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The pipelined structure and unknown structure have the
best overall performance, so that they are best suited for
applications with high performance requirements, such as
wireless transceiver applications and military use [3]. SAR
ADCs have widely ranging sampling rates, though they are
not the fastest devices. Still, these devices are popular for
their range of speeds and resolutions as well as low cost and
power dissipation. It can be seen that there is a borderline of
sampling rate at around 30 Ms/s separating the sigma-delta
and flash ADCs. Sigma-delta ADCs have the highest resolu-
tion with relatively low sampling rates from kilosamples per
second to megasamples per second, while flash ADCs have
the highest sampling rates up to
Gsps due to their parallel structure
but with a resolution limited to no
more than 8 b due to nonlinearity.
Between these two structures are
unknown structures compromising
speed and resolution. 

We are also interested in the
envelope of the sample distributions
in this plot since such an envelope
indicates the performance limita-
tions. It is reasonable to extract the
envelope information based on the
ADCs with the highest performance
to postulate the design challenges
and technology trends.

In Figure 1, if Walden’s claim that P
is relatively constant is true, according
to (1), the envelope line should show
that a 3 dBs/s increment in fs corre-
sponds to a 1-b reduction in resolution.
However, Figure 1 shows that the real
tradeoff is 1 b/2.3 dBs/s. Compared to
the 1 b/3 dBs/s slope hypothesis, there
is an improvement in P at low sam-
pling rates and degradation at high
sampling rates. This trend indicates
that the ADC performance boundary is
varying with sampling rate, as illustrat-
ed by Figure 2 where ENOB is plotted
versus the sampling rate.

As stated previously, noise and dis-
tortion cause most of the performance
degradation in practical ADCs. The
internal sample-hold-quantize signal
operations are nonlinear, and those
effects are represented as equivalent
noise effects so that they can be unified
into noise-based equations to simplify
the performance analysis. Therefore,
besides thermal noise, we have two
additional noise sources, quantization
noise [2] and aperture-jitter noise [1].

THERMAL NOISE
Thermal noise by itself [1] has a 1 b/6 dBs/s relationship to sam-
pling frequency assuming Nyquist sampling [2]. However, it is
usually overwhelmed by the capacitance noise since the S/H stage,
as the input stage of an ADC, shows strong capacitive characteris-
tics. Therefore, the capacitance noise (modeled as kT/C noise [4],
where k is Boltzmann’s constant, T is the temperature, and C is
the capacitance) is usually assumed as the input noise floor.

QUANTIZATION NOISE
The signal distortion in quantization is modeled as quantization
noise with a signal-to-quantization-noise ratio (SQNR) definition of

[FIG1] Stated number of bits versus sampling rate.
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[FIG2] ENOB versus sampling rate.
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The pipelined structure and unknown structure have the
best overall performance, so that they are best suited for
applications with high performance requirements, such as
wireless transceiver applications and military use [3]. SAR
ADCs have widely ranging sampling rates, though they are
not the fastest devices. Still, these devices are popular for
their range of speeds and resolutions as well as low cost and
power dissipation. It can be seen that there is a borderline of
sampling rate at around 30 Ms/s separating the sigma-delta
and flash ADCs. Sigma-delta ADCs have the highest resolu-
tion with relatively low sampling rates from kilosamples per
second to megasamples per second, while flash ADCs have
the highest sampling rates up to
Gsps due to their parallel structure
but with a resolution limited to no
more than 8 b due to nonlinearity.
Between these two structures are
unknown structures compromising
speed and resolution. 

We are also interested in the
envelope of the sample distributions
in this plot since such an envelope
indicates the performance limita-
tions. It is reasonable to extract the
envelope information based on the
ADCs with the highest performance
to postulate the design challenges
and technology trends.

