Time for dithering! Quantized random embeddings with RIP random matrices

Chunlei Xu, Vincent Schellekens, Amirafshar Moshtaghpour, Valerio Cambareri, Laurent Jacques

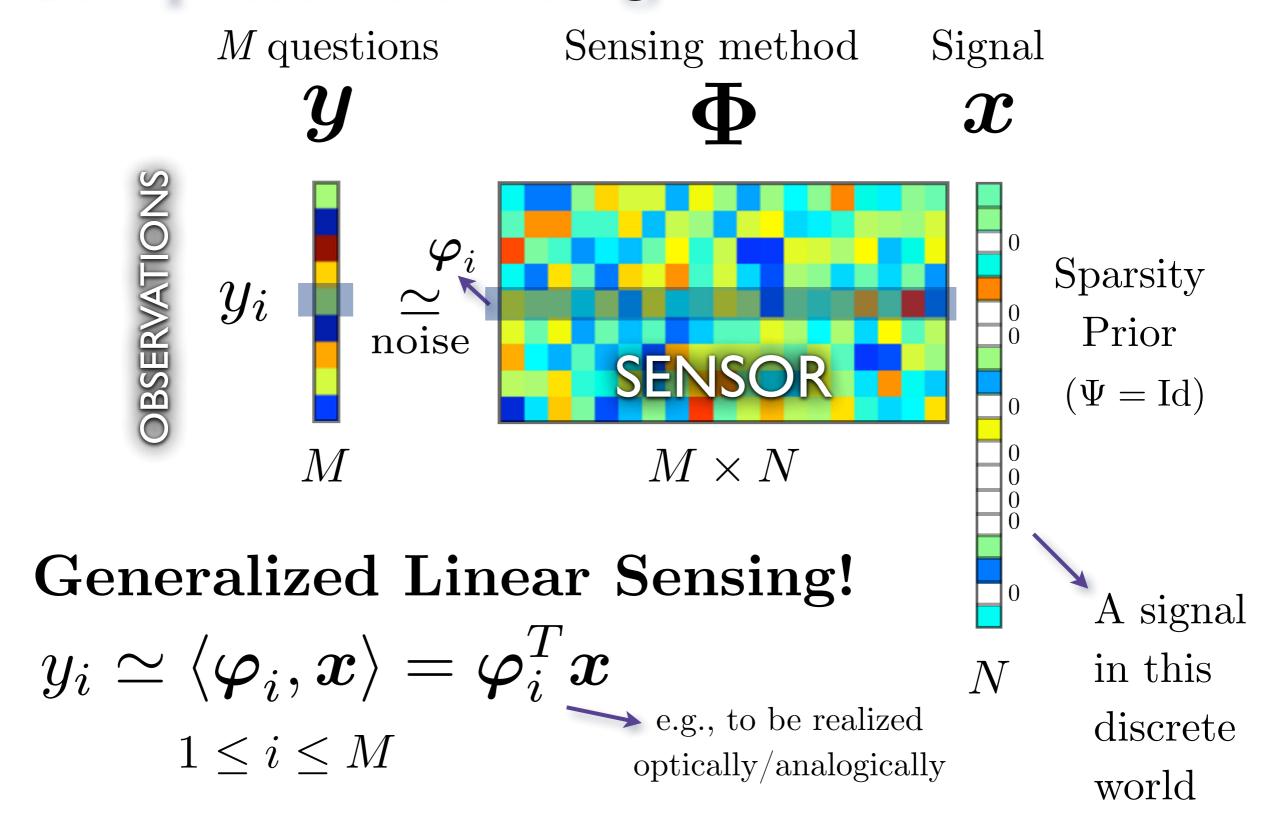
ICTEAM/ELEN, University of Louvain (UCL), Belgium

Outline

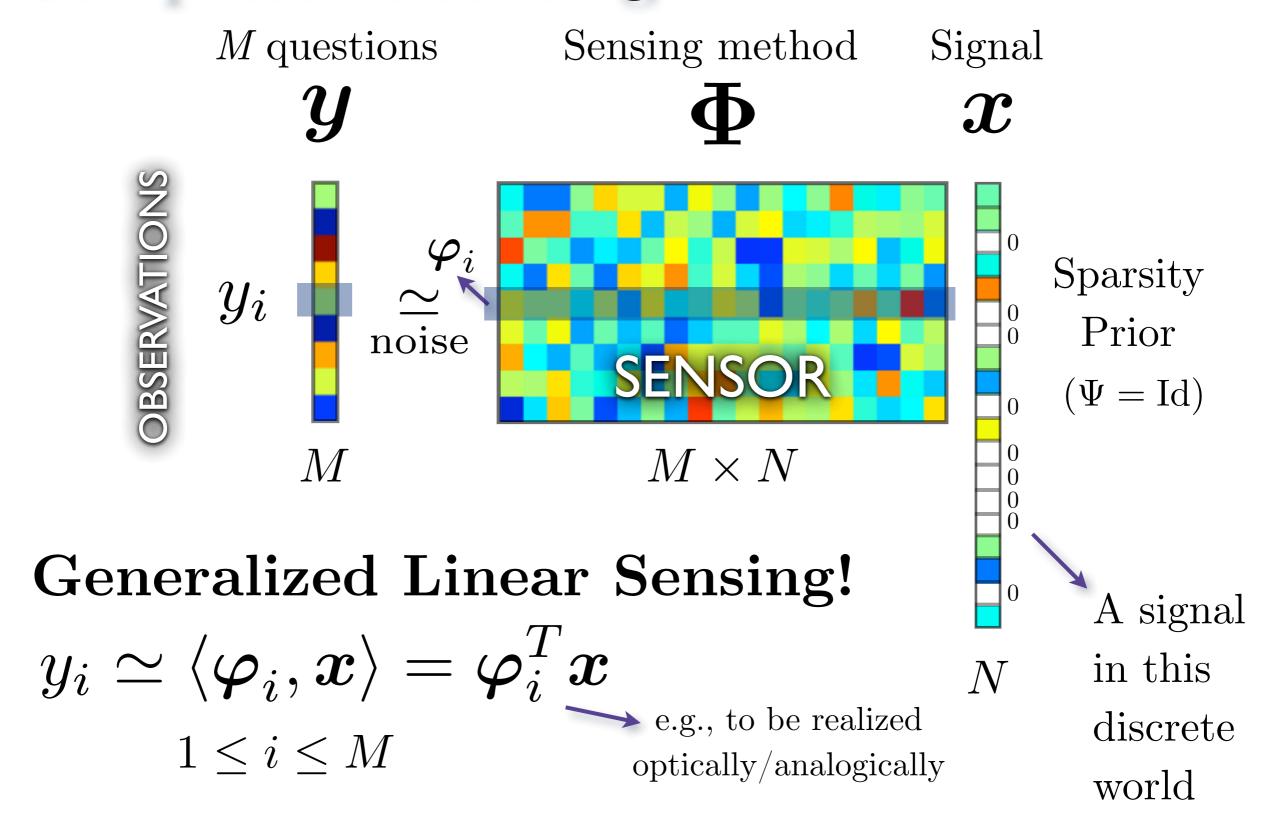
- ▶ 1. Brief introduction to
 - compressive sensing (CS)
 - & quantized CS (QCS)
- 2. Quantized dithered random mapping
 - Dimensionality reduction
 - Recovering low-complexity vectors in QCS with any RIP matrix
 - Classification in a quantized world
- Conclusion

1. Brief introduction to CS & QCS

Compressive sensing...



Compressive sensing...

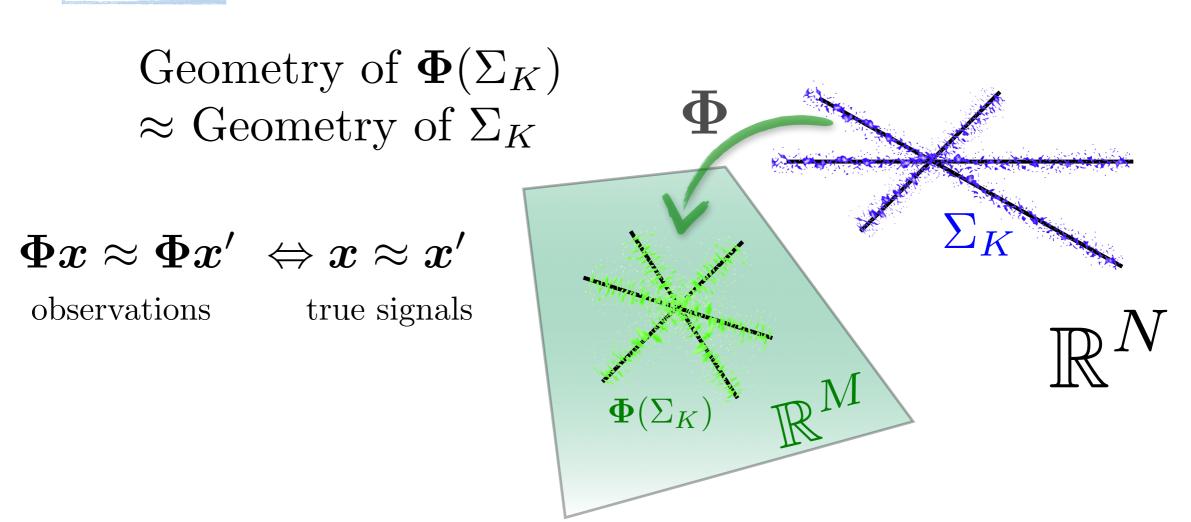


Identifiability of x from Φx ?

