrow \epsilon = O\left(\frac{K}{M}\log\frac{MN}{K}\right) \end{array}$$

almost optimal

Reaching this bound?

Let
$$A(\cdot) := \operatorname{sign}(\boldsymbol{\Phi} \cdot) \text{ with } \boldsymbol{\Phi} \sim \mathcal{N}^{M \times N}(0, 1).$$

If $M = O(\epsilon^{-1} K \log N)$, then, w.h.p, for any two unit K-sparse vectors \boldsymbol{x} and \boldsymbol{s} ,

$$A(\boldsymbol{x}) = A(\boldsymbol{s}) \implies \|\boldsymbol{x} - \boldsymbol{s}\| \le \epsilon$$
$$\Leftrightarrow \epsilon = O\left(\frac{K}{M}\log\frac{MN}{K}\right)$$

almost optimal

Note: You can even afford a small error [LJ, Degraux 2013], i.e.,

$$\begin{array}{ll} \text{if only } b \text{ bits are different} \\ \text{between } A(\boldsymbol{x}) \text{ and } A(\boldsymbol{s}) \end{array} \Rightarrow \|\boldsymbol{x} - \boldsymbol{s}\| \leqslant \frac{K+b}{K} \, \epsilon \end{array}$$

Embeddings?

(Hamming) distance between $A(\mathbf{x})$ and $A(\mathbf{s})$ (angular) distance between \mathbf{x} and \mathbf{s} ?

Uniformly for all *K*-sparse vectors?

Distances of interest:

$$d_{H}(\boldsymbol{u}, \boldsymbol{v}) = \frac{1}{M} \sum_{i} (u_{i} \oplus v_{i}) \quad \text{(norm. Hamming)}$$
$$d_{\text{ang}}(\boldsymbol{x}, \boldsymbol{s}) = \frac{1}{\pi} \arccos(\langle \boldsymbol{x}, \boldsymbol{s} \rangle) \quad \text{(norm. angle)}$$

Binary ϵ - Stable Embedding (B ϵ SE)

Definition:

A mapping $A : \mathbb{R}^N \to \{\pm 1\}^M$ is a **binary** ϵ -stable embedding (B ϵ SE) of order K for sparse vectors if

$$d_{\text{ang}}(\boldsymbol{x}, \boldsymbol{s}) - \epsilon \leq d_H(A(\boldsymbol{x}), A(\boldsymbol{s})) \leq d_{\text{ang}}(\boldsymbol{x}, \boldsymbol{s}) + \epsilon$$

for all $\boldsymbol{x}, \boldsymbol{s} \in S^{N-1}$ with $\boldsymbol{x} \pm \boldsymbol{s}$ K-sparse.

kind of "binary restricted (quasi) isometry"

Binary ϵ - Stable Embedding (B ϵ SE)

Definition:

A mapping $A : \mathbb{R}^N \to \{\pm 1\}^M$ is a **binary** ϵ -stable embedding (B ϵ SE) of order K for sparse vectors if

$$d_{\text{ang}}(\boldsymbol{x}, \boldsymbol{s}) - \epsilon \leq d_H(A(\boldsymbol{x}), A(\boldsymbol{s})) \leq d_{\text{ang}}(\boldsymbol{x}, \boldsymbol{s}) + \epsilon$$

for all $\boldsymbol{x}, \boldsymbol{s} \in S^{N-1}$ with $\boldsymbol{x} \pm \boldsymbol{s}$ K-sparse.

kind of "binary restricted (quasi) isometry"

Corollary: for any algorithm with output \boldsymbol{x}^* , jointly K-sparse and consistent (i.e., $A(\boldsymbol{x}^*) = A(\boldsymbol{x})$), we have: $d_{\mathrm{ang}}(\boldsymbol{x}, \boldsymbol{x}^*) \leq 2\epsilon!$

- If limited binary noise, d_{ang} still bounded
- If not exactly sparse signals (but almost), d_{ang} still bounded

$B\epsilon SE$ existence? Yes!