In Figure 1, if Walden’s claim that P
is relatively constant is true, according
to (1), the envelope line should show
that a 3 dBs/s increment in fs corre-
sponds to a 1-b reduction in resolution.
However, Figure 1 shows that the real
tradeoff is 1 b/2.3 dBs/s. Compared to
the 1 b/3 dBs/s slope hypothesis, there
is an improvement in P at low sam-
pling rates and degradation at high
sampling rates. This trend indicates
that the ADC performance boundary is
varying with sampling rate, as illustrat-
ed by Figure 2 where ENOB is plotted
versus the sampling rate.

As stated previously, noise and dis-
tortion cause most of the performance
degradation in practical ADCs. The
internal sample-hold-quantize signal
operations are nonlinear, and those
effects are represented as equivalent
noise effects so that they can be unified
into noise-based equations to simplify
the performance analysis. Therefore,
besides thermal noise, we have two
additional noise sources, quantization
noise [2] and aperture-jitter noise [1].

THERMAL NOISE
Thermal noise by itself [1] has a 1 b/6 dBs/s relationship to sam-
pling frequency assuming Nyquist sampling [2]. However, it is
usually overwhelmed by the capacitance noise since the S/H stage,
as the input stage of an ADC, shows strong capacitive characteris-
tics. Therefore, the capacitance noise (modeled as kT/C noise [4],
where k is Boltzmann’s constant, T is the temperature, and C is
the capacitance) is usually assumed as the input noise floor.

QUANTIZATION NOISE
The signal distortion in quantization is modeled as quantization
noise with a signal-to-quantization-noise ratio (SQNR) definition of
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Few slides to understand 
Compressed Sensing

Just what I need...
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=

Φ xy

M M ×N

N
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Compressed Sensing

If x is K-sparse and if     well “conditioned” 
then: 

=

Φ xy

M M ×N

Nx = arg min
u∈RN

�u�0 s.t. y = Φu

Φ

�u�0 = #{j : uj �= 0}
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If x is K-sparse and if     well “conditioned” 
then: 

x = arg min
u∈RN

�u�0 s.t. y = Φu

Φ

1

(relax.)

�u�1 =
�

j |uj |

=

Φ xy

M M ×N

N

Compressed Sensing

(Basis Pursuit) [Chen, Donoho, Saunders, 1998]
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If x is K-sparse and if     well “conditioned” 
then: 

x = arg min
u∈RN

�u�0 s.t. y = Φu

Φ

1

(relax.)

�u�1 =
�

j |uj |

Compressed Sensing

“few degrees of freedom” law 

(Basis Pursuit) [Chen, Donoho, Saunders, 1998]
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If x is K-sparse and if     well “conditioned” 
then: 

x = arg min
u∈RN

�u�0 s.t. y = Φu

Φ

1

(relax.)

�u�1 =
�

j |uj |

for all 2K sparse signals v.

√
1− δ �v�2 � �Φv�2 �

√
1 + δ �v�2

∃ δ ∈ (0, 1)

Compressed Sensing

any subset of 2K columns 
is an isometry 

if                 δ <
√

2− 1  [Candes 08]

Restricted Isometry Property

(Basis Pursuit) [Chen, Donoho, Saunders, 1998]
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If x is K-sparse and if     well “conditioned” 
then: 

x = arg min
u∈RN

�u�0 s.t. y = Φu

Φ

1

(relax.)

�u�1 =
�

j |uj |

for all 2K sparse signals v.

√
1− δ �v�2 � �Φv�2 �

√
1 + δ �v�2

∃ δ ∈ (0, 1)

Compressed Sensing

any subset of 2K columns 
is an isometry 

M = O(K lnN/K)� N

Φ ∈ RM×N , Φij ∼iid N (0, 1)

e.g.

if                 δ <
√

2− 1  [Candes 08]

Restricted Isometry Property

(Basis Pursuit) [Chen, Donoho, Saunders, 1998]

+ Bernoulli
+ Random Fourier
+ ....
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If x is K-sparse and if     well “conditioned” 
then: 

x = arg min
u∈RN

�u�0 s.t. y = Φu

Φ

1

(relax.)

