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Brief introduction to CS



Compressed Sensing...

.1 a nutshell:

Generalize Dirac/Nyquist sampling;:
1°) ask few (linear) questions
about your informative signal

2°) and recover it differently (non-linearly)”
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Compressed Sensing...
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Compressed Sensing...

M questions Sensing method Signal
0
Sparsity
() 0 .
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Compressed Sensing...
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Compressed Sensing...

0 00 00000 0
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Two K-sparse signals ¢, ' € Y := {u : ||ul|o := |suppu| < K}

For many random constructions of ® (e.g., Gaussian, Bernoulli, structured)
and “M 2 Klog(N/K)”, with high probability,

Geometry of ®(X k)
~ (Geometry of X



Compressed Sensing...

0 00 0 0000 __0
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Two K-sparse signals ¢, ' € Y := {u : ||ul|o := |suppu| < K}

For many random constructions of ® (e.g., Gaussian, Bernoulli, structured)
and “M 2 Klog(N/K)”, with high probability,

Geometry of ®(X k)
~ (Geometry of X

Pr~br = ax~a \

observations true signals
R 'z,‘)‘
®(Xk)

For all z, 2’ € ¥ and 0 < p < 1, Restricted Isometry Property
(1 =p)llz—2'||> < 3;[|®x — 22'||> < (1 +p)[|z — /|
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Compressed Sensing...

Two low-complexity signals @, x" € K (e.g., low-rank data )

For many random constructions of ® (e.g., Gaussian, Bernoulli, structured)
and “M 2 Cx”, with high probability,

low-complexity set

Geometry of ®(K)

~ Geometry of K b Q \

Pr~dbr < xr~a

And generalization to many N

- ; v
other low-complexity sets! B(K)

For all z, &’ € K and 0 < p < 1, Restricted Isometry Property
(1 =p)llz—2'||> < 3;[|®x — 22'||> < (1 +p)[|z — /|
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Compressed Sensing...

Use non-linear reconstruction methods: e.g.,

Basis Pursuit DeNoise [Chen, Donoho, Saunders, 98]

A

x € arg min ||ul|; s.t. [[y — Pul| < e
u € RN

If \/LM@ respects the Restricted Isometry Property (RIP)
Then, if p < /2 — 1 [Candes, 09]

(with f <g = de¢>0: f<cg)

Robustness: vs sparse deviation + noise.

lo— &) < Lozl + -5
——— S
eo(K): error of the model noise

hidden constant
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The Power of Random Projections

At the heart of CS: random projections!

as realized by random sensing matrices
For instance:

random sub-Gaussian ensembles (e.g., Gaussian, Bernoulli)

e.g., Gaussian: ® € RM*N  with ®;; ~ia N(0,1)
or (I)z'j ~iid 11 (eq. pI‘Ob), Tt

or structured sensing matrices (less memory, fast computations):

random Fourier/Hadamard ensembles (e.g., for CT, MRI);

_ ; nxn —> - !

e.q., ® = Fq, with F' € C QZK
— LA

il

and random Q) C {1, --- ,n}, |2 =m
random convolutions, spread-spectrum (e.g., for imaging), ...

-

(see, e.g., |[Foucart, Rauhut, 2013])
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CS Applications

Rice Single Pixel Camera

Low-cost, fast, sensitive
optical detection

PD

A/D
Compressed, encoded
image data sent via RF
Image encoded by DMD DMD for reconstruction
and random basis <<
RNG L DSP
Revr

[Duarte, Davenport, Takbar, Laska, Sun, Kelly, Baraniuk, 08]

MRI & Fourier Imaging

Full sampled 5% subsampled Subsample map

[Roman, Adcock, Hansen, 14 + Siemens]

Radio-Astronomy

[Carrillo, McEwen, Wiaux, 12]

< v\ o

Magnetic
Resonance Imaging
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Quantizing Compressive Sensing theory



What is quantization?’

Generality:

Intuitively: “Quantization maps a bounded continuous

domain to a set of finite elements (or codebook)”

# Bounded o © ° cq)2
% domain J o 4
codebook

Qlul € {qy,q4," -}
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Quantizing Compressed Sensing?

In a perfect noiseless system: . .
e.g., basis pursuit,

RM dgbz ) greedy methods, ...
RY Pa y = Q(®x) RY .
r— |CS|— Q]| -------- > |Decoder| —— &

Finite codebook = & # x

1.e., impossibility to encode continuous domain

in a finite number of elements.

Objective: Minimize || — x||
given a certain number of:

bits, measurements, or bits/meas.

Best tradeoff? Large M and low bits/meas. or low M and high resolution?

17



Examples of quantization

Out p—

Simple example: rounding/flooring*
Q[N = 6|2 ] € 6Z | m

for some resolution 6 > 0 and Q(u) = (Q(u1), O(usz), -+ ).