Let
$$\Phi \sim \mathcal{N}^{M \times N}(0, 1)$$
, fix $0 \leq \eta \leq 1$ and $\epsilon > 0$. If $A := \operatorname{sign}(\Phi \cdot)$ and
 $M \gtrsim \frac{1}{\epsilon^2} K \log \frac{N}{\epsilon} + \log \frac{1}{\eta}$,
then A is a B ϵ SE with $\Pr > 1 - \eta$.

$$M = O(\epsilon^{-2} K \log N)$$
Proof sketch:
 $[e.g., \text{ Goemans, Williamson 1995}]$
Let $u, v \in \mathbb{S}^{N-1}$ (wlog) and $A_j(\cdot) = \operatorname{sign}(\varphi_j^T \cdot)$
 $\mathbb{P}[A_j(u) \neq A_j(v)] = \frac{1}{\pi} \operatorname{angle}(u, v)$
 $= \frac{1}{\pi} \theta_{uv}$
 $+ \operatorname{measure concentration on } d_H \sim \operatorname{Bin}(\frac{1}{\pi} \theta_{uv}, M)$
 $+ \operatorname{covering/approximate continuity}$

VI. Quantized Embeddings

1. Beyond strict sparsity ... [Plan, Vershynin] Let $\mathcal{K} \subset S^{N-1}$ (e.g., compressible signals s.t. $\|\boldsymbol{x}\|_2 / \|\boldsymbol{x}\|_1 \leq \sqrt{K}$) $\neq \Sigma_K$

What can we say on $d_H(A(\boldsymbol{x}), A(\boldsymbol{s}))$ for $\boldsymbol{x}, \boldsymbol{s} \in \mathcal{K}$?

Y. Plan, R. Vershynin, "Dimension reduction by random hyperplane tessellations", 2011, arXiv:1111.4452
Y. Plan, R. Vershynin, "Robust 1-bit compressed sensing and sparse logistic regression: a convex programming approach", IEEE TIT 2012, arXiv:1202.1212.

Let $\mathcal{K} \subset S^{N-1}$ (e.g., compressible signals s.t. $\|\boldsymbol{x}\|_2 / \|\boldsymbol{x}\|_1 \leq \sqrt{K}$) $\neq \Sigma_K$

What can we say on $d_H(A(\boldsymbol{x}), A(\boldsymbol{s}))$ for $\boldsymbol{x}, \boldsymbol{s} \in \mathcal{K}$?

Uniform tessellation: [Plan, Vershynin, 11]

 $\mathrm{P}ig(rac{\# ext{ random hyperplanes btw } m{x}}{d_H(A(m{x}),A(m{s}))} ext{ and } m{s} \propto d_{\mathrm{ang}}(m{x},m{s})ig) ig)$

Y. Plan, R. Vershynin, "Dimension reduction by random hyperplane tessellations", 2011, arXiv:1111.4452
Y. Plan, R. Vershynin, "Robust 1-bit compressed sensing and sparse logistic regression: a convex programming approach", IEEE TIT 2012, arXiv:1202.1212.

Measuring the "dimension" of $\mathcal{K} \to \text{Gaussian}$ mean width:

$$w(\mathcal{K}) := \mathbb{E} \sup_{\boldsymbol{u} \in \mathcal{K}} |\langle \boldsymbol{g}, \boldsymbol{u} \rangle|, \text{ with } g_k \sim_{\mathrm{iid}} \mathcal{N}(0, 1)$$

width in direction η

Y. Plan, R. Vershynin, "Dimension reduction by random hyperplane tessellations", 2011, arXiv:1111.4452

Measuring the "dimension" of $\mathcal{K} \to \text{Gaussian}$ mean width:

$$w(\mathcal{K}) := \mathbb{E} \sup_{\boldsymbol{u} \in \mathcal{K}} |\langle \boldsymbol{g}, \boldsymbol{u} \rangle|, \text{ with } g_k \sim_{\mathrm{iid}} \mathcal{N}(0, 1)$$

width in direction η

Examples: $w^2(\mathcal{S}^{N-1}) \leq 4N$ $w^2(\mathcal{K}) \leq C\log |\mathcal{K}|$ (for finite sets) $w^2(\mathcal{K}) \leq L$ if subspace with dim $\mathcal{K} = L$ $w^2(\Sigma_K) \simeq K \log(2N/K)$

Y. Plan, R. Vershynin, "Dimension reduction by random hyperplane tessellations", 2011, arXiv:1111.4452

Proposition Let $\Phi \sim \mathcal{N}^{M \times N}(0,1)$ and $\mathcal{K} \subset \mathbb{R}^N$. Then, for some C, c > 0, if

