Keep the phase!

Signal recovery in phase-only compressive sensing

Laurent Jacques* and Thomas Feuillen ${ }^{+}$
*: INMA, UCLouvain, Belgium. +: Uni Lu, Luxembourg
October 31st, 2023

Amplitude and Phase of Image Frequencies

A bit of history ... Oppenheim and Lim, 1981:
"What's the most important information between the spectral amplitude and phase of signals?"

Amplitude and Phase of Image Frequencies

A bit of history ... Oppenheim and Lim, 1981:
"What's the most important information between the spectral amplitude and phase of signals?"

A simple experiment: Let \mathcal{F} the (2-D) discrete Fourier transform (DFT)

Original image $f \in \mathbb{R}^{N_{x} \times N_{y}}$;
\& we compute $\mathcal{F} f \in \mathbb{C}^{N_{x} \times N_{y}}$

Amplitude and Phase of Image Frequencies

A bit of history ... Oppenheim and Lim, 1981:
"What's the most important information between the spectral amplitude and phase of signals?"

A simple experiment: Let \mathcal{F} the (2-D) discrete Fourier transform (DFT)

Original image $f \in \mathbb{R}^{N_{x} \times N_{y}}$; \& we compute $\mathcal{F} f \in \mathbb{C}^{N_{x} \times N_{y}}$

Image reconstructed with
spectral amplitude
$f^{\prime}=\mathcal{F}^{-\mathbf{1}}(\underbrace{|\mathcal{F} f|}_{*})$
*: applied component-wise

Amplitude and Phase of Image Frequencies

A bit of history ... Oppenheim and Lim, 1981:
"What's the most important information between the spectral amplitude and phase of signals?"

A simple experiment: Let \mathcal{F} the (2-D) discrete Fourier transform (DFT)

Original image $f \in \mathbb{R}^{N_{x} \times N_{y}}$; \& we compute $\mathcal{F} f \in \mathbb{C}^{N_{x} \times N_{y}}$

Image reconstructed with spectral amplitude
$f^{\prime}=\mathcal{F}^{-\mathbf{1}}(\underbrace{|\mathcal{F} f|}_{*})$
*: applied component-wise

Image reconstructed with spectral phase

$$
f^{\prime}=\mathcal{F}^{-\mathbf{1}}(\underbrace{\frac{\mathcal{F} f}{|\mathcal{F} f|}}_{*})
$$

Reconstructing an image from its spectral phases

Fact: \exists algorithm to recover certain images from their spectral phase (up to a global amplitude).

Fact: \exists algorithm to recover certain images from their spectral phase (up to a global amplitude).
\Rightarrow Use alternate projections onto convex sets, i.e.,
> given $z_{0}=\mathcal{F}(f) /|\mathcal{F}(f)|$, the observed spectral phases,
> assuming $f \in \mathcal{S}:=$ set of images supported on $\Omega \subset \mathbb{R}^{2}$ (with $|\Omega| \leqslant N_{x} N_{y}$).

Fact: \exists algorithm to recover certain images from their spectral phase (up to a global amplitude).
\Rightarrow Use alternate projections onto convex sets, i.e.,
> given $z_{0}=\mathcal{F}(f) /|\mathcal{F}(f)|$, the observed spectral phases,
> assuming $f \in \mathcal{S}:=$ set of images supported on $\Omega \subset \mathbb{R}^{2}$ (with $|\Omega| \leqslant N_{x} N_{y}$).

Reconstructing an image from its spectral phases

Applying this method to our example ... (i.e., with Ω set from 0 $00_{0}^{2} 0$ *)
*: This is equivalent to oversampling the Fourier domain of f.