Out

Even simpler: 1-bit quantizer 1

QA =sign )\ € £1 n

(with lost of the global measurement amplitude)

*. Also known as a special case of Pulse Code Modulation - PCM, or Memoryless Scalar Quantization - MSQ

18



Examples of quantization

Out
Simple example: rounding/flooring 5 0
Q[N =6[3] € 0Z In
for some resolution ¢ > 0 and Q(u) = (Q(u1), Q(uz),---).
Even simpler: 1-bit quantizer B Out
QA =sign )\ € £1 o m
Non-regular: square wave (or LSB) Out
Q[N :=6(] 2] mod 2) M
In

Other examples (not covered here): Non-uniform scalar quantizer,
vector quantizer, XA quantizer /noise shaping, ...

(see the works of, e.g., [Gunturk, Lammers, Powell, Saab, Yilmaz, Goyal])
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First attempts [Candes, Tao, 04]

Quantization is like a noise! (e.g., for Q[N =6|2| € 6Z)

y=09(Px) =Pxr+n, withn=9(Px)— dPx.
and ||n||* = O(m 6°)

Problem:

e.g., for BPDN, with

AN

& € arg min |jul/; s.t. ||y — Pul| < e
u € RN

m

= ||z —2|| S 5 = 0(0) does not decay if m increases!

counterintuitive”?
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First attempts [Candes, Tao, 04]

Causes of the problem:

1 ' Solution is not consistent (i.e., we lost something):

| @2 — yl| small

# Q(Px) =1y

2 ' Quantization is discontinuous (it does not “dither”)

dx: ||le— x| > C
J—rr |Plan, Vershynin, 13] [LJ, 17]

(e.g., if (I)ij < {:

1))

1 & 2 = two main ingredients in this talk

21



The power of consistency 1

Former insight: [Thao, Vetterli, 94]

Quantization of oversampled, band-limited signals
|l — x| = O(0/R)

with R the oversampling rate (i.e., M in CS),
and & an estimate that is both band-limited (same prior)
and consistent (non-linear reconstruction needed)

— Quantization threshold

A2 . 0.0 >~ ° NN analog inpent signal : Xt)
8 —r—r——— — * guantized signal C
LA

* estimate P,[C) obtsined
from linear decoding of C

projection of the estimate
AR . P,{C) on C(o

| remaining error

N. Thao and M. Vetterli, “Deterministic analysis of oversampled A /D conversion and decoding
improvement based on consistent estimates,” Signal Processing, IEEE Transactions on Signal
Processing, vol. 42, no. 3, pp. 519-531, 1994.
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The power of dithering

Inject a pre-quantization, uniform ‘“noise”:

(Given a resolution 0 > 0,

a scalar quantizer Q(-) := §|-/d],
a “well-behaved” ® (see later),

and a dithering & € R™ with §;

atl(0,8) =

The good boy!

A(z) = Q(®x + &)

Motivation? E:Q(u+ &) =u

=

N

= A(x) = ®x if M large

A

-

-
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The power of dithering 2

Inject a pre-quantization, uniform ‘“noise”:

(Given a resolution 0 > 0,

a scalar quantizer Q(-) := 6|-/6],

a “well-behaved” ® (see later),

and a dithering & € R™ with &; ~iq U([0,6])

A(z) = Q(®x + &)

Motivation? E:Q(u+ &) =u
= A(x) = ®x if M large

Interesting quantized (discrete) random embedding

of low-complexity signals!

24



Properties of dithered, quantized
random projections



Parenthesis:

How to measure the dimension
of a low-complexity set?

26



Parenthesis:

Gaussian (Mean) Width (GW):
Let X C R", g ~N(0,1,),

w(K) = Eg supgex [(x, 9)]

S Examples:
N - w?(K) < log|K
T W@ <n
o w? (X NB") < klog(n/k)
N wi (M, NBE™) S rn
s w?(UL1K:) < log T + max; w? (K)

27



A Control of the “consistency width”

A

low complexity set IC

(e.g., sparse signals,

>
low-rank matrix,

compressible signals, ...)

28



A Control of the “consistency width”

Signals u s.t.
Q] u+ &) = cst.

V

Ol(¢1 uw+&)/9)

A

vy
901}/ !

>
/

/
/

29



A Control of the “consistency width”

Signals u s.t.

Q] u+ &) = cst. }
Q(‘P;’U/ + &2) = cst.

30



A Control of the “consistency width”

T
Y1
Consistency P = )
cell in KC T
P M

Signals u s.t.