 $M \geq C\epsilon^{-6} w^2(\mathcal{K}),$

then, with $Pr \ge 1 - e^{-c\epsilon^2 M}$, we have

 $d_{\mathrm{ang}}(\boldsymbol{x}, \boldsymbol{s}) - \epsilon \leqslant d_H(A(\boldsymbol{x}), A(\boldsymbol{s})) \leqslant d_{\mathrm{ang}}(\boldsymbol{x}, \boldsymbol{s}) - \epsilon, \quad \forall \boldsymbol{x}, \boldsymbol{s} \in \mathcal{K}.$

Y. Plan, R. Vershynin, "Dimension reduction by random hyperplane tessellations", 2011, arXiv:1111.4452

Proposition Let $\Phi \sim \mathcal{N}^{M \times N}(0, 1)$ and $\mathcal{K} \subset \mathbb{R}^N$. Then, for some C, c > 0, if

$$M \ge C\epsilon^{-6} w^2(\mathcal{K}),$$

not as optimal but stronger result!

then, with $Pr \ge 1 - e^{-c\epsilon^2 M}$, we have

 $d_{\mathrm{ang}}(\boldsymbol{x}, \boldsymbol{s}) - \epsilon \leqslant d_H(A(\boldsymbol{x}), A(\boldsymbol{s})) \leqslant d_{\mathrm{ang}}(\boldsymbol{x}, \boldsymbol{s}) - \epsilon, \quad \forall \boldsymbol{x}, \boldsymbol{s} \in \mathcal{K}.$

 $B \in SE$ is generalized to more general sets. In particular, to

> $\mathcal{C}_K = \{ \boldsymbol{u} \in \mathbb{R}^N : \|\boldsymbol{u}\|_1 \le \sqrt{K}, \|\boldsymbol{u}\| \le 1 \} \supset \Sigma_K \cap \mathbb{B}^N$ with $w^2(\mathcal{C}_K) \le cK \log N/K.$

Y. Plan, R. Vershynin, "Dimension reduction by random hyperplane tessellations", 2011, arXiv:1111.4452

Proposition Let $\Phi \sim \mathcal{N}^{M \times N}(0,1)$ and $\mathcal{K} \subset \mathbb{R}^N$. Then, for some C, c > 0, if

$$M \ge C\epsilon^{-6} w^2(\mathcal{K}),$$

not as optimal but stronger result!

then, with $Pr \ge 1 - e^{-c\epsilon^2 M}$, we have

 $d_{\mathrm{ang}}(\boldsymbol{x}, \boldsymbol{s}) - \epsilon \leqslant d_H(A(\boldsymbol{x}), A(\boldsymbol{s})) \leqslant d_{\mathrm{ang}}(\boldsymbol{x}, \boldsymbol{s}) - \epsilon, \quad \forall \boldsymbol{x}, \boldsymbol{s} \in \mathcal{K}.$

 $B \in SE$ is generalized to more general sets. In particular, to

> $\mathcal{C}_{K} = \{ \boldsymbol{u} \in \mathbb{R}^{N} : \|\boldsymbol{u}\|_{1} \leq \sqrt{K}, \|\boldsymbol{u}\| \leq 1 \} \supset \Sigma_{K} \cap \mathbb{B}^{N}$ with $w^{2}(\mathcal{C}_{K}) \leq cK \log N/K.$

 $\Rightarrow \text{Extension to "1-bit Matrix Completion" possible!}$ *i.e.*, $w^2(r\text{-rank } N_1 \times N_2 \text{ matrix}) \leq c r(N_1 + N_2)!$

Y. Plan, R. Vershynin, "Dimension reduction by random hyperplane tessellations", 2011, arXiv:1111.4452Y. Plan, R. Vershynin, "Robust 1-bit compressed sensing and sparse logistic regression: a convex programming approach", IEEE TIT 2012, arXiv:1202.1212.