Compressive sensing of sparse signals

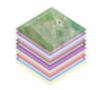
Two K-sparse signals $\boldsymbol{x}, \boldsymbol{x}' \in \Sigma_K := \{\boldsymbol{u} : \|\boldsymbol{u}\|_0 := |\operatorname{supp} \boldsymbol{u}| \leqslant K\}$

For many random constructions of Φ (e.g., Gaussian, Bernoulli, structured) and " $M \gtrsim K \log(N/K)$ ", with high probability,



Compressive sensing of l.c. signals

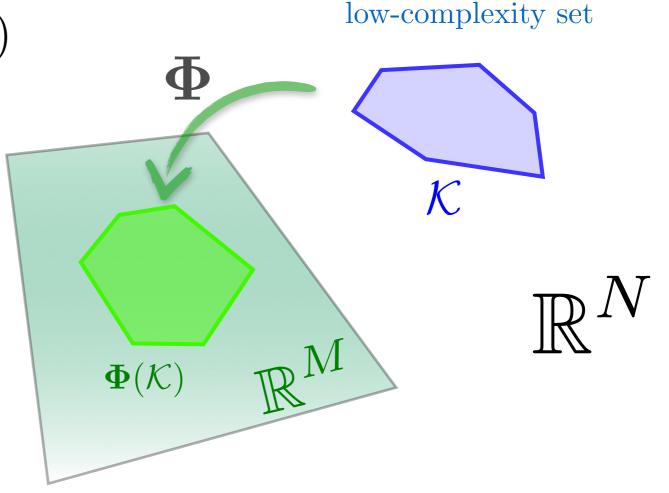
Two low-complexity signals $x, x' \in \mathcal{K}$ (e.g., low-rank data



For many random constructions of Φ (e.g., Gaussian, Bernoulli, structured) and " $M \gtrsim C_{\mathcal{K}}$ ", with high probability,

Geometry of $\Phi(\mathcal{K})$ \approx Geometry of \mathcal{K}

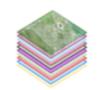
 $\Phi x pprox \Phi x' \Leftrightarrow x pprox x'$



For instance: $C_{\mathcal{K}} = w^2(\mathcal{K})$, the Gaussian mean width, i.e., $C_{\mathcal{K}} \lesssim K \log N/K$ for k-sparse vectors, or $C_{\mathcal{K}} \lesssim rn$ for rank- $r \ n \times n$ matrices.

Compressive sensing of l.c. signals

Two low-complexity signals $x, x' \in \mathcal{K}$ (e.g., low-rank data



For many random constructions of Φ (e.g., Gaussian, Bernoulli, structured) and " $M \gtrsim C_{\mathcal{K}}$ ", with high probability,

Restricted Isometry Property (RIP)

For all $\boldsymbol{x}, \boldsymbol{x}' \in \mathcal{K}$ and $0 < \rho < 1$,

$$|(1-\rho)||x-x'||^2 \le \frac{1}{M}||\Phi x - \Phi x'||^2 \le (1+\rho)||x-x'||^2$$

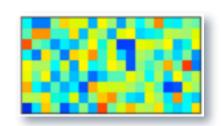
Signal reconstruction: ensured with if RIP matrix and with non-linear methods, e.g., Basis Pursuit DeNoise (BPDN), greedy methods (MP, OMP, ...).

Random sensing matrix market?

Dense & unstructured sensing matrices:

random sub-Gaussian ensembles (e.g., Gaussian, Bernoulli)

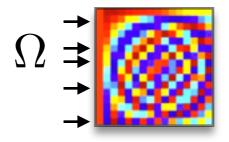
e.g., Gaussian:
$$\mathbf{\Phi} \in \mathbb{R}^{M \times N}$$
, with $\Phi_{ij} \sim_{\text{iid}} \mathcal{N}(0, 1)$ or $\Phi_{ij} \sim_{\text{iid}} \pm 1$ (eq. prob), \cdots



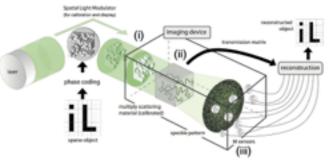
Structured sensing matrices (less memory, fast computations):

random Fourier/Hadamard ensembles (e.g., for CT, MRI);

e.g.,
$$\mathbf{\Phi} = \mathbf{F}_{\Omega}$$
, with $\mathbf{F} \in \mathbb{C}^{n \times n}$
and random $\Omega \subset \{1, \dots, n\}, |\Omega| = m$



- random convolutions, spread-spectrum (e.g., for imaging), ... (see, e.g., [Foucart, Rauhut, 2013])
- or random sensing with natural processes (e.g., LightOn!)



Quantizing CS?

$$x \xrightarrow{\mathbb{C}^N} \overline{\mathbb{C}} \xrightarrow{\mathbb{C}} \xrightarrow{\mathbb{C}} \overline{\mathbb{C}} \xrightarrow{\mathbb{C}} \xrightarrow{\mathbb{C}}$$

Finite codebook $\Rightarrow \hat{x} \neq x$

i.e., impossibility to encode continuous domain in a finite number of elements.

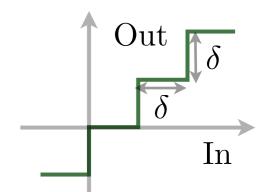
Objective: Minimize $\|\hat{\boldsymbol{x}} - \boldsymbol{x}\|$ given a certain number of bits, measurements, or bits per meas.

$$\mathbb{R}^M$$
 Bounded q_1 q_2 q_2 q_3 q_4 q_5 q_6 q_6 q_8 q_8

Examples of quantization

Simple example: rounding/flooring*

$$\mathcal{Q}[\lambda] = \delta \lfloor \frac{\lambda}{\delta} \rfloor \in \delta \mathbb{Z}$$

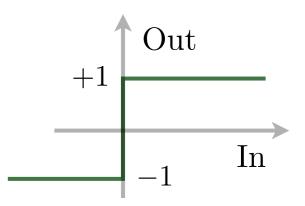


for some resolution $\delta > 0$ and $Q(\mathbf{u}) = (Q(u_1), Q(u_2), \cdots)$.

Even simpler: 1-bit quantizer

$$Q[\lambda] = \operatorname{sign} \lambda \in \pm 1$$

(with lost of the global measurement amplitude)

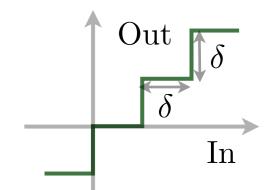


^{*:} Also known as a special case of Pulse Code Modulation - PCM, or Memoryless Scalar Quantization - MSQ

Examples of quantization

Simple example: rounding/flooring

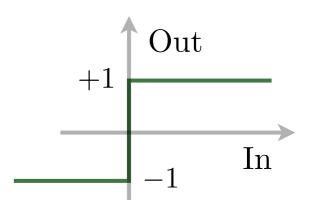
$$\mathcal{Q}[\lambda] = \delta \lfloor \frac{\lambda}{\delta} \rfloor \in \delta \mathbb{Z}$$



for some resolution $\delta > 0$ and $\mathcal{Q}(\boldsymbol{u}) = (\mathcal{Q}(u_1), \mathcal{Q}(u_2), \cdots)$.

Even simpler: 1-bit quantizer

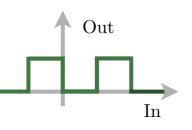
$$Q[\lambda] = \operatorname{sign} \lambda \in \pm 1$$



Other examples (not covered here):

Non-regular, e.g., square wave (or LSB)

$$Q[\lambda] := \delta(\lfloor \frac{\lambda}{\delta} \rfloor \mod 2)$$



Non-uniform scalar quantizer, vector quantizer, $\Sigma\Delta$ quantizer/noise shaping, ... (see the works of, e.g., [Gunturk, Lammers, Powell, Saab, Yilmaz, Goyal])

QCS, first attempt [Candès, Tao, 04]

Quantization is like a noise! (e.g., for $\mathcal{Q}[\lambda] = \delta \lfloor \frac{\lambda}{\delta} \rfloor \in \delta \mathbb{Z}$)

$$y = Q(\Phi x) = \Phi x + n$$
, with $n = Q(\Phi x) - \Phi x$.
and $||n||^2 = O(m \delta^2)$

Problem: e.g., for BPDN,

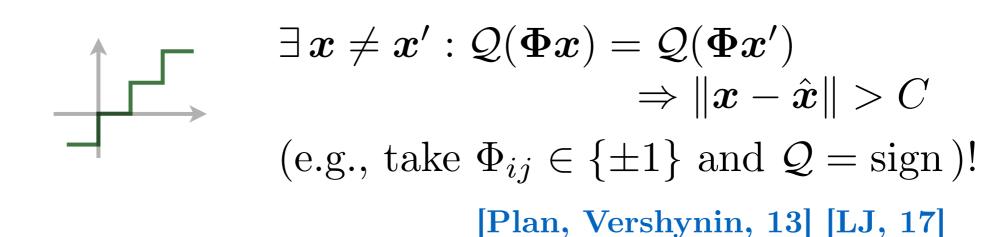
 $\|\boldsymbol{x} - \hat{\boldsymbol{x}}\| \lesssim \frac{\epsilon}{\sqrt{m}} = O(\delta)$ does not decay if m increases!

counterintuitive?

QCS, first attempt [Candès, Tao, 04]

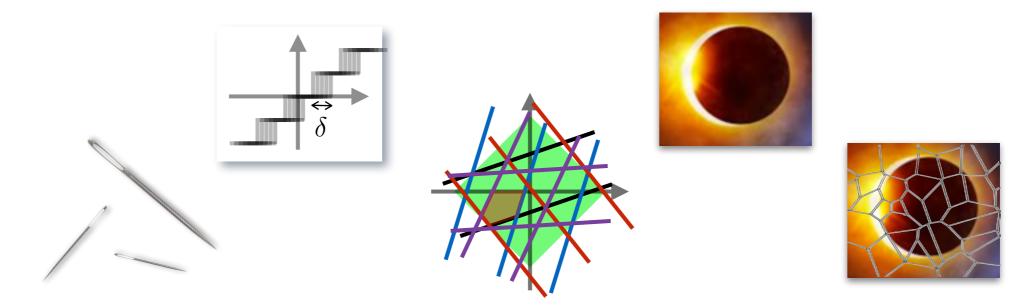
Cause of the problem:

Quantization is discontinuous (it does not "dither")



Problem with too sparse signals!