�u�1 =
�

j |uj |

Compressed Sensing

xLS

x = xBP

Φu = y

!1-ball

!2-ball

R2

e1

e2

(Basis Pursuit) [Chen, Donoho, Saunders, 1998]
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Compressed Sensing Limits
✴ CS measurements         , 

what happens if quantized ?

✴ “Ok” for high resolution quantization (   noise):
[Candes, Tao, 2004] [Jacques, Hammond, Fadili 2009, 2011] [Laska et al. 2009] [Dai, Pham, Milenkovic, 2009] ...

✴ But is it still valid for extreme quantization? 1-bit?  

17

∈ RM

∼

�x− x∗� � C �y −Φx�

meas. distortion

Q[Φx]
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Φ x

=

M M ×N

N

1-bit Compressed Sensing
y
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ys

1-bit Compressed Sensing

19

= sign

Φ x

M M ×N

N

sign t =

�
1 if t > 0
−1 if t � 0 component-wisewith:
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1-bit Compressed Sensing

20

= sign

Φ x

M M ×N
N

O
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M

�
ys

But, which information inside    ?M -bits! ys
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1-bit Compressed Sensing

21

= sign

Φ x

M M ×N
N

O
v
e
r
s
a
m

p
li
n
g

in
M

�
ys

But, which information inside    ?M -bits! ys

Computational
bits matter!
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Intuitively ... x on S2, M vectors {ϕi : 1 � i � M}
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Intuitively ...

ϕ1

x

�ϕ1,x� > 0

{u : �ϕ1,u� > 0}

{u : �ϕ1,u� � 0}

x on S2, M vectors {ϕi : 1 � i � M}

1-bit Measurements

[illustration: P. Boufounos]
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Intuitively ...

ϕ1

ϕ2

x

x on S2, M vectors {ϕi : 1 � i � M}

�ϕ1,x� > 0
�ϕ2,x� > 0

1-bit Measurements

[illustration: P. Boufounos]
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Intuitively ...

ϕ1

ϕ2

ϕ3

x

x on S2, M vectors {ϕi : 1 � i � M}

�ϕ1,x� > 0
�ϕ2,x� > 0
�ϕ3,x� � 0

1-bit Measurements

[illustration: P. Boufounos]
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Intuitively ...

ϕ1

ϕ2

ϕ3

x

x on S2, M vectors {ϕi : 1 � i � M}

�ϕ1,x� > 0
�ϕ2,x� > 0
�ϕ3,x� � 0

ϕ4

�ϕ4,x� > 0

1-bit Measurements

[illustration: P. Boufounos]
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Intuitively ...

ϕ1

ϕ2

ϕ3

x

x on S2, M vectors {ϕi : 1 � i � M}

�ϕ1,x� > 0
�ϕ2,x� > 0
�ϕ3,x� � 0

ϕ4

�ϕ4,x� > 0

ϕ5

�ϕ5,x� > 0

1-bit Measurements

[illustration: P. Boufounos]
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Intuitively ...

ϕ1

ϕ2

ϕ3

x

x on S2, M vectors {ϕi : 1 � i � M}

�ϕ1,x� > 0
�ϕ2,x� > 0
�ϕ3,x� � 0

ϕ4

�ϕ4,x� > 0

ϕ5

�ϕ5,x� > 0 Smaller and smaller 
when M increases

1-bit Measurements

...

[illustration: P. Boufounos]

{u : sign (Φu) = sign (Φx)}
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Intuitively ...

ϕ1

ϕ2

ϕ3

x

x on S2, M vectors {ϕi : 1 � i � M}

�ϕ1,x� > 0
�ϕ2,x� > 0
�ϕ3,x� � 0

ϕ4

�ϕ4,x� > 0

ϕ5

�ϕ5,x� > 0 Smaller and smaller 
when M increases

Characterize the width 
(particular x)

Objective

1-bit Measurements

...

