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1. Brief introduction to CS & QCS

000 RM? 3]
é i




Compressive sensing...

M questions Sensing method

Signal

Generalized Linear Sensing!

yi ~ (@, ) = pi x

. T e.g., to be realized
1< <M optically /analogically

Sparsity

Prior
(U =1d)

A signal

N in this

discrete
world



Compressive sensing...

M questions Sensing method  Signal
arsit
Ui ~ N DT
noise PI'IOI'
(U = 1d)
M
Generalized Linear Sensing! lo\ A <iona]
signa
_ T . .
Yi = <907/7 '/L‘> — P, L N in this
. T e.g., to be realized discrete
1 << M - -
>~ > optically /analogically world

Identifiability of & from ®x”?



Compressive sensing of sparse signals

Two K-sparse signals ¢, ' € Y := {u : ||ul|o := |suppu| < K}

For many random constructions of ® (e.g., Gaussian, Bernoulli, structured)
and “M 2 Klog(N/K)”, with high probability,

Geometry of ®(X k)

~ (Geometry of X

Pr~dbr < xr~a

observations true signals




Compressive sensing of [.c. signals

T'wo IOW‘COmpleXity Signals £, x’ c IC (e.g., low-rank data \

For many random constructions of ® (e.g., Gaussian, Bernoulli, structured)
and “M 2 Cx”, with high probability,

Geometry of ®(K) low-complexity set
~ Geometry of K P Q \
P

Pr~dbr < xr~a

°K) R

For instance: Cx = w?(K), the Gaussian mean width, i.e., O < Klog N/K

for k-sparse vectors, or Cx < rn for rank-r n X n matrices.
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Compressive sensing of [.c. signals

Two low—complexity Signals £, x cC (e.g., low-rank data \

For many random constructions of ® (e.g., Gaussian, Bernoulli, structured)
and “M 2 Cx”, with high probability,

Restricted Isometry Property (RIP)

Forall z, 2" € K and 0 < p < 1,

(1= plle—a'|* < 57 [Pz — a'|]* < (1 + p)||z — 2’|

Signal reconstruction: ensured with if RIP matrix and

with non-linear methods, e.g., Basis Pursuit DeNoise (BPDN),
greedy methods (MP, OMP, ...).



Random sensing matrix market?

Dense & unstructured sensing matrices:

random sub-Gaussian ensembles (e.g., Gaussian, Bernoulli)

N N5
" BN

e.g., Gaussian: ® € RM*N ' with &;; ~yq N(0,1)
or (I)z'j ~iid +1 (eq. pI'Ob),

Structured sensing matrices (less memory, fast computations):

random Fourier/Hadamard ensembles (e.g., for CT, MRI);

e.q., ® = Fq, with FF € C"*" Q e
and random Q) C {1, --- ,n}, |2 =m ':':::

random convolutions, spread-spectrum (e.g., for imaging),

(see, e.g., |Foucart, Rauhut, 2013])

or random sensing with natural processes
(e.g., LightOn!)




Quantizing CS?

RN
€Xr —>

CS

RM
b
—

Y

codebook

Q

Finite codebook = x # x

1.e., impossibility to encode continuous

domain in a finite number of elements.

4 Bounded Y

\, domain J

e.g., basis pursuit,

greedy methods, ...

Decoder

RN .
—

Objective: Minimize ||& — x||

measurements, or bits per meas.

o

d1
o o g2
o

o ¢

o @)

codebook

Q[’LL] c {q17QQ7 o }

given a certain number of bits,
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Examples of quantization

Out p—

Simple example: rounding/flooring*
Q[N = 6|2 ] € 6Z | m

for some resolution 6 > 0 and Q(u) = (Q(u1), O(usz), -+ ).

Out

Even simpler: 1-bit quantizer 1

QA =sign )\ € £1 n

(with lost of the global measurement amplitude)

*. Also known as a special case of Pulse Code Modulation - PCM, or Memoryless Scalar Quantization - MSQ
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Examples of quantization
Out

Simple example: rounding/flooring 5 0
Q[N =6[3] € 0Z In
for some resolution ¢ > 0 and Q(u) = (Q(u1), Q(uz),---).
Even simpler: 1-bit quantizer B Out
QA =sign )\ € £1 L m

Other examples (not covered here):

Non-regular, e.g., square wave (or LSB) Out

O\ =6(|3) mod2) —-HL

In

Non-uniform scalar quantizer, vector quantizer, XA quantizer/noise

shaping, ... (see the works of, e.g., [Gunturk, Lammers, Powell, Saab, Yilmaz, Goyal])