2. Quantized dithered random mapping



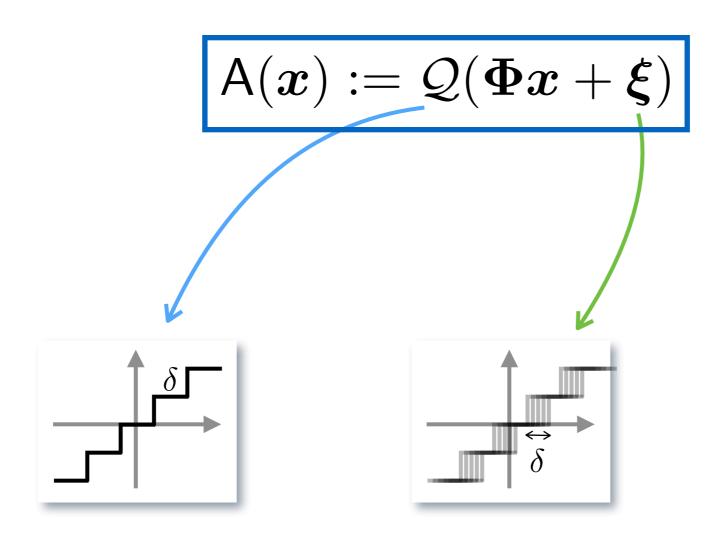
The power of dithering

(an old trick, revisited)

Inject a pre-quantization, uniform "noise":

i.e., a dithering $\boldsymbol{\xi} \in \mathbb{R}^m$ with $\xi_j \sim_{\text{iid}} \mathcal{U}([0, \delta])$ (your friend)

→ The good boy!



The power of dithering

(an old trick, revisited)

Inject a pre-quantization, uniform "noise":

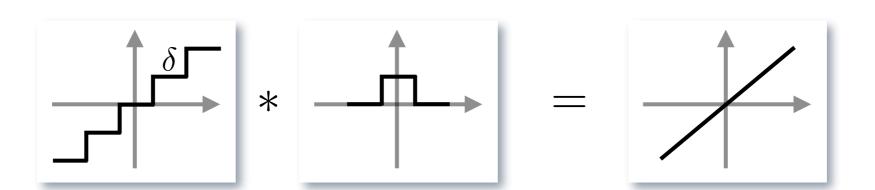
i.e., a dithering $\boldsymbol{\xi} \in \mathbb{R}^m$ with $\xi_j \sim_{\text{iid}} \mathcal{U}([0, \delta])$ (your friend)

> The good boy!

$$\mathsf{A}(oldsymbol{x}) := \mathcal{Q}(oldsymbol{\Phi} oldsymbol{x} + oldsymbol{\xi})$$

(QDRM)

Motivation? $\mathbb{E}_{\boldsymbol{\xi}} \mathcal{Q}(\boldsymbol{u} + \boldsymbol{\xi}) = \boldsymbol{u}$ $\Rightarrow \mathsf{A}(\boldsymbol{x}) \approx \boldsymbol{\Phi} \boldsymbol{x} \text{ if } M \text{ large}$



The power of dithering

(an old trick, revisited)

Inject a pre-quantization, uniform "noise":

i.e., a dithering
$$\boldsymbol{\xi} \in \mathbb{R}^m$$
 with $\xi_j \sim_{\text{iid}} \mathcal{U}([0, \delta])$ (your friend)

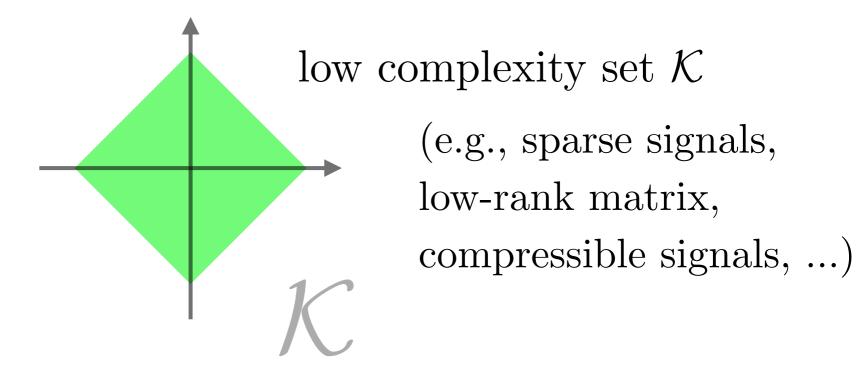
→ The good boy!

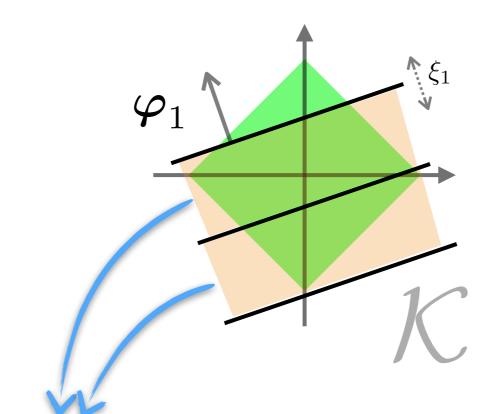
$$\mathsf{A}(oldsymbol{x}) := \mathcal{Q}(oldsymbol{\Phi} oldsymbol{x} + oldsymbol{\xi})$$

(QDRM)

- Motivation? $\mathbb{E}_{\boldsymbol{\xi}} \mathcal{Q}(\boldsymbol{u} + \boldsymbol{\xi}) = \boldsymbol{u}$ $\Rightarrow \mathsf{A}(\boldsymbol{x}) \approx \boldsymbol{\Phi} \boldsymbol{x} \text{ if } M \text{ large}$
- Possibility to define quantized dimensionality reduction/embedding!

2.1. Quantized Dimensionality Reduction

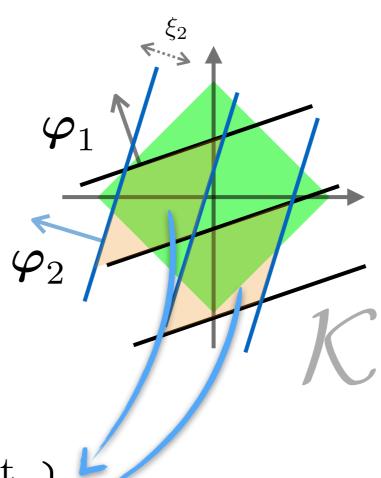




$$oldsymbol{\Phi} = egin{pmatrix} oldsymbol{arphi}_1^T \ dots \ oldsymbol{arphi}_M^T \end{pmatrix}$$

Signals u s.t.

$$\underbrace{\mathcal{Q}(\boldsymbol{\varphi}_{1}^{\top}\boldsymbol{u} + \boldsymbol{\xi}_{1}) = \text{cst.}}_{\delta \lfloor (\boldsymbol{\varphi}_{1}^{\top}\boldsymbol{u} + \boldsymbol{\xi}_{1})/\delta \rfloor}$$

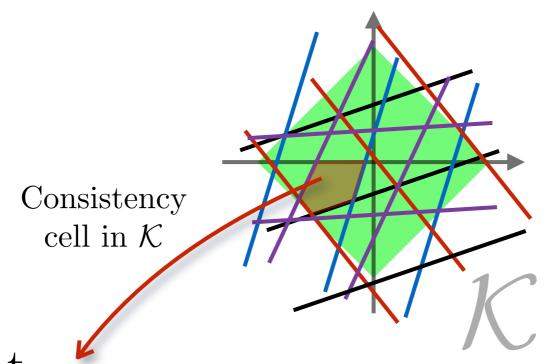


$$oldsymbol{\Phi} = egin{pmatrix} oldsymbol{arphi}_1^T \ dots \ oldsymbol{arphi}_M^T \end{pmatrix}$$

Signals u s.t.

$$\mathcal{Q}(\boldsymbol{arphi}_1^{ op} \boldsymbol{u} + \xi_1) = \text{cst.}$$

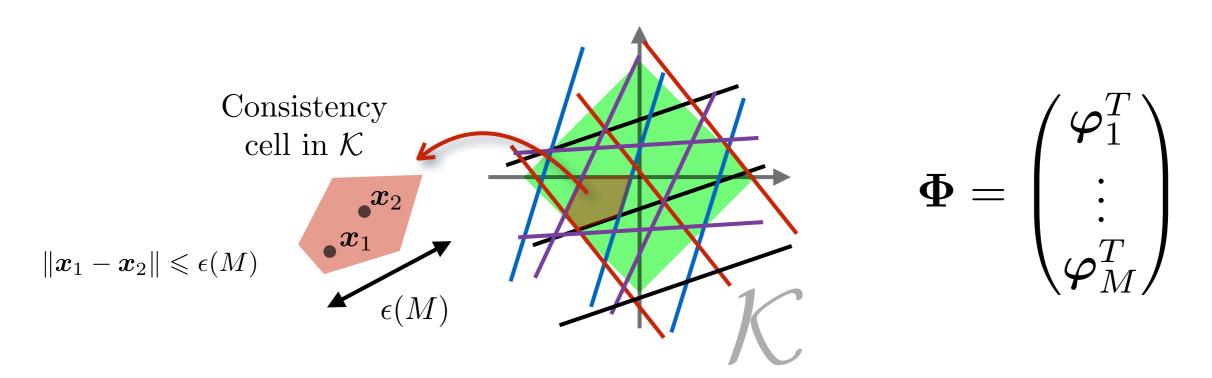
 $\mathcal{Q}(\boldsymbol{arphi}_2^{ op} \boldsymbol{u} + \xi_2) = \text{cst.}$



$$oldsymbol{\Phi} = egin{pmatrix} oldsymbol{arphi}_1^T \ dots \ oldsymbol{arphi}_M^T \end{pmatrix}$$