Alu) = Q(®u+¢&) =y
for some y € §ZM

31



A Control of the “consistency width”

' T
oo o
o2 P =
|1 — x| < €(M) .:El/' QOE;Z\}
e(M)

Consistency width:

e(M;K,0) = max |x; — x2| s.t. A(x1) = A(x2)

L1,L2 EK
Size €(M) should decay for large M

32



A Control of the “consistency width”

Consistency T
cell in IC 1
.CBQ @ p— E
21— mall < (M) O T
P M

For @ a random (GGaussian matrix, with high probability,

LJ, 16], [LJ, 17
e(M) < Cyes M1/ b 10 R

For IC a structured set (e.g., sparse signals, low-rank matrices)
¢g=1, Cxs=1+6wKNB")?* x log factors,
otherwise, for a bounded set,

g=14, Cks= (39

Open problem:

Extension to RIP matrices?
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A CW for consistent reconstruction

Let us take K = Cs = {u €¢ RY : ||ul|; < V5, ||ul| <1} & g € X, NBY

x* € argmin ||ul|; s.t. || Pu=Dag| < (BPDN)
uceRN

A(u) = A(xg), u € BY. (CoBP)

— .
e~

convex
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A CW for consistent reconstruction

Let us take K = Cs = {u €¢ RY : ||ul|; < V5, ||ul| <1} & g € X, NBY

r* € argmin ||u|; s.t. A(u) = A(xy), u € BY. (CoBP)

uERN
lz*|| <1 and [|z*||; < [lzollr < Vs
= x* € C,

Moreover A(x™) = A(xg) (consistency)
= ||l = xo|| < e(M;Cs,9)
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A CW for consistent reconstruction

Let us take K = Cs = {u €¢ RY : ||ul|; < V5, ||ul| <1} & g € X, NBY

r* € argmin ||Jul/; s.t. A(u) = A(xg), u € B". (CoBP)
u€eRN

-0.5

K-sparse signals with

random (Gaussian sensing 15te-

N = 2048, K = 16,
B=3, M/K € [8,128]
20 trials per points

1082 IE1|$0 - " “

6 6.5

log, M/K
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A CW for consistent reconstruction

Let us take K = Cs = {u €¢ RY : ||ul|; < V5, ||ul| <1} & g € X, NBY

r* € argmin ||Jul/; s.t. A(u) = A(xg), u € B". (CoBP)
u€eRN

= g
K-sparse signals with
random Gaussian sensing _ s
8
N = 2048, K = 16, é
B =3, M/K € [8,128] 2

20 trials per points

'3 3.5 4

* 4.5 5 5.5
Can be extended to other gauge/ log, M/K

atomic norms (e.g., nuclear norm)

[Moshtaghpour, LJ, Cambareri, Degraux, De Vleeschouwer, 17]
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15 QuaﬂtiZiﬂg the RIP (approximate consistency)

Alz) := Q(®x +§)

38



15 QuantiZiﬂg the RIP (approximate consistency)

Alz) := Q(Px + &) # quantization frontiers separating x; and x-

A
' = # separating random hyperplanes oriented
]C D g and positioned according to (®, &)
‘ ' = a5 1A(z1) — A(z2)]1 > |1 — 2]

Hope: dithering sufficiently smoothen
discontinuities to allow for RIP matrices.
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15 Quantizing the RIP (approximate consistency)

Let K C RY be a structured set (e.g., sparse signals, low-rank matrices).
Let @ be a (¢1,/5)-RIP (¢, K — K) matrix, i.e.,
(1—e)flzl]* < Z(|Pzllf < (1+¢)|z]* Ve € K- K,

(e.g., Gaussian random matrix, circulant Gaussian random matrix for IC = ¥)
|Dirksen, Jung, Rauhut, 17]

Provided that M > e 2 Cx log(1 + é), (with Cxc > 0 an upper bound on w(K)?)
with probability exceeding 1 — C exp(—e?m),

(1= o)llxr — x| — ed < - [|A(®1) — A(z2) |1 < (14 )]l — 2| + €,
for all &1, xy € KN BY.

(3 other variants with ¢5//5 and standard RIP)

|ILJ, Cambareri, 17|
40



15 Quantizing the RIP (approximate consistency)

Let K C RY be a structured set (e.g., sparse signals, low-rank matrices).
Let @ be a (¢1,/5)-RIP (¢, K — K) matrix, i.e.,
(1—e)flzl]* < Z(|Pzllf < (1+¢)|z]* Ve € K- K,

(e.g., Gaussian random matrix, circulant Gaussian random matrix for IC = ¥)
|Dirksen, Jung, Rauhut, 17]

Provided that M > e 2 Cx log(1 + é), (with Cxc > 0 an upper bound on w(K)?)
with probability exceeding 1 — C exp(—e?m),

(1= e)llzy — @2fl — ded < LlA(@1) — Al@2) |y < (L+ €)l|lzy — @2 + 'ed,

for all &1, xy € KN BY.

In other words, we can potentially classify signals

from their quantized observations!

|ILJ, Cambareri, 17|
41



Classification in a quantized world
“The Rare Eclipse Problem on Tiles”



The Bi g Picture (an easy classification problem)

JC C R"” dataset o ( onial
| - o e.g., sparse signals,
Ci C K classes, 1 =1,2,. I : (-) low-rank matrices, R™)
-7 e N -
Yy K
/ | ! .
o Cq ' Separable (e.g., linearly)

Classify|C; U Cs]

(e.g., LDA, SVM, PCA,
K-Means, K-NN; ...)
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The Blg Picture (an easy classification problem)

K C R" dataset o ,
C. c IC classes. j — 1.0 o (e.g., sparse signals,
/ ! At L ; (-) low-rank matrices, R")
Non-Adaptive Separable (e.g., linearly)

Mapping
y = A(x) /

Classify[A(C1) U A(Cs) ?§7 Classify|C1 U Cs]

(e.g., LDA, SVM, PCA, (e.g., LDA, SVM, PCA,
K-Means, K-NN, ...) K-Means, K-NN, ...)