12



QCS, first attempt [Candes, Tao, 04)

Quantization is like a noise! (e.g., for Q] =6|2| € 6Z)

y=09(Px) =Pxr+n, withn=9(Px)— dPx.
and ||n||* = O(m 6°)

Problem: e.g., for BPDN,

|z — 2| < T = O(d) does not decay if m increases!

counterintuitive”?
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QCS, first attempt [Candes, Tao, 04)

Cause of the problem:

Quantization is discontinuous (it does not “dither”)

dx £ ' . Q(Px) = Q(Px’)
J_rr = [|lx —x| > C
(e.g., take ®;; € {1} and Q = sign)!
|Plan, Vershynin, 13| [LJ, 17]

Problem with too sparse signals!
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2. Quantized dithered random mapping




The power of dithering (anold trick, revisited)

Inject a pre-quantization, uniform ‘“noise”:
i.e., a dithering & € R™ with &; ~iyq U(]0,6]) (your friend)
T The good boy!

16



The power of dithering (anold trick, revisited)

Inject a pre-quantization, uniform ‘“noise”:
i.e., a dithering & € R™ with &; ~iyq U(]0,6]) (your friend)
T The good boy!

A(z) := Q(®x + &)| (DR

Motivation? EQ(u+ &) = u
= A(x) = ®x if M large

A A A

_H'ﬂ_'* n I /
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The power of dithering (anold trick, revisited)

Inject a pre-quantization, uniform ‘“noise”:
i.e., a dithering & € R™ with &; ~iyq U(]0,6]) (your friend)
T The good boy!

Alx) := Q(®x + £)| (@orM) @

Motivation? EQ(u+ &) = u

= A(x) = ®x if M large
Possibility to define
quantized dimensionality reduction/embedding!

18



2.1. Quantized Dimensionality Reduction



Control of the “consistency width”

A

low complexity set IC

(e.g., sparse signals,

>
low-rank matrix,

compressible signals, ...)

20



Control of the “consistency width”

Signals u s.t.
Q] u+ &) = cst.

V

Ol(¢1 uw+&)/9)

A

vy
901}/ !

>
/

/
/
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Control of the “consistency width”

Signals u s.t.

Q] u+ &) = cst. }
Q(‘P;’U/ + &2) = cst.
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Control of the “consistency width”

T
Y1
Consistency P = )
cell in KC T
P M

Signals u s.t.

Alu) = Q(®u+¢&) =y
for some y € §ZM

23



Control of the “consistency width”

Consistency T
cell in IC 901
~57 (I) — )
o — @l < (M) O T
P M

For @ a random (GGaussian matrix, with high probability,

LJ, 16|, [LJ, 17
(M) <C;C,5M_1/q [ I [ ]

with ¢ = 1 (for, e.g., sparse signals, low-rank matrices), or ¢ = 4 for convex sets.

Open problem:
Extension to RIP matrices!?
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QuaﬂtiZing the RIP (approximate consistency)

25



QuaﬂtiZing the RIP (approximate consistency)

Alz) = Q(®x + §)

\/
—' thanks to the ditherin
Buffon’s needle problem

_Lengthof — — ||z — o

E(intersections) o length

http://www.buffon.cnrs.fr

(In 1733)
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QuaﬂtiZing the RIP (approximate consistency)

Alz) := Q(Px + &) # quantization frontiers separating x; and x-
= # separating random hyperplanes oriented

and positioned according to (®, &)

A

= —=||A(z1) — Alx2)|1 ~ |21 — 2|

Hope: dithering sufficiently smoothen

E(intersections) o length

dlSCOﬂtlﬂUltleS tO aIIOW fOI‘ RIP matrl(}es http://www.buffon.cnrs.fr
(In 1733)
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QuaﬂtiZiﬂg the RIP (approximate consistency)

Let K C RY be a structured set (e.g., sparse signals, low-rank matrices).
Let @ be a (¢1,/5)-RIP (¢, K — K) matrix, i.e.,
(1—e)flzl]* < Z(|Pzllf < (1+¢)|z]* Ve € K- K,

(e.g., Gaussian random matrix, circulant Gaussian random matrix for X = Y )
|Dirksen, Jung, Rauhut, 17]
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QuaﬂtiZiﬂg the RIP (approximate consistency)