Signals u s.t.

$$\mathsf{A}(oldsymbol{u}) := \mathcal{Q}(oldsymbol{\Phi}oldsymbol{u} + oldsymbol{\xi}) = oldsymbol{y}$$
 for some $oldsymbol{y} \in \delta \mathbb{Z}^M$

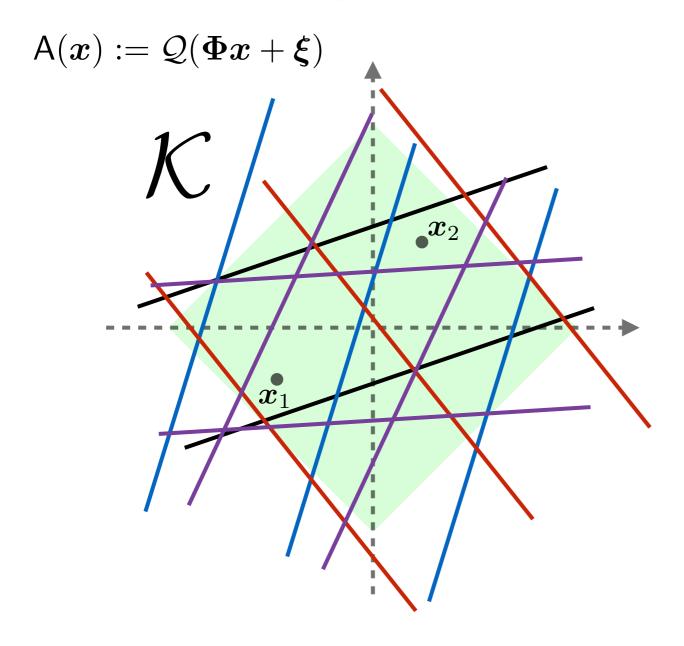


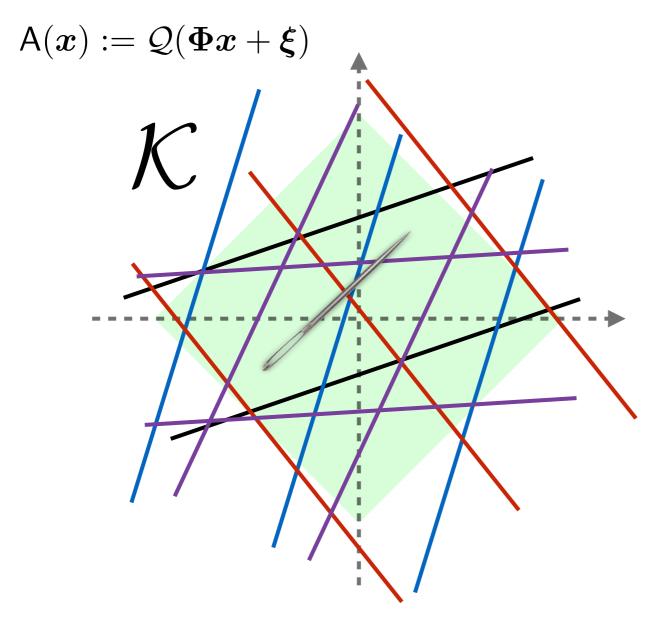
For Φ a random Gaussian matrix, with high probability,

$$\epsilon(M) \leqslant C_{\mathcal{K},\delta} M^{-1/q}$$
 [LJ, 16], [LJ, 17]

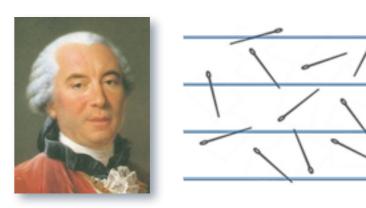
with q = 1 (for, e.g., sparse signals, low-rank matrices), or q = 4 for convex sets.

Open problem: Extension to RIP matrices?

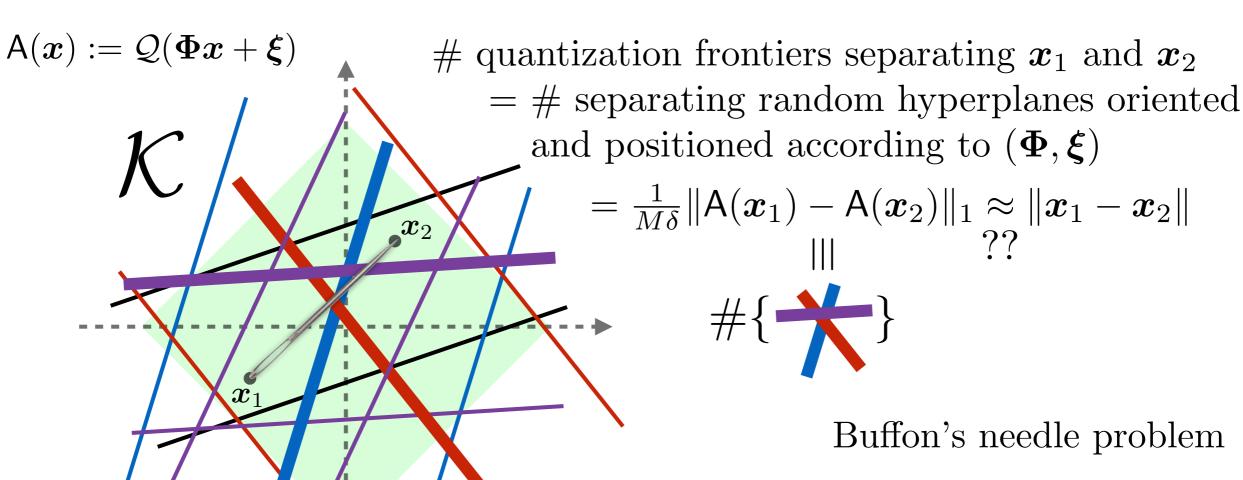




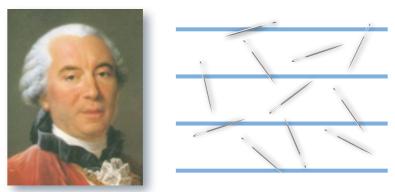
(thanks to the dithering) Buffon's needle problem



 $\mathbb{E}(\text{intersections}) \propto \text{length}$ http://www.buffon.cnrs.fr (In 1733)



Hope: dithering sufficiently smoothen discontinuities to allow for RIP matrices.



 $\begin{array}{c} \mathbb{E}(\mathrm{intersections}) \propto \mathrm{length} \\ \\ \frac{\mathrm{http://www.buffon.cnrs.fr}}{\mathrm{(In~1733)}} \end{array}$

Let $\mathcal{K} \subset \mathbb{R}^N$ be a structured set (e.g., sparse signals, low-rank matrices).

Let
$$\Phi$$
 be a (ℓ_1, ℓ_2) -RIP $(\epsilon, \mathcal{K} - \mathcal{K})$ matrix, *i.e.*,
$$(1 - \epsilon) \|\boldsymbol{x}\|^2 \leqslant \frac{c_{\Phi}}{m} \|\boldsymbol{\Phi}\boldsymbol{x}\|_1^2 \leqslant (1 + \epsilon) \|\boldsymbol{x}\|^2, \forall \boldsymbol{x} \in \mathcal{K} - \mathcal{K},$$

(e.g., Gaussian random matrix, circulant Gaussian random matrix for $\mathcal{K} = \Sigma_K$)
[Dirksen, Jung, Rauhut, 17]

Let $\mathcal{K} \subset \mathbb{R}^N$ be a structured set (e.g., sparse signals, low-rank matrices).

Let
$$\mathbf{\Phi}$$
 be a (ℓ_1, ℓ_2) -RIP $(\epsilon, \mathcal{K} - \mathcal{K})$ matrix, *i.e.*,
$$(1 - \epsilon) \|\mathbf{x}\|^2 \leqslant \frac{c_{\mathbf{\Phi}}}{m} \|\mathbf{\Phi}\mathbf{x}\|_1^2 \leqslant (1 + \epsilon) \|\mathbf{x}\|^2, \forall \mathbf{x} \in \mathcal{K} - \mathcal{K},$$

(e.g., Gaussian random matrix, circulant Gaussian random matrix for $\mathcal{K} = \Sigma_K$)
[Dirksen, Jung, Rauhut, 17]

Provided that $M \gtrsim \epsilon^{-2} C_{\mathcal{K}} \log(1 + \frac{1}{\delta \epsilon})$, (with $C_{\mathcal{K}} > 0$ an upper bound on $w(\mathcal{K})^2$) with probability exceeding $1 - C \exp(-\epsilon^2 m)$,

$$(1 - \epsilon) \| \boldsymbol{x}_1 - \boldsymbol{x}_2 \| - c' \epsilon \delta \leqslant \frac{1}{m} \| \mathsf{A}(\boldsymbol{x}_1) - \mathsf{A}(\boldsymbol{x}_2) \|_1 \leqslant (1 + \epsilon) \| \boldsymbol{x}_1 - \boldsymbol{x}_2 \| + c' \epsilon \delta,$$

for all $\boldsymbol{x}_1, \boldsymbol{x}_2 \in \mathcal{K} \cap \mathbb{B}^N$.

 $(\exists \text{ other variants with } \ell_2/\ell_2 \text{ and standard RIP})$

Let $\mathcal{K} \subset \mathbb{R}^N$ be a structured set (e.g., sparse signals, low-rank matrices).