Reconstructing an image from its spectral phases

Applying this method to our example ... (i.e., with Ω set from o

$1^{\text {st }}$ iteration (init with ones) (normalized SNR: 6.6 dB)

10 iterations
(normalized SNR: $\mathbf{1 1 . 6 ~ d B) ~}$

Reconstructing an image from its spectral phases

Applying this method to our example ... (i.e., with Ω set from

$1^{\text {st }}$ iteration (init with ones) (normalized SNR: 6.6 dB)

10 iterations
(normalized SNR: 11.6 dB)

100 iterations
(normalized SNR: 19.6 dB)

1000 iterations (normalized SNR: 41 dB)

original
*: This is equivalent to oversampling the Fourier domain of f.

Reconstructing an image from its spectral phases

Applying this method to our example ... (i.e., with Ω set from

$1^{\text {st }}$ iteration (init with ones) (normalized SNR: 6.6 dB)

1000 iterations (normalized SNR: 41 dB)

10 iterations
(normalized SNR: 11.6 dB)

original

100 iterations (normalized SNR: 19.6 dB)

SNR vs oversampling (1000 iter. per point)
*: This is equivalent to oversampling the Fourier domain of f.

Why could it be useful?

Numerous Fourier/spectral sensing applications:
> Magnetic resonance imaging (MRI);
> Radar systems;
> Michelson interferometry / Fourier transform imaging;
> Aperture synthesis by radio interferometry.

Why could it be useful?

Numerous Fourier/spectral sensing applications:
> Magnetic resonance imaging (MRI);
> Radar systems;
> Michelson interferometry / Fourier transform imaging;
> Aperture synthesis by radio interferometry.
Challenges:
> Massive data stream imposes new data compression strategies.
> Compress but keep useful information (e.g., for subsequent imaging).
> Large magnitude variations \Rightarrow different compression impact.

Why could it be useful?

Numerous Fourier/spectral sensing applications:
> Magnetic resonance imaging (MRI);
> Radar systems;
> Michelson interferometry / Fourier transform imaging;
> Aperture synthesis by radio interferometry.
Challenges:
> Massive data stream imposes new data compression strategies.
> Compress but keep useful information (e.g., for subsequent imaging).
> Large magnitude variations \Rightarrow different compression impact.

Questions: Which systems are compatible with phase-only signal estimation? \triangleright (this talk) Is complex compressive sensing compatible?
Why asking?
> If compatible, insensitive to large amplitudes variations (by definition).
> If robust, easy to compress information: just quantize the spectral phase!

(Complex) Compressive Sensing: a quick overview

Let's collect $m<n$ measurements about x from this linear model:

$$
\begin{equation*}
\boldsymbol{y}=\boldsymbol{A} \boldsymbol{x}+\boldsymbol{\epsilon} \in \mathbb{C}^{m}, \tag{CS}
\end{equation*}
$$

with: > a low-complexity vector $x \in \mathcal{L} \subset \mathbb{C}^{n}$ (e.g., a vectorized image) with \mathcal{L} the set of sparse signals, low-rank matrices, ...
> a complex sensing matrix $\boldsymbol{A} \in \mathbb{C}^{m \times n}$,
$>$ a given (additive) noise $\boldsymbol{\epsilon} \in \mathbb{C}^{m}$ and $\|\epsilon\| \leqslant \varepsilon$.

Let's collect $m<n$ measurements about x from this linear model:

$$
\begin{equation*}
\boldsymbol{y}=\boldsymbol{A} \boldsymbol{x}+\boldsymbol{\epsilon} \in \mathbb{C}^{m} \tag{CS}
\end{equation*}
$$

with: > a low-complexity vector $x \in \mathcal{L} \subset \mathbb{C}^{n}$ (e.g., a vectorized image) with \mathcal{L} the set of sparse signals, low-rank matrices, ...
> a complex sensing matrix $\boldsymbol{A} \in \mathbb{C}^{m \times n}$,
$>$ a given (additive) noise $\boldsymbol{\epsilon} \in \mathbb{C}^{m}$ and $\|\boldsymbol{\epsilon}\| \leqslant \varepsilon$.
Compressive sensing:
Despite $m<n$, if m larger than \mathcal{L} 's "dimension", and \boldsymbol{A} is "random", the vector x can be exactly recovered (or estimated if $\epsilon \neq 0$).
[Candès and Tao, 2005; Foucart and Rauhut, 2013]

Let's be more specific ... let's focus on the Gaussian case.