Let K C RY be a structured set (e.g., sparse signals, low-rank matrices).
Let @ be a (¢1,/5)-RIP (¢, K — K) matrix, i.e.,
(1—e)flzl]* < Z(|Pzllf < (1+¢)|z]* Ve € K- K,

(e.g., Gaussian random matrix, circulant Gaussian random matrix for X = Y )
|Dirksen, Jung, Rauhut, 17]

Provided that M > e 2 Cx log(1 + é), (with Cxc > 0 an upper bound on w(K)?)
with probability exceeding 1 — C exp(—e?m),

(1= e)llxr — x| — ed < - [|A(®1) — A(z2)|l1 < (14 €)fler — 2| + €,
for all &1, xy € KN BY.

(3 other variants with ¢5//5 and standard RIP)

|LJ, Cambareri, 17|
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QuaﬂtiZiﬂg the RIP (approximate consistency)

Let K C RY be a structured set (e.g., sparse signals, low-rank matrices).
Let @ be a (¢1,/5)-RIP (¢, K — K) matrix, i.e.,
(1—e)flzl]* < Z(|Pzllf < (1+¢)|z]* Ve € K- K,

(e.g., Gaussian random matrix, circulant Gaussian random matrix for X = Y )
|Dirksen, Jung, Rauhut, 17]

Provided that M > e 2 Cx log(1 + é), (with Cxc > 0 an upper bound on w(K)?)
with probability exceeding 1 — C exp(—e?m),

(1= e)llxr — x|l — ed < - l|A(®1) — A(z2)|l1 < (14 )]l — 2| + '€,
for all &1, xy € KN BY.

(3 other variants with ¢5//5 and standard RIP)

Dimensionality reduction!

° ° ?
Classification” [LJ, Cambareri, 17]
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2.2. Recovering low-complexity vectors
in QCS with any RIP matrix



The reconstruction problem
Q N Solution & {:oi gg:o} % N

JC IC .°00-°
Q)

Random Proj. @

32



Projected Back Projection (PBP)

QN %CI)TA(CB) %N
K — IC "ii% |z — & < ?
QO\ "
A

Algorithm:

PIC O %@T

O g g - »
RM — 5zM

i = Pr(H®TA®)) |

33



PBP Error Analysis

Limited projection property (LPD):
A respect the LPD(IC, @, v) if
= |(A(u), o) — (Pu, Pv)| < v, Yu,v e CNBY.

= How close A is from &

If ﬁ@ is RIP(Xox, €) & A is LPD(Zgk, @, ), then
|z — 2| < 2(e+ ).

(same result for, e.g., union of low-dimensional spaces, low-rank matrices,

and convex sets with square rooted error)
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PBP Error Analysis

Limited projection property (LPD):
A respect the LPD(IC, @, v) if
= |(A(u), o) — (Pu, Pv)| < v, Yu,v e CNBY.

= How close A is from P7

If ﬁ@ is RIP(Xox, €) & A is LPD(Zgk, @, ), then
|z — 2| < 2(e+ ).

(same result for, e.g., union of low-dimensional spaces, low-rank matrices,

and convex sets with square rooted error)

Question: Which matrices do satisfy the LPD?7 All RIP ones!

If & is RIP(Sqk, €) and
M 2> e ?Klog(N/K)log(l+ e 3)log(1/().

Y

then A respects LPD(Xox, ®,€) with Pr > 1 — (.

(extends to union of low-dimensional spaces, low-rank matrices, & convex sets)
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Error bound of PBP: benefit of dithering

Example: PBP reconstruction over K = 2} with partial DCT from dithered and
non-dithered quantized measurements

x cKNB" n=512k=4
® is a random partial DCT, & ~;iq U([O, d])

60 = 0.5 (diamond),d =1 ,0 = 2 (triangle)
0r 0r N
H—P\‘:AT~ = ~+ *.e.; ‘A
-0.5 0.5 S~. T -o
qL o— o TS~ T U=
! ! © — &~ o o
15k 15k T~ s ~.
g -2+ ? oL =< -
! | - —0
ﬁ 25 i 25
@ @
S S 7T
-3.5 3.5
4 4L
45 4.5
-5 1 1 1 1 I -5 1 1 1 1 I
6.5 7 7.5 8 8.5 9 6.5 7 7.5 8 8.5 9
logo m logy m
dithered quan. measurements non-dithered quan. measurements

Remark : thanks to dithering, reconstruction error decays as m increases.
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2.3. Classification in a quantized world