Let
$$\mathbf{\Phi}$$
 be a (ℓ_1, ℓ_2) -RIP $(\epsilon, \mathcal{K} - \mathcal{K})$ matrix, *i.e.*,
$$(1 - \epsilon) \|\mathbf{x}\|^2 \leqslant \frac{c_{\mathbf{\Phi}}}{m} \|\mathbf{\Phi}\mathbf{x}\|_1^2 \leqslant (1 + \epsilon) \|\mathbf{x}\|^2, \forall \mathbf{x} \in \mathcal{K} - \mathcal{K},$$

(e.g., Gaussian random matrix, circulant Gaussian random matrix for $\mathcal{K} = \Sigma_K$)
[Dirksen, Jung, Rauhut, 17]

Provided that $M \gtrsim \epsilon^{-2} C_{\mathcal{K}} \log(1 + \frac{1}{\delta \epsilon})$, (with $C_{\mathcal{K}} > 0$ an upper bound on $w(\mathcal{K})^2$) with probability exceeding $1 - C \exp(-\epsilon^2 m)$,

$$(1 - \epsilon) \| \boldsymbol{x}_1 - \boldsymbol{x}_2 \| - c' \epsilon \delta \leqslant \frac{1}{m} \| \mathsf{A}(\boldsymbol{x}_1) - \mathsf{A}(\boldsymbol{x}_2) \|_1 \leqslant (1 + \epsilon) \| \boldsymbol{x}_1 - \boldsymbol{x}_2 \| + c' \epsilon \delta,$$

for all $\boldsymbol{x}_1, \boldsymbol{x}_2 \in \mathcal{K} \cap \mathbb{B}^N$.

 $(\exists \text{ other variants with } \ell_2/\ell_2 \text{ and standard RIP})$

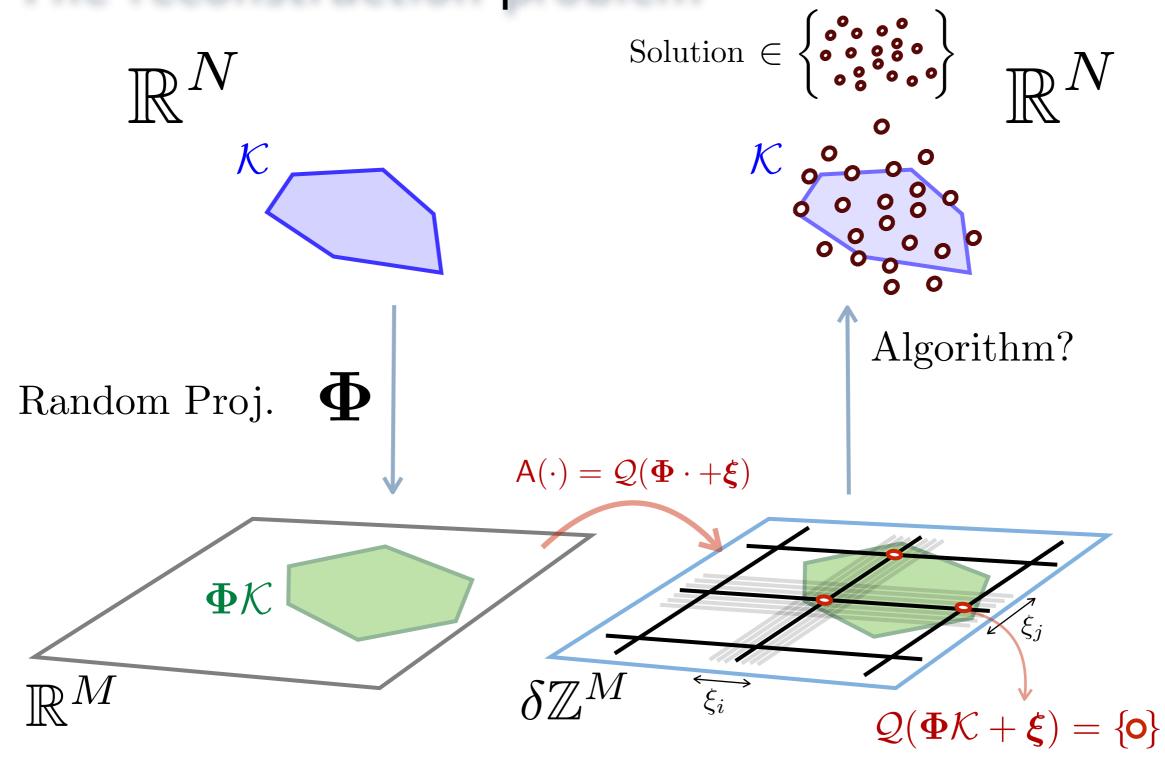
Dimensionality reduction!

Classification?

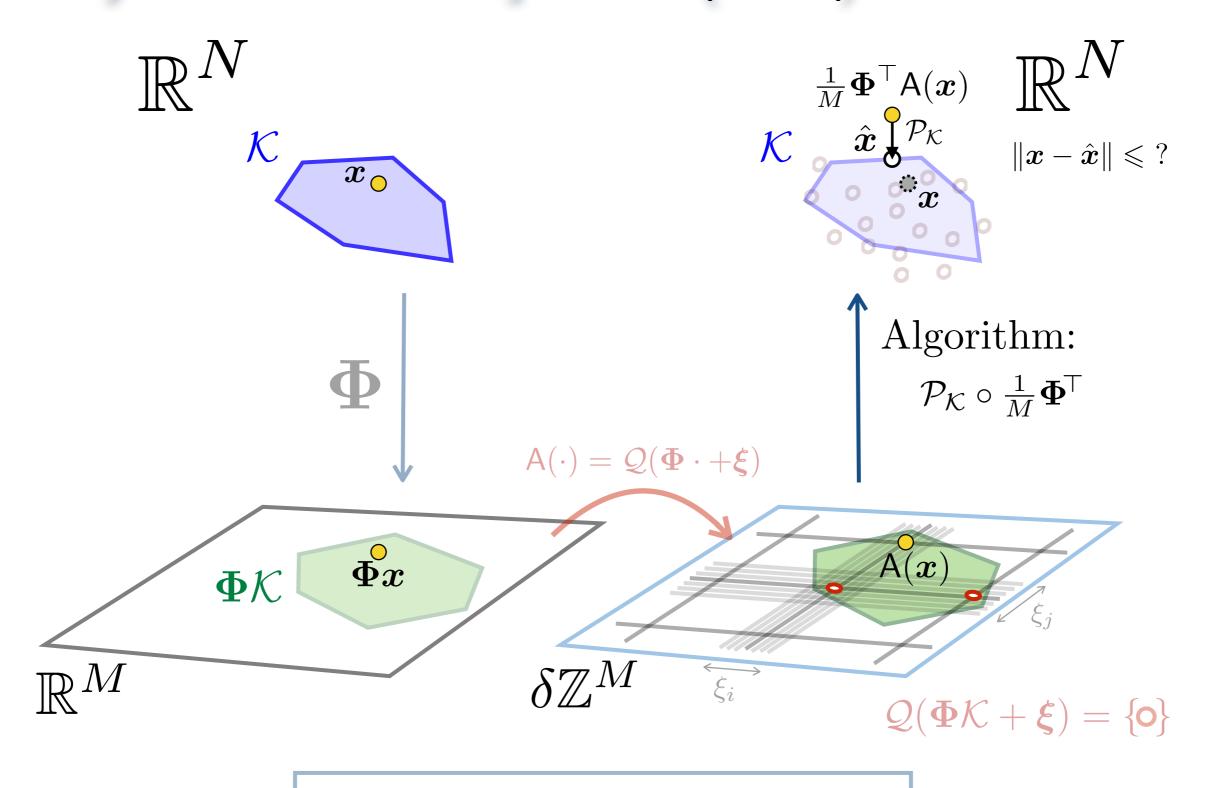
[LJ, Cambareri, 17]

2.2. Recovering low-complexity vectors in QCS with any RIP matrix

The reconstruction problem



Projected Back Projection (PBP)



$$\hat{\boldsymbol{x}} = \mathcal{P}_{\mathcal{K}}(\frac{1}{M}\boldsymbol{\Phi}^{\top}\mathsf{A}(\boldsymbol{x}))$$

(1st iteration of other potential methods)

PBP Error Analysis

Limited projection property (LPD):

A respect the LPD($\mathcal{K}, \mathbf{\Phi}, \nu$) if

$$\frac{1}{M} |\langle \mathsf{A}(\boldsymbol{u}), \boldsymbol{\Phi} \boldsymbol{v} \rangle - \langle \boldsymbol{\Phi} \boldsymbol{u}, \boldsymbol{\Phi} \boldsymbol{v} \rangle| \leq \nu, \ \forall \boldsymbol{u}, \boldsymbol{v} \in \mathcal{K} \cap \mathbb{B}^{N}.$$

$$\equiv \text{How close A is from } \boldsymbol{\Phi}$$

If
$$\frac{1}{\sqrt{M}}\mathbf{\Phi}$$
 is RIP(Σ_{2K}, ϵ) & A is LPD($\Sigma_{2K}, \mathbf{\Phi}, \nu$), then $\|\mathbf{x} - \hat{\mathbf{x}}\| \leq 2(\epsilon + \nu)$.

(same result for, e.g., union of low-dimensional spaces, low-rank matrices, and convex sets with square rooted error)

PBP Error Analysis

Limited projection property (LPD):

A respect the LPD(\mathcal{K}, Φ, ν) if

$$\frac{1}{M} |\langle \mathsf{A}(\boldsymbol{u}), \boldsymbol{\Phi} \boldsymbol{v} \rangle - \langle \boldsymbol{\Phi} \boldsymbol{u}, \boldsymbol{\Phi} \boldsymbol{v} \rangle| \leq \nu, \ \forall \boldsymbol{u}, \boldsymbol{v} \in \mathcal{K} \cap \mathbb{B}^{N}.$$

$$\equiv \text{How close A is from } \boldsymbol{\Phi}?$$

If
$$\frac{1}{\sqrt{M}}\mathbf{\Phi}$$
 is RIP (Σ_{2K}, ϵ) & A is LPD $(\Sigma_{2K}, \mathbf{\Phi}, \nu)$, then $\|\mathbf{x} - \hat{\mathbf{x}}\| \leq 2(\epsilon + \nu)$.