[illustration: P. Boufounos]

{u : sign (Φu) = sign (Φx)}
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✴ Metrics of interest:

Starting point: Hamming/Angle Concentration

30

dH(u,v) =
1
M

�
i
(ui ⊕ vi) (norm. Hamming)

dang(x, s) =
1
π

arccos(�x, s�) (norm. angle)
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✴ Metrics of interest:

✴ Known fact: if 

Starting point: Hamming/Angle Concentration

31

Φ ∼ NM×N (0, 1)

dH(u,v) =
1
M

�
i
(ui ⊕ vi) (norm. Hamming)

dang(x, s) =
1
π

arccos(�x, s�) (norm. angle)

Let Φ ∼ NM×N (0, 1), A(·) = sign (Φ ·) ∈ {−1, 1}M and � > 0.
For any x, s ∈ SN−1, we have

PΦ

� �� dH

�
A(x), A(s)

�
− dang(x, s)

�� � �
�

� 1− 2 e−2�
2
M .

[e.g., Goemans, Williamson 1995]

Thanks to A( ), Hamming distance 
concentrates around vector angles!  

x
s

random plane

ϕ
+− .
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Binary    Stable Embedding

✴

32

� (B�SE)

A mapping A : RN → BM is a binary �-stable embedding (B�SE) of order
K for sparse vectors if

dang(x, s)− � � dH(A(x), A(s)) � dang(x, s) + �

for all x, s ∈ SN−1 with x± s K-sparse.
kind of “binary restricted (quasi) isometry”
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Binary    Stable Embedding

✴ Corollary : for any algorithm with output      
jointly K-sparse and consistent                       ,  

✴ If limited binary noise, d ang still bounded
✴ If not exactly sparse signals (but almost), d ang still bounded

33

� (B�SE)

A mapping A : RN → BM is a binary �-stable embedding (B�SE) of order
K for sparse vectors if

dang(x, s)− � � dH(A(x), A(s)) � dang(x, s) + �

for all x, s ∈ SN−1 with x± s K-sparse.

x∗

(i.e., A(x∗) = A(x))

dang(x,x∗) � 2�!

kind of “binary restricted (quasi) isometry”
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B�SE existence?
Let Φ ∼ NM×N (0, 1), fix 0 � η � 1 and � > 0. If

M � 4
�2

�
K ln(N) + 2K ln( 50

� ) + ln( 2
η )

�
,

then Φ is a B�SE with Pr > 1− η.

Yes! 

                              M = O(�−2K lnN)
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B�SE existence?
Let Φ ∼ NM×N (0, 1), fix 0 � η � 1 and � > 0. If

M � 4
�2

�
K ln(N) + 2K ln( 50

� ) + ln( 2
η )

�
,

then Φ is a B�SE with Pr > 1− η.

Yes! 

                              M = O(�−2K lnN)
Proof sketch:

1) Generalize

PΦ

� �� dH

�
A(x), A(s)

�
− dang(x, s)

�� � �
�

� 1− 2 e
−2�

2
M

.

to

PΦ

� �� dH

�
A(u), A(v)

�
− dang(x, s)

�� � � + (π

2 D)1/2
δ

�
� 1− 2 e

−2�
2
M

.

for u,v in a D-dimensional neighborhood of width δ around x and s resp.

2) Covers the space of ”K-sparse signal pairs” in RN by

O
��

N

K

�
δ−2K

�
= O(( eN

Kδ2 )K) neighborhoods.

3) Apply Point 1 with union bound, and “stir until the proof thickens”

x
s

random plane

ϕ
+−

δ
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Hope for better bounds? ... Limited

36

B�SE consistency “width”:

� = O
�
(K/M)(1−α)/2 (lnN)1/2

�
, for any α > 0.
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Hope for better bounds? ... Limited

37

B�SE consistency “width”:

� = O
�
(K/M)(1−α)/2 (lnN)1/2

�
, for any α > 0.