▶ The Johnson-Lindenstrauss Lemma (1984)

The Johnson-Lindenstrauss Lemma (1984)

Lemma 1 Given an error $0 < \epsilon < 1$, and a point set $S \subset \mathbb{R}^N$. If M is such that

$$M > M_0 = O(\epsilon^{-2} \log |\mathcal{S}|),$$

then, there exists a (Lipschitz) mapping $\boldsymbol{f} : \mathbb{R}^N \to \mathbb{R}^M$ such that $(1-\epsilon) \|\boldsymbol{u} - \boldsymbol{v}\| \leq \frac{1}{\sqrt{M}} \|\boldsymbol{f}(\boldsymbol{u}) - \boldsymbol{f}(\boldsymbol{v})\| \leq (1+\epsilon) \|\boldsymbol{u} - \boldsymbol{v}\|,$ for all $\boldsymbol{u}, \boldsymbol{v} \in \mathcal{S}.$

 $\Rightarrow \text{ isometry between } (\mathcal{S}, \ell_2) \text{ and } (\boldsymbol{f}(\mathcal{S}), \ell_2)$ Possible mapping: $\boldsymbol{f}(\boldsymbol{u}) = \boldsymbol{\Phi} \boldsymbol{u}$, with, e.g., $\Phi_{ij} \sim_{\text{iid}} \mathcal{N}(0, 1)$ (or subgaussian)

First quantization attempt:

Given a JL mapping $\boldsymbol{f} : \mathbb{R}^N \to \mathbb{R}^M$ Form $\boldsymbol{\psi} := \boldsymbol{\mathcal{Q}} \circ \boldsymbol{f}$ with $\boldsymbol{\mathcal{Q}}(t) = \delta(\lfloor t/\delta \rfloor + 1/2)$ (Quantization bin $\delta > 0$) Then, with $M \ge M_0 = O(\epsilon^{-2} \log |\mathcal{S}|)$,

$$(1-\epsilon) \|\boldsymbol{u}-\boldsymbol{v}\| - \delta \leq \frac{1}{\sqrt{M}} \|\boldsymbol{\psi}(\boldsymbol{u}) - \boldsymbol{\psi}(\boldsymbol{v})\| \leq (1+\epsilon) \|\boldsymbol{u}-\boldsymbol{v}\| + \delta,$$

First quantization attempt:

Given a JL mapping
$$\boldsymbol{f} : \mathbb{R}^N \to \mathbb{R}^M$$

Form $\boldsymbol{\psi} := \mathcal{Q} \circ \boldsymbol{f}$ with $\mathcal{Q}(t) = \delta(\lfloor t/\delta \rfloor + 1/2)$ (Quantization bin $\delta > 0$)
Then, with $M \ge M_0 = O(\epsilon^{-2} \log |\mathcal{S}|)$,

$$(1-\epsilon) \|\boldsymbol{u}-\boldsymbol{v}\| - \delta \leqslant \frac{1}{\sqrt{M}} \|\boldsymbol{\psi}(\boldsymbol{u}) - \boldsymbol{\psi}(\boldsymbol{v})\| \leqslant (1+\epsilon) \|\boldsymbol{u}-\boldsymbol{v}\| + \delta,$$

Proof: easy, just observe that:

$$|a-b| - \delta \le |\mathcal{Q}(a) - \mathcal{Q}(b)| \le |a-b| + \delta, \quad \forall a, b \in \mathbb{R}$$

First quantization attempt:

Given a JL mapping
$$\boldsymbol{f} : \mathbb{R}^N \to \mathbb{R}^M$$

Form $\boldsymbol{\psi} := \mathcal{Q} \circ \boldsymbol{f}$ with $\mathcal{Q}(t) = \delta(\lfloor t/\delta \rfloor + 1/2)$ (Quantization bin $\delta > 0$)
Then, with $M \ge M_0 = O(\epsilon^{-2} \log |\mathcal{S}|),$
 $(1 - \epsilon) \|\boldsymbol{u} - \boldsymbol{w}\| = \delta < -\frac{1}{\epsilon} \|\boldsymbol{u}(\boldsymbol{u}) - \boldsymbol{u}(\boldsymbol{w})\| < (1 + \epsilon) \|\boldsymbol{u} - \boldsymbol{w}\| + \delta$

$$(1-\epsilon) \|\boldsymbol{u}-\boldsymbol{v}\| - \delta \leqslant \frac{1}{\sqrt{M}} \|\boldsymbol{\psi}(\boldsymbol{u}) - \boldsymbol{\psi}(\boldsymbol{v})\| \leqslant (1+\epsilon) \|\boldsymbol{u}-\boldsymbol{v}\| + \delta,$$

$$(\text{decaying, good!}) \qquad (\text{constant, weird!?})$$

$$\textbf{multiplicative error} \qquad \textbf{additive error}$$

$$Problem: \ \epsilon = O(\sqrt{\log |\mathcal{S}|/M_0}) \text{ but } \delta \text{ is constant!}$$

$$Can \text{ we hope better?}$$

Scalar Quantization resolution $\delta > 0$

2. Beyond 1-bit ... Quantizing JL lemma? Let $\psi(\boldsymbol{x}) = \mathcal{Q}(\boldsymbol{\varphi} \cdot \boldsymbol{x} + u)$, for $\boldsymbol{x} \in \mathbb{R}^N$

counting planes by \boldsymbol{x} and \boldsymbol{x} '!