(same result for, e.g., union of low-dimensional spaces, low-rank matrices, and convex sets with square rooted error)

Question: Which matrices do satisfy the LPD? All RIP ones!

If
$$\mathbf{\Phi}$$
 is $\mathrm{RIP}(\Sigma_{2K}, \epsilon)$ and

$$M \gtrsim \epsilon^{-2} K \log(N/K) \log(1 + \epsilon^{-3}) \log(1/\zeta),$$

then A respects LPD($\Sigma_{2k}, \Phi, \epsilon$) with Pr $\geq 1 - \zeta$.

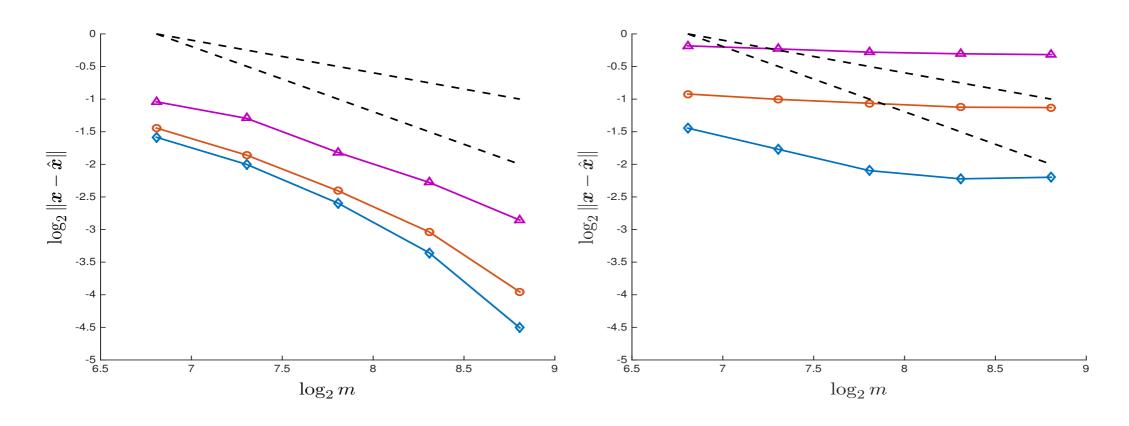
Error: $O(\frac{\sqrt{K}}{\sqrt{M}})$

(extends to union of low-dimensional spaces, low-rank matrices, & convex sets)

Error bound of PBP: benefit of dithering

Example: PBP reconstruction over $\mathcal{K} = \Sigma_k^n$ with partial DCT from dithered and non-dithered quantized measurements

$$\begin{cases} \boldsymbol{x} \in \mathcal{K} \cap \mathbb{B}^{n}, & n = 512 \ k = 4 \\ \boldsymbol{\Phi} \text{ is a random partial DCT}, & \xi_{i} \sim_{iid} U([0, \delta]) \\ \delta = 0.5 \text{ (diamond)}, & \delta = 1 \text{ (circle)}, & \delta = 2 \text{ (triangle)} \end{cases}$$



dithered quan. measurements

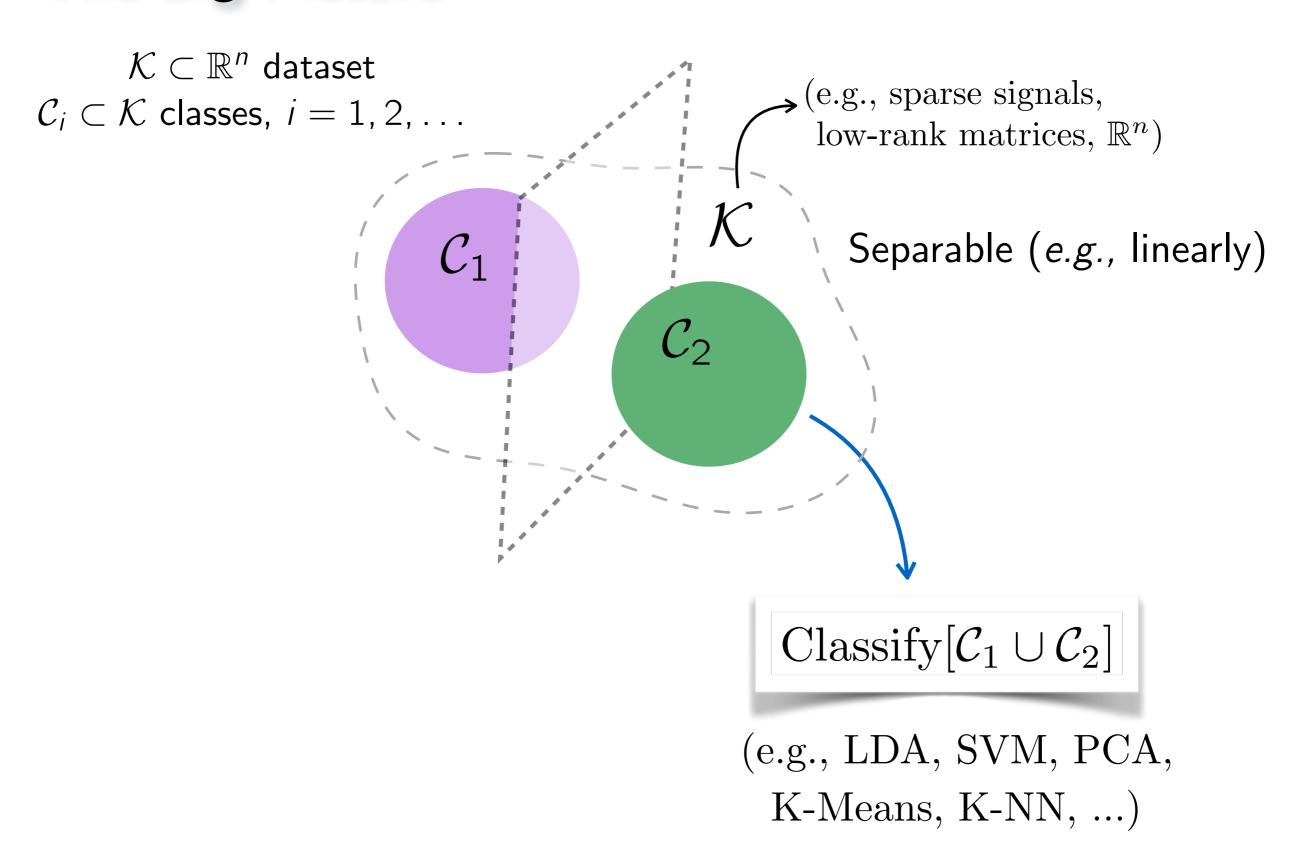
non-dithered quan. measurements

Remark: thanks to dithering, reconstruction error decays as m increases.

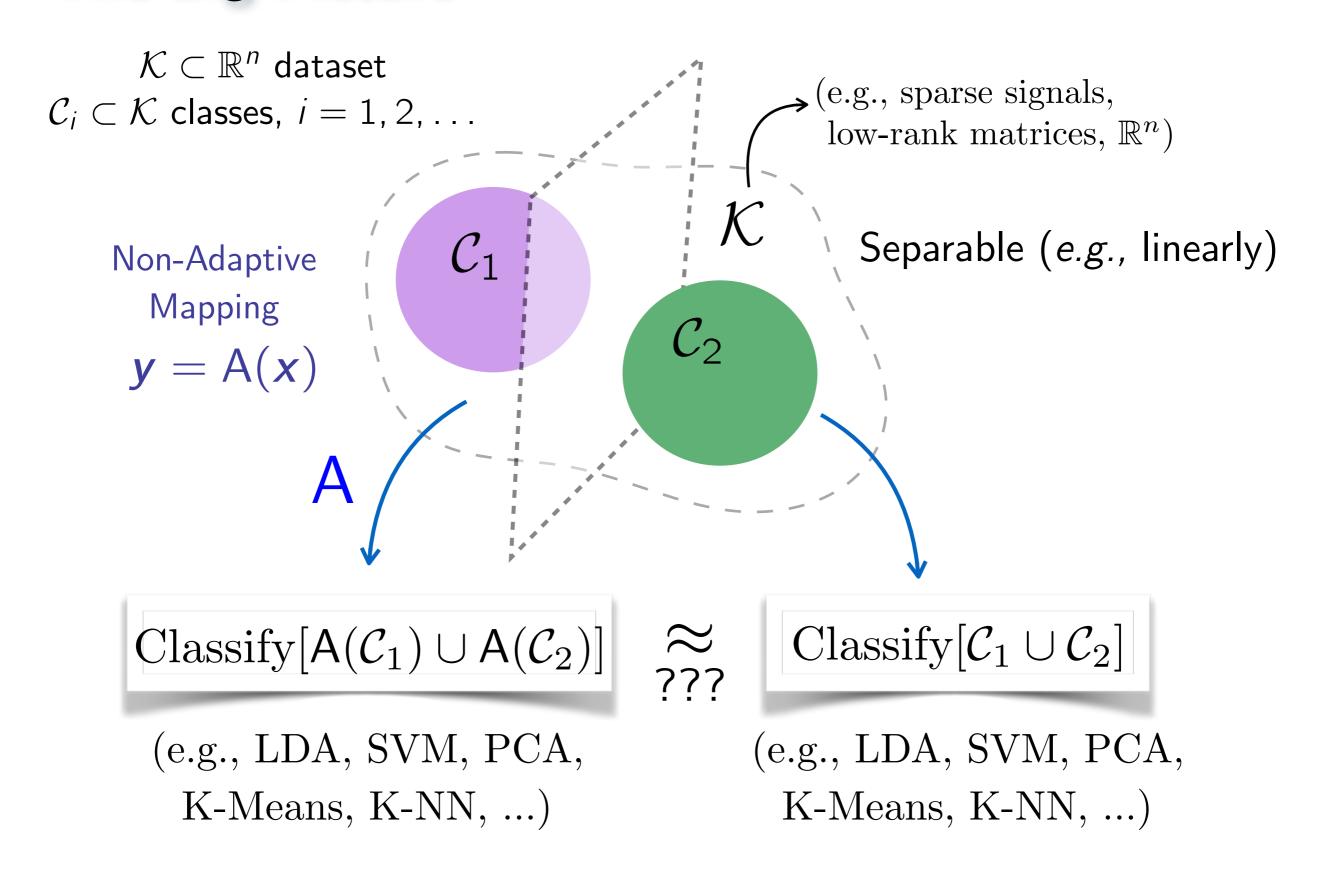
2.3. Classification in a quantized world