—

44



The Big Picture

JC C R" dataset
C;,CKclasses, 1 =1,2, ...

Non-Adaptive
Mapping

y = A(x)




The Big Picture

JC C R" dataset
C;CKclasses, i1 =1,2,...

Non-Adaptive

Mapping .
y =A(x) : ;
A A3 §
—= A

; -
A(C1)




The Rare Eclipse Problem (Linear case) 3

Problem (Rare Eclipse Problem (Bandeira et al. '14)).

Let C1,Co C R” : C1 N Co = () be closed convex sets, ® ~N™*"7(0, 1).
Given m € (0, 1), find the smallest m so that

po = Pg[®C1 NPCr, =0] > 1 —n.
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The Rare Eclipse Problem (Linear case) 3

Problem (Rare Eclipse Problem (Bandeira et al. '14)).

Let C1,Co C R” : C1 N Co = () be closed convex sets, ® ~N™*"7(0, 1).
Given m € (0, 1), find the smallest m so that

po = Pa|[Vx1 € C1,Vx5 € Co, B(x1 — Xx2) 0] > 1 —m.
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The Rare Eclipse Problem (Linear case) 3

Problem (Rare Eclipse Problem (Bandeira et al. '14)).

Let C1,C> C R” : C; NCy = () be closed convex sets, ® ~ N™*"(0, 1).
Given n € (0, 1), find the smallest m so that, with C® = C; — Ca,

po = Pa[C®Nker® =0] = Ps[| S Nker®=0] >1—n.

S=RCONSE!
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The Rare Eclipse Problem (Linear case) 3

Problem (Rare Eclipse Problem (Bandeira et al. '14)).

Let C1,C> C R” : C; NCy = () be closed convex sets, ® ~ N™*"(0, 1).
Given n € (0, 1), find the smallest m so that, with C® = C; — Ca,

po = Pa[C®Nker® =0] = Ps[| S Nker®=0] >1—n.

. R.CS
S = (R,C®)NSr? D
Qs X
CO
eer ® Small GW:
o we = w(S)

50



The Rare Eclipse Problem (Linear case) 3

BMR ’14: “Gordon’s escape through a mesh” theorem

Proposition (Corollary 3.1 in BMR '14). (& really tight [Amelunxen et al, 13])

Given n € (0,1), if m > (w5 + /2l0g 1) + 1 then py = 1 =1

Example:

R, CE
1
2 T=T1+ T2 2
= [ = 2 Tz
& e —
r
o < ——/n.

ol



The Rare Eclipse Problem (alternate proof)

Restricted Isometry Property: (¢1,¢2)-RIP(K,¢)
Ve € K, (1 —¢) x| < ||[Px|1 < (1+¢) ||

|Schechtman, 06| [Plan, Vershynin, 14|

If S c S" ! and m 2 e ?w?(S)
(1-6 <VFulPuli <(1+¢)

for ® € R™*™ and ®;; ~jq9 N (0,1).

(note: extendable to subsets of B™,
e.g., compressible signals, [Xu, LJ, 18])

, then, w.h.p

*: e, P>1— Cexp(—ce’m

).

D2



The Rare Eclipse Problem (alternate proof)

Restricted Isometry Property: (¢1,42)-RIP(K,¢)
Ve e K, (1—¢)llz] < [|Px]i < (1+¢) |z

|Schechtman, 06| [Plan, Vershynin, 14|
If Sc S* ! and m > e 2w?(S), then, w.h.p,

(1-6 <5xlPuli <(1+¢)
for ® € R™*™ and ®;; ~jiq9 M(0,1).

Therefore:

For S = (RTC®)NS" 1, ifm > e 2w é, w.h.p*, (RIP@)

(1 —€)||xr — @2|] < /5 =[P — Paa|ls < (14 €)|l@1 — a2,
for all &1 € C; and all 5, € (5.

C Irl This result also explains REP,
1 e.g., with e = 1/2, (but less sharply)

*: d.e., P> 1— Cexp(—ce*m).
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The Rare Eclipse Problem “on Tiles"

Alx) := Q(Px + §)

with ® Gaussian random matrix,

Q) =4[5, & ~U([0,9]).

C1, Co, m and o0 such that
PIA(C) NA(C2) =] > 1 - ?

54



The Rare Eclipse Problem “on Tiles"

Given o := min,cc® ||z|| and wn = w((RLC7) NSP1).

Provided

m 2 (wé—l—n(s—z) (1+1log (1+ %2

o)

linear quantiz.

we have

proof artifact?