Restricted isometry property

For some $0<\delta<1$ and $k<m<n$, if

$$
m \geqslant C \delta^{-2} k \log (n / k)
$$

and $\sqrt{m} A_{i j} \sim_{\text {i.i.d. }} \mathbb{C} \mathcal{N}(0,2) \sim \mathcal{N}(0,1)+\mathrm{i} \mathcal{N}(0,1)$,
then, with high probability (w.h.p.),

$$
(1-\delta)\|\boldsymbol{v}\|^{2} \leqslant\|\boldsymbol{A} \boldsymbol{v}\|^{2} \leqslant(1+\delta)\|\boldsymbol{v}\|^{2}, \quad \forall k \text {-sparse } \boldsymbol{v}
$$

$(\operatorname{RIP}(k, \delta))$

Let's be more specific ... let's focus on the Gaussian case.

Restricted isometry property

For some $0<\delta<1$ and $k<m<n$, if

$$
m \geqslant C \delta^{-2} k \log (n / k)
$$

and $\sqrt{m} A_{i j} \sim_{\text {i.i.d. }} \mathbb{C N}(0,2) \sim \mathcal{N}(0,1)+\mathrm{i} \mathcal{N}(0,1)$,

then, with high probability (w.h.p.),

$$
\begin{equation*}
(1-\delta)\|\boldsymbol{v}\|^{2} \leqslant\|\boldsymbol{A} \boldsymbol{v}\|^{2} \leqslant(1+\delta)\|\boldsymbol{v}\|^{2}, \quad \forall k \text {-sparse } \boldsymbol{v} \tag{RIP}
\end{equation*}
$$

So, why does CS work? Given $\boldsymbol{y}=\boldsymbol{A} \boldsymbol{x}$ with x a k-sparse signal, we have

$$
>\operatorname{RIP}(2 k, \delta) \Rightarrow\|\boldsymbol{y}-\boldsymbol{A} \boldsymbol{u}\|^{2}=\|\boldsymbol{A}(\boldsymbol{x}-\boldsymbol{u})\|^{2} \approx\|\boldsymbol{x}-\boldsymbol{u}\|^{2}, \text { for all } k \text {-sparse } \boldsymbol{u}
$$

$\Rightarrow \boldsymbol{A}$ is essentially invertible over the set of sparse vectors; just estimate \boldsymbol{x} by finding a sparse \boldsymbol{u} zeroing or minimizing $\|\boldsymbol{y}-\boldsymbol{A} \boldsymbol{u}\|^{2}$!

The RIP supports (one of) the "fundamental theorem(s) of CS"

Theorem: If \boldsymbol{A} is $\operatorname{RIP}(2 k, \delta)$ with $0<\delta<\delta_{0}\left(e . g\right.$., $\left.\delta_{0}=1 / \sqrt{2}\right)$, then the basis pursuit denoise estimate:

$$
\begin{equation*}
\hat{\boldsymbol{x}}=\underset{\boldsymbol{u} \in \mathbb{C}^{n}}{\arg \min } \underbrace{\|\boldsymbol{u}\|_{1}}_{\text {sparsity promoting }} \text { s.t. } \underbrace{\|\boldsymbol{y}-\boldsymbol{A} \boldsymbol{u}\| \leqslant \varepsilon}_{\text {data fidelity }}, \tag{BPDN}
\end{equation*}
$$

See, e.g., Candès, 2008; Foucart and Rauhut, 2013.