(caveat: in this part, $M \to m, N \to n$)

The Big Picture (an easy classification problem)



The Big Picture (an easy classification problem)

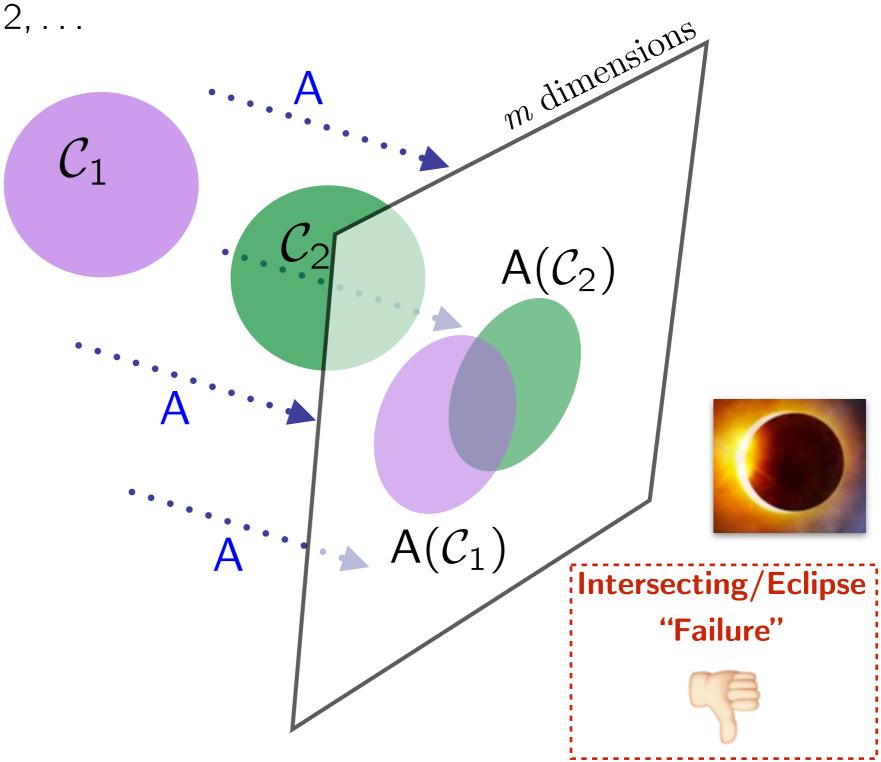


The Big Picture

 $\mathcal{K} \subset \mathbb{R}^n$ dataset $\mathcal{C}_i \subset \mathcal{K}$ classes, $i = 1, 2, \dots$

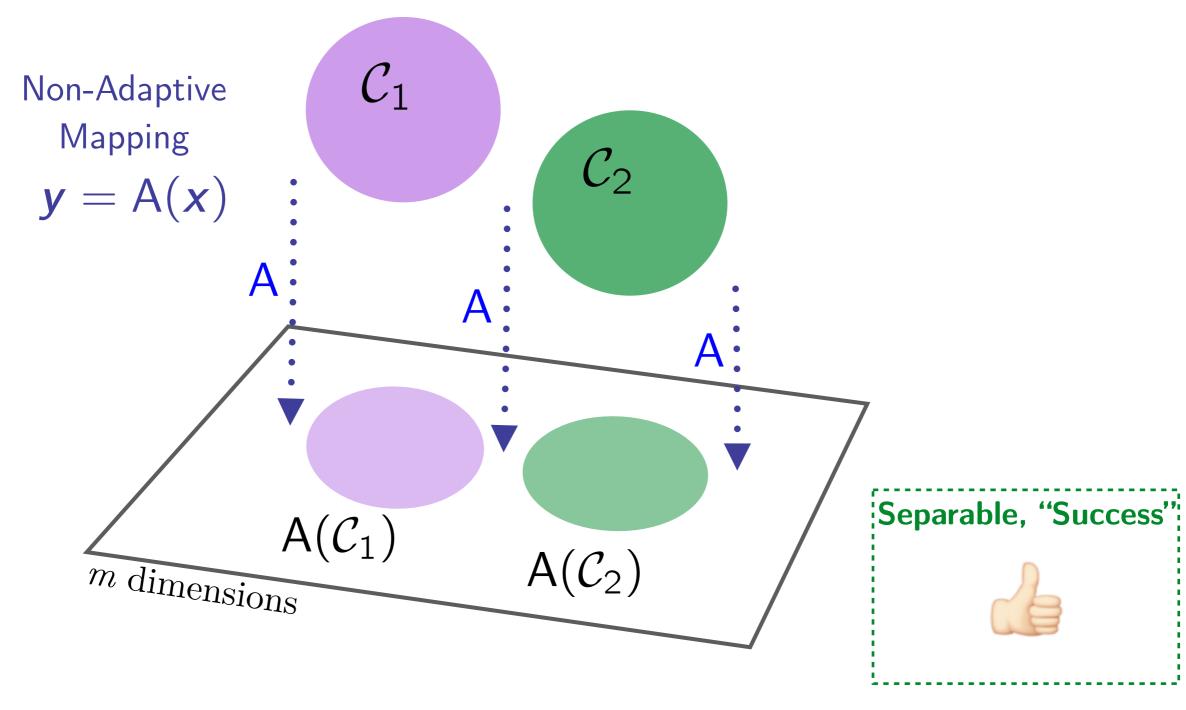
Non-Adaptive Mapping

$$y = A(x)$$



The Big Picture

 $\mathcal{K} \subset \mathbb{R}^n$ dataset $\mathcal{C}_i \subset \mathcal{K}$ classes, $i = 1, 2, \dots$



The Rare Eclipse Problem (Linear case)

Problem (Rare Eclipse Problem (Bandeira et al. '14)).

Let $C_1, C_2 \subset \mathbb{R}^n : C_1 \cap C_2 = \emptyset$ be closed convex sets, $\Phi \sim \mathcal{N}^{m \times n}(0, 1)$. Given $\eta \in (0, 1)$, find the smallest m so that

$$p_0 := \mathbb{P}_{\mathbf{\Phi}}[\mathbf{\Phi}\mathcal{C}_1 \cap \mathbf{\Phi}\mathcal{C}_2 = \emptyset] \geq 1 - \eta.$$

Bandeira, Mixon, Recht '14 [BMR '14]

The Rare Eclipse Problem (Linear case)

BMR '14: "Gordon's escape through a mesh" theorem

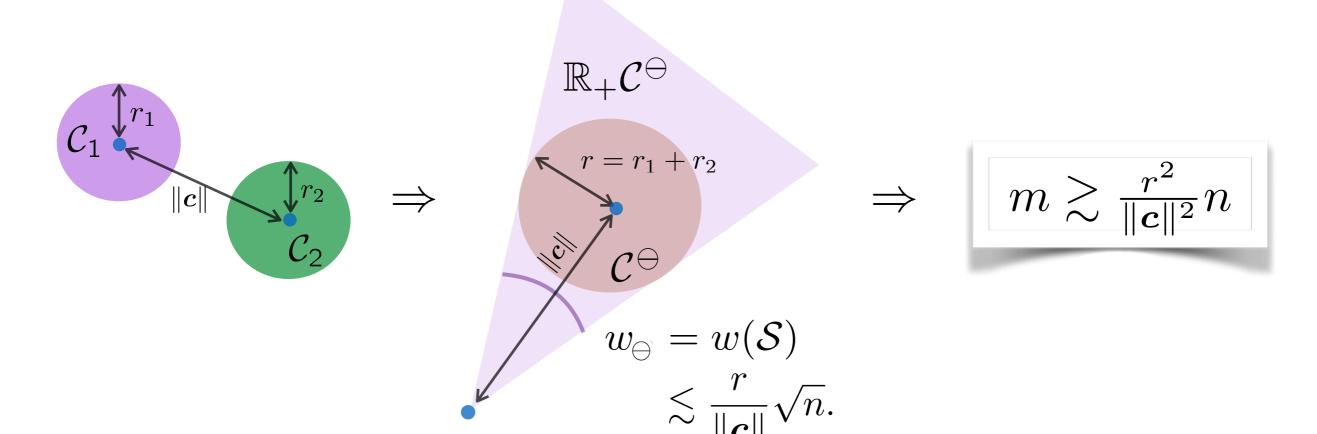
Proposition (Corollary 3.1 in BMR '14).

(& really tight [Amelunxen et al, 13])

Given
$$\eta \in (0, 1)$$
, if $m > (w_{\ominus} + \sqrt{2 \log \frac{1}{\eta}})^2 + 1$ then $p_0 \ge 1 - \eta$.