2. Beyond 1-bit ... Quantizing JL lemma? Let $\psi(\boldsymbol{x}) = \mathcal{Q}(\boldsymbol{\varphi} \cdot \boldsymbol{x} + \boldsymbol{u})$, for $\boldsymbol{x} \in \mathbb{R}^N$

 \boldsymbol{x} δ fixed \boldsymbol{x} fixed random random \propto [Buffon's problem 1733, Buffon's solution 1777] $|\mathcal{Q}(\boldsymbol{\varphi}\cdot\boldsymbol{x}+u) - \mathcal{Q}(\boldsymbol{\varphi}\cdot\boldsymbol{x}'+u)|$ Random throw of a "needle" (conditionnally to $\|\varphi\|$) and counts intersections with parallel stripes \mathcal{G} .

$$\mathbb{E}\left|\mathbf{N}\cap\mathcal{G}\right| = \frac{2}{\pi}\frac{L}{\delta}$$

ELEN ISP Group

random

arphi

counting planes by \boldsymbol{x} and \boldsymbol{x} ?

2. Beyond 1-bit ... Quantizing JL lemma? Let $\psi(\mathbf{x}) = \mathcal{Q}(\mathbf{\varphi} \cdot \mathbf{x} + u)$, for $\mathbf{x} \in \mathbb{R}^N$

- Let's define the r.v. $X_j = \frac{1}{\delta} |\psi_j(\boldsymbol{x}) \psi_j(\boldsymbol{x'})|$ $(1 \le j \le M)$
- Measure concentration for

[▶] sub-Gaussian r.v.!

 $\frac{1}{M}\sum_{j}X_{j} = \frac{1}{\delta M} \|\boldsymbol{\psi}(\boldsymbol{x}) - \boldsymbol{\psi}(\boldsymbol{x}')\|_{1}$
2. Beyond 1-bit ... Quantizing JL lemma?

- Let's define the r.v. $X_j = \frac{1}{\delta} |\psi_j(\boldsymbol{x}) \psi_j(\boldsymbol{x}')|$ $(1 \le j \le M)$
- Measure concentration for

$$\frac{1}{M}\sum_{j}X_{j} = \frac{1}{\delta M} \|\boldsymbol{\psi}(\boldsymbol{x}) - \boldsymbol{\psi}(\boldsymbol{x}')\|_{1}$$

Quasi-isometry! [LJ, 2013]

Lemma 1 Given an error $0 < \epsilon < 1$, and a point set $S \subset \mathbb{R}^N$. If M is such that $M \ge M_0 = O(\epsilon^{-2} \log |S|), \quad \epsilon = O(\sqrt{\log |S|/M_0})$ then, for c > 0 and with high probability, we have $(1-\epsilon) \|\mathbf{x} - \mathbf{x}'\| - c\delta\epsilon \le \frac{\sqrt{\pi}}{M\sqrt{2}} \|\psi(\mathbf{x}) - \psi(\mathbf{x}')\|_1 \le (1+\epsilon) \|\mathbf{x} - \mathbf{x}'\| + c\delta\epsilon,$ for all $\mathbf{x}, \mathbf{x}' \in S$.

multiplicative and additive errors decay as $1/\sqrt{M_0}$!