) | wéz log %

linear

PIAC) NAC) = 0] > 1 -1

’7‘2 | 52

e T er=)

Note: § > o is allowed (dithering effect!)
Note bis: m > n not specially bad (0Z™).

95



Proof sketch:
A. Embedding £ C R™ into 0Z™ with

A(y) = Qy +§)
0 0
If £ has small ¢;-Kolmogorov entropy, i.e., small

Hi(E,m) =log(ming |[{G : G C £ C S+ nBT}|)

Given € > 0, if m = e ?H; (&, Tg’“f: ), then, w.h.p*, for all y;,y, € £

and some ¢ > 0, (Pl)
oy = yolli —cde < LA (y) = Ayl < llyr — yalli + cde.

B. For £ = ®K and ® an (¢1,45)-RIP(K — K, ¢ < 1),
H1(E,2mn) < Ha(K,7) (P2)

with s is bounded for sets (cones, convex spaces, ...)

*: [LJ, Cambareri, '16] [Cambareri, Xu, LJ, ‘17]
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Proof sketch:

C. We apply A and B for £ = ®C_ so that (P1) holds if

m 2 € “nlog(1 - 2“;;6)2)

D. We rely on (RIPs), as in the linear case, i.e.,
For S = (RTC®)NS"* 1, ifm > eO_Qwé, w.h.p*,
(1 —eo)llxr — z2l| < /5 7 121 — P21 < (1+€o)llxr — z2,
for all x;1 € C; and all x5 € Cs.

E. For Tr1 € Cl, Lo € CQ,

LA (Pxq) — A (Px2)||1 = = || (21 — x2)|[1 — cde
> (2)1/2(1 — €)||@1 — @2|| — cde

T

> (2)1/2(1 — ¢p)o — cde.

T

A

Fixing € = w—:eo (to get similar conditions), and forcing
(2)Y/2(1 — €g)o — cde > cde > 0 (for separability) gives the

result (after solving for €p).
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Simulations: Digit dataset (from scikit learn)

10 handwritten digits, 8x8 pixels (n=64), samples/class = 12.
Training/Test sets = 50%/50%. 0= min  min |u— |

1,7:11%#7 u€C;,veC;
Classification: 5-NN Classifier.

Probability of error

29843

0.7 1

0.6 -

05 - 0=0 (~ 3 bits/meas.)

" = ;0 (= 5 bits/meas.)
= § = 0 (linear) (14 bits/meas.)

. PCA (14 bits/meas.)

0.2 -

0.1 -

0.0 -

-8 -7 -6 -5 -4 -3 -2 -1 0
log=m/n

Try some code out here: github.com/VC86/MLSPbox



Take-away messages

From CS to QCS (for scalar quantizers)
Importance of consistency and dithering

Reconstruction still possible in QCS
with decaying error as m increases

Learning/Classification possible in QCS domain

Open problems
CW for (other/all?) RIP matrices?
Quantizing non-linear embedding (clipping, ReLU)?

— J’I

0

L Q00
000

foeve
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Thank you for your attention!
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Backup slides



Quantized Random Sketching
of Datasets



Compressing a dataset?

N examples Large datasets means:

A Large memory required
g Slow learning algorithm
% (e.g., K-Means, (K)SVM, ...)
= &
>
: g Complexity:
o O(nN K) per iteration
Q

BUT extracted “knowledge” is “simple”
Dataset % L T C R™ g p

Do we really need all this data?
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Compressing a dataset?

N examples
N examples

e N
e e
Dimensionality
reduction
X: 1 1 PRl L I LR
R" — RP
L’yi c R¥

Dataset % L’ T, € Rn

Cl assical CS methods Compressed repres§ntation |
Preserves relevant information

Davenport et al. ’07-’10|, [Haupt et al. ’06]
Reboredo et al. ’13-"16],

Bandeira, Mixon, Recht 14| N can be VERY large (“blg datan)!

Constant number of examples ¥
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Compressing a dataset?

N examples

/_/—
Sketching
m
X = 1 Fl PN [ <X — EC
with m < Nn

Dataset % L»mz c R™ Sketch &2

Compressed representation v
Preserves relevant information v
Dataset summary = single vector

|[Keriven, Bourrier, Gribonval, Pérez, 16]

|Gribonval, Blanchard, Keriven, Traonmilin, 17]
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Compressing a dataset?

Dataset %
X ={x, - ,xzy} C RV

Prior information:

K
x; ~iid P =) _1_1 0Py

P

“Sparse”
Distribution

(e.g., Gaussian mixture)

|[Keriven, Bourrier, Gribonval, Pérez, 16]

|Gribonval, Blanchard, Keriven, Traonmilin, 17]
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Compressing a dataset?