(caveat: in this part, M — m, N — n)



The Bi g Picture (an easy classification problem)

JC C R"” dataset o ( onial
| - o e.g., sparse signals,
Ci C K classes, 1 =1,2,. I : (-) low-rank matrices, R™)
-7 e N -
Yy K
/ | ! .
o Cq ' Separable (e.g., linearly)

Classify|C; U Cs]

(e.g., LDA, SVM, PCA,
K-Means, K-NN, ...)
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The Blg Picture (an easy classification problem)

K C R" dataset o ,
C. c IC classes. j — 1.0 o (e.g., sparse signals,
/ ! At L ; (-) low-rank matrices, R")
Non-Adaptive Separable (e.g., linearly)

Mapping
y = A(x) /

Classify[A(C1) U A(Cs) ?§7 Classify|C1 U Cs]

(e.g., LDA, SVM, PCA, (e.g., LDA, SVM, PCA,
K-Means, K-NN, ...) K-Means, K-NN, ...)

—
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The Big Picture

JC C R" dataset
C;,CKclasses, 1 =1,2, ...

Non-Adaptive
Mapping

y = A(x)




The Big Picture

JC C R" dataset
C;CKclasses, i1 =1,2,...

Non-Adaptive

Mapping .
y =A(x) : ;
A A3 §
—= A

; -
A(C1)




The Rare Eclipse Problem (Linear case) 3

Problem (Rare Eclipse Problem (Bandeira et al. '14)).

Let C1,Co C R" : C; N Cy = 0 be closed convex sets, &~ N™*"(0, 1).
Given n € (0, 1), find the smallest m so that

po = Pgs|®C1 NPCr, =0] >1—n.

Bandeira, Mixon, Recht '14 [BMR '14]

42



The Rare Eclipse Problem (Linear case) 3

BMR ’14: “Gordon’s escape through a mesh” theorem

Proposition (Corollary 3.1 in BMR '14). (& really tight [Amelunxen et al, 13])

Given n € (0,1), if m > (w5 + /2l0g 1) + 1 then py = 1 =1

Bandeira, Mixon, Recht '14 [BMR '14]

Example:

R, CE
r1
2 T=T1+ T2 2
= [ > MZ e
&/ e —_—
T
o < —/n.

43



The Rare Eclipse Problem “on Tiles"

Alx) := Q(Px + §)

with ® Gaussian random matrix,

Q) =4[5, & ~U([0,9]).

C1, Co, m and o0 such that
PIA(C) NA(C2) =] > 1 - ?

Idea: use the QRIP, i.e.,

S A(x1) — Az2) |1 = ||z — x2|

w.h.p.

44



The Rare Eclipse Problem “on Tiles"

Given o := min,cce ||z|| and wn = w((RLC7) NS*1).

Provided

mZ(wé

\

linear

we have

o)

quantiz.

+n25) (14 log (14 52

proof artifact?

) | wéz log %

linear

PIAC) NAC) = 0] > 1 -1

R —

’7‘2 | 52

e T er=)

Note: § > o is allowed (dithering effect!)
Note bis: m > n not specially bad (0Z™).
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Simulations: Digit dataset (from scikit learn)

10 handwritten digits, 8x8 pixels (n=64), samples/class = 12.
Training/Test sets = 50%/50%. 0= min  min |u—v|

1,7:11%#7 u€C;,veC;
Classification: 5-NN Classifier.

Probability of error

29843

0.7 1

0.6 -

05 - 0=0 (~ 3 bits/meas.)

" = ;0 (~ 5 bits/meas.)
= § = 0 (linear) (14 bits/meas.)

. PCA (14 bits/meas.)

0.2 -

0.1 -

0.0 -

-8 -7 -6 -5 -4 -3 -2 -1 0
log=m/n

Try some code out here: github.com/VC86/MLSPbox



Take-away messages

From CS to QCS (for scalar quantizers)
Importance of consistency and dithering

Reconstruction still possible in QCS
with decaying error as m increases

Learning/Classification possible in QCS domain

47



Take-away messages

From CS to QCS (for scalar quantizers)
Importance of consistency and dithering

Reconstruction still possible in QCS
with decaying error as m increases

Learning/Classification possible in QCS domain

Open problems
CW for (other/all?) RIP matrices?
Quantizing non-linear embedding (clipping, ReLU)?

— J’I

0

L Q00
000

foeve
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Thank you for your attention!
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