Forgetting stability, we can prove:

A(x) = A(s) ⇒ �x− s� � O
�
(K/M)1−α lnN

�
for two unit K-sparse signals

(i.e., dH = 0)
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Hope for better bounds? ... Limited

38

B�SE consistency “width”:

� = O
�
(K/M)(1−α)/2 (lnN)1/2

�
, for any α > 0.

Forgetting stability, we can prove:

A(x) = A(s) ⇒ �x− s� � O
�
(K/M)1−α lnN

�

Lower bound: Worst case distance btw two unit K-sparse vectors:

�worst = Ω
�
K/M)

for two unit K-sparse signals

(i.e., dH = 0)

[P. Boufounos]
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1-bit CS Reconstructions ?
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✴ [Boufounos, Baraniuk 2008]

Numerical Reconstructions:

40

x∗ = arg min
u

�u�1 s.t. diag(A(x)) Φu > 0 and �u�2 = 1

+ other iterative methods: Matching Sign pursuit (MSP), Restricted-Step Shrinkage (RSS)



ELEN FNRS Contact Group "Wavelets and applications" - Dec. 21, 2011

✴ [Boufounos, Baraniuk 2008]

✴ Binary Iterative Hard Thresholding (BIHT):

Numerical Reconstructions:

41

x∗ = arg min
u

�u�1 s.t. diag(A(x)) Φu > 0 and �u�2 = 1

with ηK(u) = best K-term approximation of u

(proj. K-sparse signal set)

Given ys = A(x) and K, set l = 0, x0 = 0:

Stop when dH(y
s
, A(xl+1)) = 0 or l = max. iter.

al+1 = xl + τ
2ΦT

�
ys −A(xl)

�
,

xl+1 = ηK(al+1), l← l + 1

(“gradient” towards consistency)

minimizes

(τ > 0 controls gradient descent)

J (x) = �[ diag(ys)(Φx)]−�1, with (λ)− = (λ− |λ|)/2

(connections with ML hinge loss, 1-bit classification)

+ other iterative methods: Matching Sign pursuit (MSP), Restricted-Step Shrinkage (RSS)
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Simulations

42
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BIHT

N = 1000, K = 10
Bernoulli-Gaussian model
normalized signals
1000 trials

Matching Sign pursuit (MSP) 
Restricted-Step Shrinkage (RSS)
Binary Iterative Hard Thresholding (BIHT)

(tested also for signals sparse in DCT, wavelets, ...)
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Simulations: Testing B�SE

M/N = 0.7 M/N = 1.5

dang(x,x
∗)− �(M) � dH(A(x), A(x∗)) � dang(x,x

∗) + �(M)
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Final Comparison: CS vs bits/meas.
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Conclusion & Discussion
✴ Keeping sign of random measurements distinguishes sparse vectors (      )
✴ Algorithms exist to reconstruct good signal estimate (up to amplitude)
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✴ Stability and Convergence Guarantees? 
Recent success in [Y. Plan, R. Vershynin, 2011A] 
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Conclusion & Discussion
✴ Keeping sign of random measurements distinguishes sparse vectors (      )
✴ Algorithms exist to reconstruct good signal estimate (up to amplitude)

✴ Stability and Convergence Guarantees? 
Recent success in [Y. Plan, R. Vershynin, 2011A] 

✴ Generalization (Gaussian mean width) [Y. Plan, R. Vershynin, 2011B]

✴ What is the link btw Sensing Matrix and Quantization?
✴ Ex: a Bernoulli (+/- 1) matrix don’t work in 1-bit CS!!! 

[Y. Plan, R. Vershynin, 2011] 
✴ Quantization is a sampling of meas. distribution... 

✴ Linking          to        - quantization (1 bit) ? 
✴ Short BIHT matlab code available: 

http://perso.uclouvain.be/laurent.jacques/index.php/Main/BIHTDemo
✴ 1-Bit CS Resource Page: http://dsp.rice.edu/1bitCS
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