The RIP supports (one of) the "fundamental theorem(s) of CS"

Theorem: If \boldsymbol{A} is $\operatorname{RIP}(2 k, \delta)$ with $0<\delta<\delta_{0}\left(e . g\right.$., $\left.\delta_{0}=1 / \sqrt{2}\right)$, then the basis pursuit denoise estimate:

$$
\hat{\boldsymbol{x}}=\underset{\boldsymbol{u} \in \mathbb{C}^{n}}{\arg \min } \underbrace{\|\boldsymbol{u}\|_{1}}_{\text {sparsity promoting }} \text { s.t. } \underbrace{\|\boldsymbol{y}-\boldsymbol{A} \boldsymbol{u}\| \leqslant \varepsilon}_{\text {data fidelity }},
$$

satisfies the instance optimality

See, e.g., Candès, 2008; Foucart and Rauhut, 2013.

Phase-Only Sensing Model for CS

Inspired by Oppenheim and Lim, 1981; Boufounos, 2013,
let's consider the phase-only (non-linear) compressive sensing model:

$$
\begin{equation*}
\boldsymbol{z}=\operatorname{sign}_{\mathbb{C}}(\boldsymbol{A} \boldsymbol{x})+\boldsymbol{\epsilon} \in \mathbb{C}^{m} \tag{PO-CS}
\end{equation*}
$$

where: >A $\in \mathbb{C}^{m \times n}$ is complex, but x is a real (\mathbf{A}), k-sparse vector;
$>\operatorname{sign}_{\mathbb{C}}\left(r e^{\mathrm{i} \theta}\right):=e^{\mathrm{i} \theta}$ (and 0 if $r=0$), applied pointwise;
$>$ and $\epsilon \in \mathbb{C}^{m}$ a bounded noise with $\|\epsilon\|_{\infty} \leqslant \tau$ for some $\tau \geqslant 0$.

Phase-Only Sensing Model for CS

Inspired by Oppenheim and Lim, 1981; Boufounos, 2013,
let's consider the phase-only (non-linear) compressive sensing model:

$$
\begin{equation*}
\boldsymbol{z}=\operatorname{sign}_{\mathbb{C}}(\boldsymbol{A} \boldsymbol{x})+\boldsymbol{\epsilon} \in \mathbb{C}^{m} \tag{PO-CS}
\end{equation*}
$$

where: $\quad \boldsymbol{A} \in \mathbb{C}^{m \times n}$ is complex, but x is a real (\mathbf{A}), k-sparse vector;
$>\operatorname{sign}_{\mathbb{C}}\left(r e^{\mathrm{i} \theta}\right):=e^{\mathrm{i} \theta}$ (and 0 if $r=0$), applied pointwise;
$>$ and $\epsilon \in \mathbb{C}^{m}$ a bounded noise with $\|\epsilon\|_{\infty} \leqslant \tau$ for some $\tau \geqslant 0$.
Key observations:

1. If $x \rightarrow C x$ with $C>0, z$ is unchanged
(signal amplitude is lost)

Phase-Only Sensing Model for CS

Inspired by Oppenheim and Lim, 1981; Boufounos, 2013,
let's consider the phase-only (non-linear) compressive sensing model:

$$
\begin{equation*}
\boldsymbol{z}=\operatorname{sign}_{\mathbb{C}}(\boldsymbol{A} \boldsymbol{x})+\boldsymbol{\epsilon} \in \mathbb{C}^{m} \tag{PO-CS}
\end{equation*}
$$

where: $\quad \boldsymbol{A} \in \mathbb{C}^{m \times n}$ is complex, but x is a real (\mathbf{A}), k-sparse vector;
$>\operatorname{sign}_{\mathbb{C}}\left(r e^{\mathrm{i} \theta}\right):=e^{\mathrm{i} \theta}$ (and 0 if $r=0$), applied pointwise;
$>$ and $\epsilon \in \mathbb{C}^{m}$ a bounded noise with $\|\epsilon\|_{\infty} \leqslant \tau$ for some $\tau \geqslant 0$.
Key observations:

1. If $x \rightarrow C x$ with $C>0, z$ is unchanged
(signal amplitude is lost)
2. If both \boldsymbol{A} and \boldsymbol{x} are real, then $\boldsymbol{z} \in\{ \pm 1\}^{m}$ (real PO-CS \rightarrow 1-bit CS)

Fact: In noiseless 1-bit CS, best estimate s.t. $\|\hat{\boldsymbol{x}}-\boldsymbol{x}\|=\Omega(1 / m)$ if $m \uparrow$. [Boufounos and Baraniuk, 2008; Jacques et al., 2013; Plan and Vershynin, 2012]

Noiseless Signal Recovery for PO-CS $(\epsilon=0)$

Principle: Turn the non-linear PO model into linear one.

Noiseless Signal Recovery for PO-CS $(\epsilon=0)$

Principle: Turn the non-linear PO model into linear one. Step by step ...
A. Let's normalize x : Any renormalized signal $c x(c>0)$, and in particular

$$
\boldsymbol{x}^{\star}:=\frac{\kappa \sqrt{m}}{\|\boldsymbol{A}\|_{1}} \boldsymbol{x}, \quad \text { with } \kappa:=\sqrt{\frac{\pi}{2}},
$$

preserves PO measurements, i.e., $\operatorname{sign}_{\mathbb{C}}(\boldsymbol{A x})=\operatorname{sign}_{\mathbb{C}}\left(\boldsymbol{A} x^{\star}\right)$.
Therefore, we focus on the recovery of $x^{\star}(\rightarrow$ encodes signal direction)

$$
\text { that satisfies }\left\|\boldsymbol{A} \boldsymbol{x}^{\star}\right\|_{1}=\kappa \sqrt{m} \text {. }
$$

Noiseless Signal Recovery for PO-CS $(\epsilon=0)$

Principle: Turn the non-linear PO model into linear one. Step by step ...
A. Let's normalize x : Any renormalized signal $c x(c>0)$, and in particular

$$
\boldsymbol{x}^{\star}:=\frac{\kappa \sqrt{m}}{\|\boldsymbol{A} x\|_{1}} \boldsymbol{x}, \quad \text { with } \kappa:=\sqrt{\frac{\pi}{2}},
$$

preserves PO measurements, i.e., $\operatorname{sign}_{\mathbb{C}}(\boldsymbol{A x})=\operatorname{sign}_{\mathbb{C}}\left(\boldsymbol{A} \boldsymbol{x}^{\star}\right)$.
Therefore, we focus on the recovery of $x^{\star}(\rightarrow$ encodes signal direction)

$$
\text { that satisfies }\left\|\boldsymbol{A} \boldsymbol{x}^{\star}\right\|_{1}=\kappa \sqrt{m} \text {. }
$$

Rationale:
> Well, it's useful for our proofs ()
> For complex Gaussian $\sqrt{m} \boldsymbol{A} \sim \mathbb{C} \mathcal{N}^{m \times n}(0,2)$ and $g \sim \mathcal{N}(0,1)$,

$$
\mathbb{E}|g|=\kappa \quad \Rightarrow \quad \mathbb{E}\|\boldsymbol{A} \boldsymbol{x}\|_{1}=\kappa \sqrt{m}\|\boldsymbol{x}\| \quad \Rightarrow \quad\left\|x^{\star}\right\| \approx 1
$$

$\Rightarrow x^{\star}$ is (almost) a unit length vector, i.e., a direction.