Dataset % Sketch &

X ={x,---,zy} CRY 2x < information about P
Prior information: Observable? Not P but
K _ 1 N
x; ~iid P =) _1_1 0Py Px =« ijl Oz
+ o ® o
(I ° ¢ '.0.
“Sparse” 0'.'.'.'.: °e Px
o0 ...
Distribution ®e @ . o
---'----.-....-...-->
[ ° o : °
o 00O °
® o O
(e.g., Gaussian mixture) Objective: zx = A(Px) ~ A(P)
|[Keriven, Bourrier, Gribonval, Pérez, 16] We need to SketCh distributionsl

|Gribonval, Blanchard, Keriven, Traonmilin, 17]



Sketch of a distribution

Linear sketch on a distribution P:

Given m “frequencies” {wi, - ,wm},

A(P) = Equp [ ﬂm cCm

7=1
with Egoup(e™ #) = [, e7 #P(x)d"x for w € R".

= A = sampling the characteristic function of P
(4.€., its Fourier transform) over m frequencies

= A = generalized moments of P

Related to

Random Fourier Features
with partial Fourier sensing! [Rahimi, Recht, 07]

Reminiscent of CS
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Sketch of a distribution

Sketch of X7 (the only observable!)
A(Px) = % XL, [e7@i™ |~ eCm,

Properties:

oblivious of each involved signal (as expected)
easily updatable (from the sum, or pooling)

we “see” Px only over certain frequencies!

4 . o.o.o . A
d

ol

3

|

Az ) = Al >4 )
e HOP

Provided we take low-frequencies!

Select {w;}2; conveniently!
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Compressive K-Means

Px C = {Ck}szl

1 .
9 Po / X Py

Sketch matching: finding centroids & weights from

ming o ||2x — A( S5, arde, )|

Sparse mixture
of K Diracs

with w; ~iiq Abl1<g<m
and A a pdf promoting low-frequencies
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Compressive K-Means

Px C = {Ck}szl

1 N
9 Po .: x ’ P1

Sketch matching: finding centroids & weights from

ming o [|2x — A( S0, arde, ) ||

non-convex, infinite dimensional optimization.

At low frequencies,

L AR A A



Compressive K-Means
SSE(X, Cknm)/SSE(X, Cckm)

2 4 6 3 10 2 4 6 3 10

\

Success
Success

107" 10° 10’ 107" 10° 10"
m/(Kn) m/(Kn)

SSE(X,C) := Zfll miny, ||&; — ¢l
For large N (107), CKM up to 150 times faster than KM!

[Keriven, Tremblay, Traonmilin, Gribonval, 17]
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Quantizing Sketches?

Central
Node

infinite precision?

e Y5 = exp(—iPxs)

;
1]501'5‘@

L,
@0,&1.
Onp

1 N
ZX—NZ@:ﬁU?;
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Quantizing Sketches?

e y; = f(Px1 + &)

Central
< OLL010110101 .. y, = f(Pxy + &)
Node
0]0
‘%
1 Z N ' Square Wave
X — N i=1Yi y, = f(Pxs +£&) Function (LSB)
f(A)

Related to 1

Universal Quantization o ° + dltherlng f ‘ ‘ ‘ | \
|Boufounos, 12] 0
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Quantized Compressive K-Means

Pr[SSE(X,C) < 1.2SSE(X, Cxw)]

1

0.9

0861 Small discrepancy,

o7l about x 1.1

0.6 |-

Preliminary results
100 Trials, K =2

0.5
0.4
0.3

mm (' = Cckum

mm O = CqcoxM -

0.1}

0 1 1 [ | |
1 1.5 2 2.5 3 3.5 4 4.5 S 5.5 6

log, (m/nK)
Can be proved theoretically, thanks to the dithering

(ongoing work)



The Linear Case

Bandeira, Mixon, Recht '14 [BMR "14]




Parenthesis: Useful Tool

Gaussian Width (GW):
Let K C R"
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Parenthesis: Useful Tool

Gaussian Width (GW):
Let X C R", g ~N(0,1,),

w(K) = Eg supgex [(x, 9)]

S Examples:
N\~ . w?(K) S log K]
T W@ <n
o w? (X NB") < klog(n/k)
N wi (M, NBE™) S rn
s w?(UL1K:) < log T + max; w? (K)
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The Rare Eclipse Problem

Problem (Rare Eclipse Problem (Bandeira et al. '14)).

Let C1,Co C R” : C1 N Co = () be closed convex sets, ® ~N™*"7(0, 1).
Given m € (0, 1), find the smallest m so that

po = Pg[®C1 NPCr, =0] > 1 —n.
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The Rare Eclipse Problem

Problem (Rare Eclipse Problem (Bandeira et al. '14)).

Let C1,C> C R” : C; NCy = () be closed convex sets, ® ~ N™*"(0, 1).
Given 1 € (0, 1), find the smallest m so that

po = Ps|[Vx1 € C1,Vx5 € Co, P (X1 — Xx2) £ 0] > 1—m.
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The Rare Eclipse Problem

Problem (Rare Eclipse Problem (Bandeira et al. '14)).