Example:

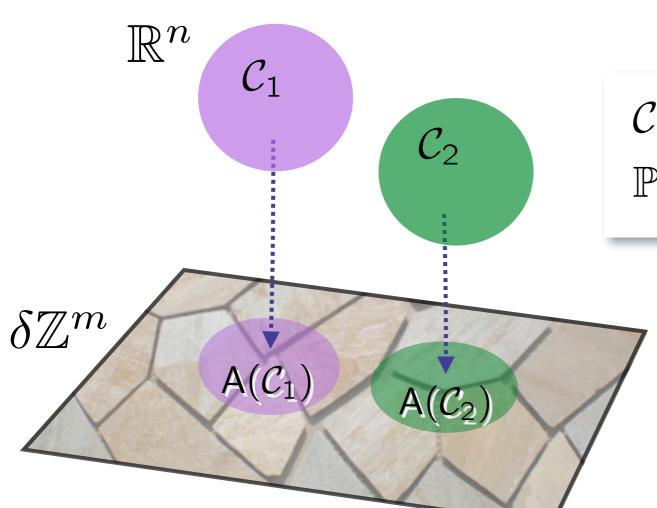
Bandeira, Mixon, Recht '14 [BMR '14]



The Rare Eclipse Problem "on Tiles"

$$\mathsf{A}(\boldsymbol{x}) := \mathcal{Q}(\boldsymbol{\Phi}\boldsymbol{x} + \boldsymbol{\xi})$$

with Φ Gaussian random matrix, $\mathcal{Q}(\lambda) = \delta \lfloor \frac{\lambda}{\delta} \rfloor, \, \xi_i \sim \mathcal{U}([0, \delta]).$



 $C_1, C_2, m \text{ and } \delta \text{ such that}$ $\mathbb{P}[\mathsf{A}(C_1) \cap \mathsf{A}(C_2) = \emptyset] \geqslant 1 - \eta ?$

<u>Idea</u>: use the QRIP, i.e.,

$$\frac{1}{M\delta} \|\mathsf{A}(\boldsymbol{x}_1) - \mathsf{A}(\boldsymbol{x}_2)\|_1 \approx \|\boldsymbol{x}_1 - \boldsymbol{x}_2\|$$
 w.h.p.

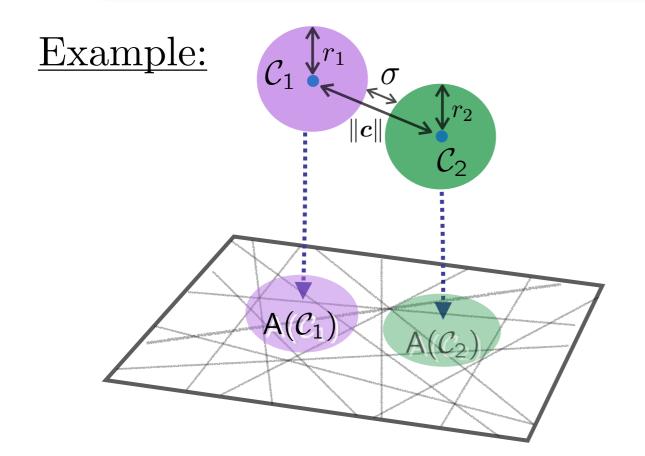
The Rare Eclipse Problem "on Tiles"

Given $\sigma := \min_{\boldsymbol{z} \in \mathcal{C}^{\ominus}} \|\boldsymbol{z}\|$ and $w_{\cap} = w((\mathbb{R}_{+}\mathcal{C}^{\ominus}) \cap \mathbb{S}^{n-1})$.

Provided

$$m \gtrsim \left(w_{\ominus}^2 + n\frac{\delta^2}{\sigma^2}\right) \left(1 + \log\left(1 + \frac{rm}{\delta n}\right) + w_{\ominus}^{-2}\log\frac{1}{\eta}\right),$$
 we have

$$\mathbb{P}[\mathsf{A}(\mathcal{C}_1) \cap \mathsf{A}(\mathcal{C}_2) = \emptyset] \geqslant 1 - \eta.$$



$$\Rightarrow m \gtrsim \left(\frac{r^2}{\|\boldsymbol{c}\|^2} + \frac{\delta^2}{(\|\boldsymbol{c}\| - r)^2}\right) n$$

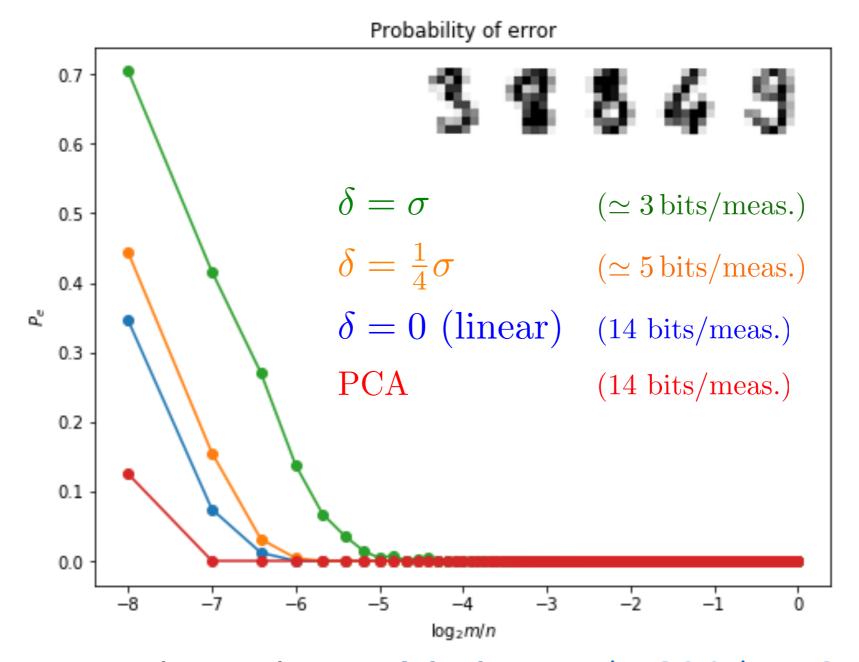
Note: $\delta > \sigma$ is allowed (dithering effect!)

Note bis: m > n not specially bad $(\delta \mathbb{Z}^m)$.

Simulations: Digit dataset (from scikit learn)

10 handwritten digits, 8x8 pixels (n=64), samples/class ≈ 12 .

Training/Test sets = 50%/50%. $\sigma = \min_{i,j:i\neq j} \min_{\boldsymbol{u}\in\mathcal{C}_i,\boldsymbol{v}\in\mathcal{C}_j} \|\boldsymbol{u}-\boldsymbol{v}\|$ Classification: 5-NN Classifier.



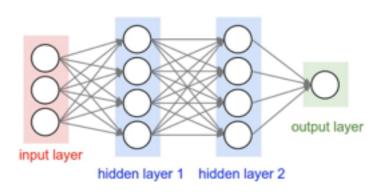
Try some code out here: github.com/VC86/MLSPbox

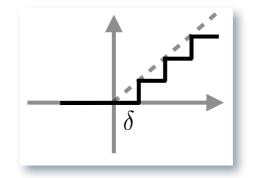
Take-away messages

- From CS to QCS (for scalar quantizers)
 - Importance of consistency and dithering
- Reconstruction still possible in QCS with decaying error as m increases
- Learning/Classification possible in QCS domain

Take-away messages

- From CS to QCS (for scalar quantizers)
 - Importance of consistency and dithering
- Reconstruction still possible in QCS with decaying error as m increases
- Learning/Classification possible in QCS domain
- Open problems
 - CW for (other/all?) RIP matrices?
 - Quantizing non-linear embedding (clipping, ReLU)?





Thank you for your attention!

- N. Thao and M. Vetterli, "Deterministic analysis of oversampled A/D conversion and decoding improvement based on consistent estimates," Signal Processing, IEEE Transactions on Signal Processing, vol. 42, no. 3, pp. 519–531, 1994.
- E. J. Candès and T. Tao, "Decoding by linear programming," IEEE transactions on information theory, vol. 51, no. 12, pp. 4203–4215, 2005.
- Y. Plan and R. Vershynin, "Robust 1-bit compressed sensing and sparse logistic regression: A convex programming approach," IEEE Transactions on Information Theory, vol. 59, no. 1, pp. 482–494, 2013.
- LJ, "Error Decay of (almost) Consistent Signal Estimations from Quantized Gaussian Random Projections", IEEE Transactions in Information Theory, Vol. 62, no.8, p. 4696-4709, 2016
- LJ and V. Cambareri, "Time for dithering: fast and quantized random embeddings via the restricted isometry property," Information and Inference: A Journal of the IMA, p. iax004, 2017.
- LJ, "Small width, low distortions: quantized random embeddings of low-complexity sets," IEEE Transactions on information theory, vol. 63, no. 9, pp. 5477–5495, 2015.
- A. S. Bandeira, D. G. Mixon, B. Recht, "Compressive classification and the rare eclipse problem," In Compressed Sensing and its Applications 2017 (pp. 197-220). Birkhäuser, Cham.
- V. Chandrasekaran, B. Recht, P.A. Parrilo, and A. S. Willsky, "The convex geometry of linear inverse problems," Foundations of Computational mathematics, vol. 12, no. 6, pp. 805–849, 2012.
- R. Gribonval, G. Blanchard, N. Keriven, Y. Traonmilin. "Compressive Statistical Learning with Random Feature Moments", arXiv:1706.07180
- P. T. Boufounos, "Universal rate-efficient scalar quantization," IEEE Transactions on Information Theory, vol.58, no. 3, pp. 1861–1872, 2012.
- G. Schechtman, "Two observations regarding embedding subsets of Euclidean spaces in normed spaces", Adv. Math. 200 (2006), 125–135.