Noiseless Signal Recovery for PO-CS $(\epsilon=0)$

Principle: Turn the non-linear PO model into linear one. Step by step ...
B. Let's find linear constraints: From the noiseless model

$$
z=\operatorname{sign}_{\mathbb{C}}\left(A x^{\star}\right)
$$

we see that the vector $\boldsymbol{u}=\boldsymbol{x}^{\star} \in \mathbb{R}^{n}$ respects both:

$$
\underbrace{\langle\boldsymbol{z}, \boldsymbol{A} \boldsymbol{u}\rangle}_{=\left\|\boldsymbol{A} x^{*}\right\|_{1} \text { if } u=x^{*}}=\kappa \sqrt{m} \Leftrightarrow \underbrace{\frac{1}{\kappa \sqrt{m}} \boldsymbol{A}^{*} \boldsymbol{z}}_{:=\boldsymbol{\alpha}_{\boldsymbol{z}}}, \boldsymbol{u}\rangle=1
$$

Noiseless Signal Recovery for PO-CS $(\epsilon=0)$

Principle: Turn the non-linear PO model into linear one. Step by step ...
B. Let's find linear constraints: From the noiseless model

$$
z=\operatorname{sign}_{\mathbb{C}}\left(A x^{\star}\right)
$$

we see that the vector $\boldsymbol{u}=\boldsymbol{x}^{\star} \in \mathbb{R}^{n}$ respects both:

$$
\left\{\begin{aligned}
&\underbrace{\langle\boldsymbol{z}, \boldsymbol{A} \boldsymbol{u}\rangle}_{=\left\|\boldsymbol{A} x^{\star}\right\|_{1} \text { if } u=x^{\star}}=\kappa \sqrt{m} \Leftrightarrow \underbrace{\left\langle\frac{1}{\kappa \sqrt{m}} \boldsymbol{A}^{*} \boldsymbol{z}\right.}_{:=\boldsymbol{\alpha}_{\boldsymbol{z}}}, \boldsymbol{u}\rangle=1 \\
& \operatorname{diag}(\boldsymbol{z})^{*} \boldsymbol{A} \boldsymbol{u}=(\underbrace{z_{1}^{*} \cdot(\boldsymbol{A} \boldsymbol{u})_{1}}_{=\left|\left(\boldsymbol{A} x^{\star}\right)_{1}\right| \text { if } u=x^{\star}}, \cdots, \underbrace{z_{m}^{*} \cdot(\boldsymbol{A} \boldsymbol{u})_{m}}_{=\left|\left(\boldsymbol{A} x^{\star}\right)_{m}\right| \text { if } u=x^{\star}})^{\top} \in \mathbb{R}_{+}^{m} \quad \text { (phase consistency) }
\end{aligned}\right.
$$

Noiseless Signal Recovery for PO-CS $(\epsilon=0)$

Principle: Turn the non-linear PO model into linear one. Step by step ...
B. Let's find linear constraints: From the noiseless model

$$
z=\operatorname{sign}_{\mathbb{C}}\left(\boldsymbol{A} x^{\star}\right),
$$

we see that the vector $\boldsymbol{u}=x^{\star} \in \mathbb{R}^{n}$ respects both:

$$
\left\{\begin{aligned}
\underbrace{\langle\boldsymbol{z}, \boldsymbol{A} \boldsymbol{u}\rangle}_{=\left\|\boldsymbol{A} x^{\star}\right\|_{1} \text { if } u=x^{*}}= & \kappa \sqrt{m} \Leftrightarrow \underbrace{\left\langle\frac{1}{\kappa \sqrt{m}} \boldsymbol{A}^{*} \boldsymbol{z}\right.}_{:=\boldsymbol{\alpha}_{\boldsymbol{z}}}, \boldsymbol{u}\rangle=1 \\
\operatorname{diag}(\boldsymbol{z})^{*} \boldsymbol{A} \boldsymbol{u} & =(\underbrace{z_{1}^{*} \cdot(\boldsymbol{A} \boldsymbol{u})_{1}}_{=\left|\left(\boldsymbol{A} x^{\star}\right)_{1}\right| \text { if } u=x^{\star}}, \cdots, \underbrace{z_{m}^{*} \cdot(\boldsymbol{A} \boldsymbol{u})_{m}}_{=\left|\left(\boldsymbol{A} x^{\star}\right)_{m}\right| \text { if } u=x^{\star}})^{\top} \in \mathbb{R}_{/ \not / W /}^{m} \quad \text { (phase consistency) }
\end{aligned}\right.
$$