Let C1,C> C R” : C; NCy = () be closed convex sets, ® ~ N™*"(0, 1).
Given 1 € (0, 1), find the smallest m so that, with C~ = C; — Cs,

po = Pgs[C  Nker® =0] = Pg[S Nker®=0] >1—mn.

£ o RLCT
S — (R+C_) HSS %& \
o
eer ® Small GW:
J wn = w(S)
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The Rare Eclipse Problem

BMR ’14: “Gordon’s escape through a mesh” theorem

Proposition (Corollary 3.1 in BMR '14). |
(& really tight [Amelunxen et al, 13])

Given n € (0,1), if m > (wn + \/ZIog 1)? 4+ 1 then pg > 1 -7

Example:
R.C™

[
Cr r=T1+ 7 2

\\1” = = M2 e

Co & C- e
Wn — UJ(S)
r
o < —/n.
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The Rare Eclipse Problem (alternative)

Restricted Isometry Property: (¢1,¢2)-RIP(K,¢)
Ve € K, (1 —¢) x| < ||[Px|1 < (1+¢) ||

|Schechtman, 06| [Plan, Vershynin, 14|
If Sc S" ! and m 2> e 2w?(S), then, w.h.p;

(1-6) < V5ml®Pullh <(1+¢)
for ® € R™*™ and ®;; ~jq9 N (0,1).

| ——

*: d.e., P> 1— Cexp(—ce*m). y



The Rare Eclipse Problem (alternative)

Restricted Isometry Property: (¢1,42)-RIP(K,¢)
Ve e K, (1—¢)llz] < [|Px]i < (1+¢) |z

|Schechtman, 06| [Plan, Vershynin, 14|
If Sc S* ! and m > e 2w?(S), then, w.h.p,

(1-¢) < VFmllPully < (1+¢)
for ® € R™*™ and ®;; ~jiq9 M(0,1).

Therefore:
For S = (RTC)NS* !, if m = e ?w?, w.h.p*, (Pl)

(1 —€)||xr — @2|] < /5 =[P — Paa|ls < (14 €)|l@1 — a2,
for all &1 € C; and all 5, € (5.

This result also explains REP!
(but less sharply)

*: d.e., P> 1— Cexp(—ce*m).
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The Quantized Case

This work




Quantized Dithered Random Mapping

(5 >0

Q() =0 L / (H (applied componentwise)

< ® is ({1, 05)-RIP(K,¢€)

_ and a dithering & € R™ with &; ~iiq U(|0, 0])

QDRM: [A(x) := Q(Px + &) ‘Ig—

a resolution),
scalar quantizer),

a well-behaved ®),

your friend)

(
(
(
(
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Quantized Random Embeddings

(i.e., only thanks to the dithering!)

Embedding £ C R™ into 0Z™ with
Aly) = Qy +¢)

0 0
If £ has small /;-Kolmogorov entropy, 7.e., small

H1(E,m) =log(ming |{SCE:S+nBY DEY})

*. [LJ, Cambareri, '16] [Cambareri, Xu, LJ, ‘17]
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Quantized Random Embeddings

(i.e., only thanks to the dithering!)

Embedding £ C R™ into 0Z™ with
Aly) = Qy +¢)

0 0
If £ has small /;-Kolmogorov entropy, 7.e., small

H1(E,m) =log(ming |{SCE:S+nBY DEY})

Given € > 0, if m = e 2H, (&, ”ff: ), then, w.h.p*, for all y,,y, € £

and some ¢ > 0, (PQ)

ly: — yoll1 — cde < A (y1) —A(yo)llh < |y — Yall1 + cde.

Remarks: o For & = ®K and ® an ({1,/5)-RIP(K — K,€ < 1),

1 (E,2mn) < Ha(K,m)  (P3)

o Ho is bounded for sets (cones, convex spaces, ...)

*. [LJ, Cambareri, '16] [Cambareri, Xu, LJ, ‘17]
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Conclusion

Take-away messages:

QDRMs: non-adaptive dimensionality reduction,
preserve geometry of datasets

Extension of BMR 14 to QDRMs,
with sample complexity loss in g—zn (quantiz. impact)

Future work:

Better bound and testable conditions for empirical tests.

Extension of result to RIP2> matrices, “fast’ random matrices

Extension of framework to other non-linear maps (ReLU?)
— applicability to D/CNN with random weights [Giryes et al. 15]7
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Simulations: Phase transition study

Empirical evaluation, crude lower bound (with no dithering),
128 trials, randomly drawn, n = 64, fixed r =1, 8 = {1, 2, ..., 512}
Represented: Phase transition level-curves (at 0.9).

P Separation P
4 ............................................
2 T T ] T T 1
I I [ Y B I I /
. I [ A Y I N Y BENR A
X I R B B B B B !
o &5 v 1 o e
L= I N Y T BV B
S ;. I
RS Lo 1IN
S| < ol /
I
i
o I e
— I A A
! ! l
VY N
—4 Vv
/ 7 7
v /7 7
7 ~
,s 72~
v _ 2,75 (C)
. y|’|,/l/’|||||||||||||
1

|092 52



The Bi g Picture (an easy classification problem)

How does the probability of error of a (generic) learning task
depend on m, A, K7 What if A is (mildly) non-linear?