3. Beyond QJL ... Quantizing the RIP? RIP: $(1-\delta) \|\boldsymbol{u}\|^2 \leq \frac{1}{M} \|\boldsymbol{\Phi}\boldsymbol{u}\|^2 \leq (1+\delta) \|\boldsymbol{u}\|^2$

for all $\boldsymbol{u} \in \Sigma_{2K} := \{ \boldsymbol{u} : \|\boldsymbol{u}\|_0 := |\operatorname{supp} \boldsymbol{u}| \le 2K \}$

- Why quantizing the RIP?
 - ► since we can ;-)
 - for future algorithm guarantees
 - for nearest neighbors applications

 $\begin{array}{l} \bullet \quad \text{Let's retake: for } \mathcal{Q}(\cdot) = \delta \lfloor \cdot / \delta \rfloor \in \delta \mathbb{Z} \\ \psi(\boldsymbol{x}) := \mathcal{Q}(\boldsymbol{\Phi} \boldsymbol{x} + \boldsymbol{u}) \iff \boldsymbol{\psi}_j(\boldsymbol{x}) := \mathcal{Q}(\boldsymbol{\varphi}_j \cdot \boldsymbol{x} + u_j) \\ \text{with: } \boldsymbol{\Phi} \sim \mathcal{N}^{M \times N}(0, 1) \\ \boldsymbol{u} \sim \mathcal{U}^M([0, \delta]) \end{array}$

• Let's retake: for
$$Q(\cdot) = \delta \lfloor \cdot / \delta \rfloor \in \delta \mathbb{Z}$$

 $\psi(\boldsymbol{x}) := Q(\boldsymbol{\Phi}\boldsymbol{x} + \boldsymbol{u}) \Leftrightarrow \psi_j(\boldsymbol{x}) := Q(\boldsymbol{\varphi}_j \cdot \boldsymbol{x} + u_j)$
with: $\boldsymbol{\Phi} \sim \mathcal{N}^{M \times N}(0, 1)$
 $\boldsymbol{u} \sim \mathcal{U}^M([0, \delta])$
YES!

Quantized Gaussian Quasi-Isometric Embedding [LJ, 2015]

$$\begin{array}{l} \text{Given an error } 0 < \epsilon < 1, \text{ and } \mathcal{K} \subset \mathbb{R}^{N}. \\ \text{If } M \text{ is such that} \\ M \gtrsim \epsilon^{-5} w(\mathcal{K})^{2}, \end{array} \end{array} \qquad \begin{array}{l} \text{For } \mathcal{K} = \mathbf{A} \Sigma_{K} \cap \mathbb{B}^{N} \\ \text{and } \mathbf{A} \text{ ONB} \\ M \gtrsim \epsilon^{-2} K \log \frac{N}{K \delta \epsilon^{3/2}} \end{array} \\ \text{then, for some } c > 0 \text{ and for all } \mathbf{x}, \mathbf{x}' \in \mathcal{K}, \text{ and } w.h.p., \text{ we have} \\ (\sqrt{\frac{2}{\pi}} - \epsilon) \|\mathbf{x} - \mathbf{x}'\| - c\delta \epsilon \leq \frac{1}{M} \|\mathbf{\psi}(\mathbf{x}) - \mathbf{\psi}(\mathbf{x}')\|_{1} \leq (\sqrt{\frac{2}{\pi}} + \epsilon) \|\mathbf{x} - \mathbf{x}'\| + c\delta \epsilon, \end{array}$$

• Let's retake: for $\mathcal{Q}(\cdot) = \delta \lfloor \cdot / \delta \rfloor \in \delta \mathbb{Z}$

 $\boldsymbol{\psi}(\boldsymbol{x}) := \mathcal{Q}(\boldsymbol{\Phi}\boldsymbol{x} + \boldsymbol{u}) \ \Leftrightarrow \ \boldsymbol{\psi}_j(\boldsymbol{x}) := \mathcal{Q}(\boldsymbol{\varphi}_j \cdot \boldsymbol{x} + u_j)$

with:
$$\Phi \sim \mathcal{M}^{M \times N}(0, 1)$$
 OK for sub-Gaussian?
 $\boldsymbol{u} \sim \mathcal{U}^{M}([0, \delta])$ (e.g., Bernoulli)

• Let's retake: for $\mathcal{Q}(\cdot) = \delta \lfloor \cdot / \delta \rfloor \in \delta \mathbb{Z}$ $\psi(x) := \mathcal{Q}(\Phi x + u) \Leftrightarrow \psi_j(x) := \mathcal{Q}(\varphi_j \cdot x + u_j)$ with: $\Phi \wedge M \times N = 0$

with:
$$\Phi \sim \mathcal{M}^{M \times N}(0, 1)$$
 OK for sub-Gaussian?
 $\boldsymbol{u} \sim \mathcal{U}^{M}([0, \delta])$ (e.g., Bernoulli)