Non-Adaptive [ C1

Mapping :
y = A(x) :

B —

V/ V
A(Cy1)

A(Co)

——

Related works on “(linear) compressive classification”:
Davenport et al. '07-'10, Haupt et al. '06,
Reboredo et al. '13-'16,

Bandeira, Mixon, Recht '14 [BMR "14]
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Prior information?

Example: sparse images in wavelets

ifje ... ... e.g.,

different sizes, scales

Representing this

1mage ...

\

5 \

different orientations
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Compressed Sensing...

Use non-linear reconstruction methods:

Basis Pursuit DeNoise |Chen, Donoho, Saunders, 98]

A

x € arg min ||ul|; s.t. ||y — Pul| < e

Sparsity promotion Level of “noise”
laelly = 2 luyl y=®x+n, [|n|| <
v Many toolboxes:

SPGL1, Numerical Tours, ...

+ Many other algorithms

00-“ball” (ex. greedy algorithms)

¢1-ball in high dimension
~ set of bounded sparse signals

*: with other norms for other low-complexity sets (e.g., nuclear norm)
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Properties of A(z) := 9(®x + &)

3. Quantizing the RIP (approximate consistency)

Quantization frontiers separating x; and x-
= separating random hyperplanes oriented
and positioned according to (®, &)
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Properties of A(z) := 9(®x + &)

3. Quantizing the RIP (approximate consistency)

A For @ a random Gaussian matrix,

Number of such hyperplanes
~ ‘331 — L9 ||

with high probability
> provided M > Cx e “log(1/d€?)

d" (e-g-a for Sparse Signals,

low-rank matrices)

Quantization frontiers separating x; and x-
= separating random hyperplanes oriented
and positioned according to (®, &)
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The Bi g Picture (an easy classification problem)
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The Bi g Picture (an easy classification problem)

JC C R" dataset
C;CKclasses, i1 =1,2,...

Non-Adaptive

Mapping .
y =A(x) : ;
A A §
—= A




First attempts [Candes, Tao, 04]
Quantization is like a noise! (e.g., for Q[N =6|2| € 6Z)

y=09(Px) =Pxr+n, withn=9(Px)— Px.
and HnH2 = O0(m (52)

Problem: (e.g., for € € argmin |ul; s.t. |[y — @u| <€, aka BPDN)

u RN

|z — || < v O(0) does not decay if m increases!

Remark: r-order XA quantizer + CS achieves anyway
|z — &|| = O(M~"+1/2),
and, in specific cases, exponentially decaying rate.
(see the works of, e.g., [Gunturk, Lammers, Powell, Saab, Yilmaz])

but, more complex implementation (memory)
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Properties of A(z) := 9O(®x + &)

2. For a non-consistent reconstruction method:

Given #fb RIP over Y4k, and & ~jiq U([0, d]),

for all @ € Yk observed through y = A(x) = Q(Px + &),

The Projected Back Projection estimate
Really simple

5 — 1! _
z=MNk(5® y), > (almost dumb)
1s such that reconstruction

iz — 2| < Cr(1+86) M2
with very high probability.

This extends to other low-complexity sets
and it works for any RIP matrix!
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Properties of A(z) := 9(®x + &)

2. For a non-consistent reconstruction method:

Example:

X: Rank-2 64 x 64-matrix (n = 642, vectorized)
®: Gaussian random matrix

Estimate: X := Hy(E @' (X))

HLUA = USV ) :=UH(Z)V .

SVD
\:a 4
/IJ\Z/Q \g\.: R A
SNy . B A 5 —
S A A
. ;\::"3\3 A
N\ J ‘\““;\ﬁ 5 —
2 RN Ao’ 0=1/2
| | | | s | | | | B /
8 8.5 9.5 10 10.5 11 11.5 12
logy M
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Compressed Sensing...

Use non-linear reconstruction methods:

Basis Pursuit DeNoise [Chen, Donoho, Saunders, 98]

A

x € arg min ||ul|; s.t. [[y — Pul| < e
u € RN

Level of “noise”
y=®x+n, n| <

Solved by many toolboxes:
SPGL1, Numerical Tours, CVX ...

+ Many other algorithms
(ex. greedy algorithms)

¢1-ball in high dimension
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Compressive Sampling and Quantization

Compressed sensing theorist says:

“Linearly sample a signal

at a rate function of

its intrinsic dimensionality”

Information theorist and sensor designer say:

“Okay, but I need to quantize/digitize my measurements!”
(e.qg., in ADC)

Integration?
QCS theory?

Theoretical Bounds
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The Rare Eclipse Problem (Linear case)

Adapted* from |Bandeira, Mixon, Recht 14|

i, Given 0 < n < land ® € R™”*" arandom Gaussian matrix, |

*: what is presented here is a special case. 104