- **Possible** but:
 - additional distortion! (related to sub-Gaussian dist.)
 - depends on "anti-sparse" nature of x x', *i.e.*,

$$x - x' \in C_{K_0} = \{ u \in \mathbb{R}^N : K_0 \| u \|_{\infty}^2 \le \| u \|^2 \}$$

for some
$$K_0 > 0$$
 $1/\sqrt{K_0}$ \downarrow \downarrow $I/\sqrt{K_0}$ \downarrow $I/\sqrt{K_0}$ $I/\sqrt{K_0}$

• Let's retake: for $\mathcal{Q}(\cdot) = \delta \lfloor \cdot / \delta \rfloor \in \delta \mathbb{Z}$

 $\boldsymbol{\psi}(\boldsymbol{x}) := \mathcal{Q}(\boldsymbol{\Phi} \boldsymbol{x} + \boldsymbol{u}) \ \Leftrightarrow \ \boldsymbol{\psi}_j(\boldsymbol{x}) := \mathcal{Q}(\boldsymbol{\varphi}_j \cdot \boldsymbol{x} + u_j)$

with:
$$\Phi \sim \mathcal{M}^{M \times N}(0, 1)$$
 OK for sub-Gaussian?
 $\boldsymbol{u} \sim \mathcal{U}^{M}([0, \delta])$ (e.g., Bernoulli)

Quantized sub-Gaussian Quasi-Isometric Embedding [LJ, 2015]

Given an error $0 < \epsilon < 1$, and $\mathcal{K} \subset \mathbb{R}^{N}$. If M is such that $M \gtrsim \epsilon^{-5} w(\mathcal{K})^{2}$, then, w.h.p, for some c > 0 and for all $x, x' \in \mathcal{K}$ with $x - x' \in C_{K_{0}}$, we have $(\sqrt{\frac{2}{\pi}} - \epsilon - \frac{\kappa}{\sqrt{K_{0}}}) \|x - x'\| - c\delta\epsilon \leq \frac{1}{M} \|\psi(x) - \psi(x')\|_{1} \leq (\sqrt{\frac{2}{\pi}} + \epsilon + \frac{\kappa}{\sqrt{K_{0}}}) \|x - x'\| + c\delta\epsilon$.

• Let's retake: for $\mathcal{Q}(\cdot) = \delta \lfloor \cdot / \delta \rfloor \in \delta \mathbb{Z}$

 $\boldsymbol{\psi}(\boldsymbol{x}) := \mathcal{Q}(\boldsymbol{\Phi} \boldsymbol{x} + \boldsymbol{u}) \ \Leftrightarrow \ \boldsymbol{\psi}_j(\boldsymbol{x}) := \mathcal{Q}(\boldsymbol{\varphi}_j \cdot \boldsymbol{x} + u_j)$

with:
$$\Phi \sim \mathcal{M}^{M \times N}(0, 1)$$
 OK for sub-Gaussian?
 $\boldsymbol{u} \sim \mathcal{U}^{M}([0, \delta])$ (e.g., Bernoulli)

Quantized sub-Gaussian Quasi-Isometric Embedding [LJ, 2015]

Given an error $0 < \epsilon < 1$, and $\mathcal{K} \subset \mathbb{R}^{N}$. If M is such that $M \gtrsim \epsilon^{-5} w(\mathcal{K})^{2}$, then, w.h.p, for some c > 0 and for all $\boldsymbol{x}, \boldsymbol{x}' \in \mathcal{K}$ with $\boldsymbol{x} - \boldsymbol{x}' \in C_{K_{0}}$, we have $(\sqrt{\frac{2}{\pi}} - \epsilon - \frac{\kappa}{\sqrt{K_{0}}}) \|\boldsymbol{x} - \boldsymbol{x}'\| - c\delta\epsilon \leq \frac{1}{M} \|\boldsymbol{\psi}(\boldsymbol{x}) - \boldsymbol{\psi}(\boldsymbol{x}')\|_{1} \leq (\sqrt{\frac{2}{\pi}} + \epsilon + \frac{\kappa}{\sqrt{K_{0}}}) \|\boldsymbol{x} - \boldsymbol{x}'\| + c\delta\epsilon$. But, anti-sparsity "adjustable" with \boldsymbol{A} (e.g., Fourier)!

• Let's retake: for $\mathcal{Q}(\cdot) = \delta \lfloor \cdot / \delta \rfloor \in \delta \mathbb{Z}$

 $\boldsymbol{\psi}(\boldsymbol{x}) := \mathcal{Q}(\boldsymbol{\Phi} \boldsymbol{x} + \boldsymbol{u}) \ \Leftrightarrow \ \boldsymbol{\psi}_j(\boldsymbol{x}) := \mathcal{Q}(\boldsymbol{\varphi}_j \cdot \boldsymbol{x} + u_j)$

• If you're just asking for consistency:

• Let's retake: for
$$\mathcal{Q}(\cdot) = \delta \lfloor \cdot / \delta \rfloor \in \delta \mathbb{Z}$$

 $\boldsymbol{\psi}(\boldsymbol{x}) := \mathcal{Q}(\boldsymbol{\Phi} \boldsymbol{x} + \boldsymbol{u}) \ \Leftrightarrow \ \boldsymbol{\psi}_j(\boldsymbol{x}) := \mathcal{Q}(\boldsymbol{\varphi}_j \cdot \boldsymbol{x} + u_j)$

with:
$$\Phi \sim \mathcal{M}^{M \times N}(0, \mathbb{I})$$

 $u \sim \mathcal{U}^{M}([0, \delta])$ OK for sub-Gaussian?
(e.g., Bernoulli)
If you're just asking for consistency: For \mathcal{K}

Given an error $0 < \epsilon < 1$, and $\mathcal{K} \subset \mathbb{R}^N$. If

For
$$\mathcal{K} = \mathbf{A}\Sigma_K \cap \mathbb{B}^N$$

and \mathbf{A} ONB
 $M \gtrsim \epsilon^{-1} K \log \frac{N}{K\delta\epsilon^{3/2}}$

$$M \gtrsim \epsilon^{-4} w(\mathcal{K})^2$$
 and $\sqrt{K_0} \ge 16\kappa$,

then, w.h.p., for all $x, x' \in \mathcal{K}$ with $x - x' \in C_{K_0}$, we have

$$oldsymbol{\psi}(oldsymbol{x}) = oldsymbol{\psi}(oldsymbol{x}') \quad \Rightarrow \quad \|oldsymbol{x} - oldsymbol{x}'\| \leq \epsilon.$$

To conclude ...

Take away messages

- Associating CS and Quantization
 provides many interesting questions:
 - geometrically (high dim. convex geom.)
 - numerically (not totally covered here)
 - ▶ with impacts in CS sensor design

Take away messages

- Associating CS and Quantization
 provides many interesting questions:
 - geometrically (high dim. convex geom.)
 - numerically (not totally covered here)
 - with impacts in CS sensor design
- Beyond CS, quantifying random projections
 - leads to interesting embedding problems
 - possible impacts in dimensionality reductions

Open questions

- $\ell_2 \ell_2$ quasi-isometric embedding?
- Embeddings with other quantizations?
- Classification/clustering in the quantized domain?

Thank you for the invitation!

P. T. Boufounos, LJ, F. Krahmer and R. Saab, "Quantization and Compressive Sensing", arXiv: 1405.1194, 2014 (to appear in Springer book "Compressed Sensing and Its Applications")

LJ, J. N. Laska, P. T. Boufounos, and R. G. Baraniuk, "Robust 1-Bit Compressive Sensing via Binary Stable Embeddings of Sparse Vectors", IEEE TIT, 59(4), pp. 2082-2102, 2013.

A. Powell, J. Whitehouse, "Error bounds for consistent reconstruction: random polytopes and coverage processes", to appear in FoCM, arXiv: 1405.7094

S. Dirksen, G. Lecué, H. Rauhut, "On the gap between RIP-properties and sparse recovery conditions", arXiv: 1504.05073

LJ, "Error Decay of (almost) Consistent Signal Estimations from Quantized Random Gaussian Projections", submitted to TIT, arXiv: 1406.0022

LJ, "A Quantized Johnson Lindenstrauss Lemma: The Finding of Buffon's Needle", submitted to TIT, arXiv: 1309.1507

LJ, "Small width, low distortions: quasi-isometric embeddings with quantized sub-Gaussian random projections", Submitted to TIT, arXiv: 1504.06170

+ references inside the presentation