Let's relax "phase consistency": we only impose $\operatorname{diag}(z)^{*} \boldsymbol{A} \boldsymbol{u} \in \mathbb{R}^{m}$, that is

$$
0=\Im\left(\operatorname{diag}(\boldsymbol{z})^{*} \boldsymbol{A} \boldsymbol{u}\right)=\left(\operatorname{diag}(z)^{\Re} \boldsymbol{A}^{\Im}-\operatorname{diag}(z)^{\Im} \boldsymbol{A}^{\Re}\right) \boldsymbol{u}=: \boldsymbol{H}_{\boldsymbol{z}} \boldsymbol{u} .
$$

Moreover, "normalization" means

$$
\left\langle\boldsymbol{\alpha}_{z}, \boldsymbol{u}\right\rangle=1 \quad \Leftrightarrow \quad\left\langle\boldsymbol{\alpha}_{z}^{\Re}, \boldsymbol{u}\right\rangle=1,\left\langle\boldsymbol{\alpha}_{z}^{\Im}, \boldsymbol{u}\right\rangle=0 .
$$

Noiseless Signal Recovery for PO-CS $(\epsilon=0)$

In summary, $\boldsymbol{u}=\boldsymbol{x}^{\star}$ respects the relaxed, real $m+2$ constraints \ldots

$$
\boldsymbol{A}_{z} \boldsymbol{u}=\boldsymbol{e}_{1}:=(1,0, \cdots, 0)^{\top} \quad \Rightarrow \begin{aligned}
& \text { This is a linear } \\
& \text { sensing model! } \\
& \text { Like "Ax=y"}
\end{aligned}
$$

with

$$
\boldsymbol{A}_{z}:=\left(\boldsymbol{\alpha}_{z}^{\Re}, \boldsymbol{\alpha}_{z}^{\Im}, \boldsymbol{H}_{z}^{\top}\right)^{\top} \in \mathbb{R}^{(m+2) \times n}
$$

In other words,
$>$ A good estimate \hat{x} of \boldsymbol{x}^{\star} should respect the linear model $\boldsymbol{A}_{z} \hat{\boldsymbol{x}}=\boldsymbol{e}_{1}$ since $\boldsymbol{x}^{\star} \in\left\{\boldsymbol{u} \in \mathbb{R}^{n}: \boldsymbol{A}_{\boldsymbol{z}} \hat{\boldsymbol{u}}=\boldsymbol{e}_{1}\right\}$.
> We know this estimate should be sparse (as for \boldsymbol{x}^{\star})

Noiseless Signal Recovery for PO-CS $(\epsilon=0)$

In summary, $\boldsymbol{u}=\boldsymbol{x}^{\star}$ respects the relaxed, real $m+2$ constraints \ldots

$$
\boldsymbol{A}_{z} \boldsymbol{u}=\boldsymbol{e}_{1}:=(1,0, \cdots, 0)^{\top} \quad \Rightarrow \quad \begin{aligned}
& \text { This is a linear } \\
& \text { sensing model! } \\
& \text { Like " } \boldsymbol{A} \boldsymbol{x}=\boldsymbol{y} \text { " }
\end{aligned}
$$

with

$$
\boldsymbol{A}_{z}:=\left(\boldsymbol{\alpha}_{z}^{\Re}, \boldsymbol{\alpha}_{z}^{\Im}, \boldsymbol{H}_{z}^{\top}\right)^{\top} \in \mathbb{R}^{(m+2) \times n}
$$

In other words,
>A good estimate \hat{x} of \boldsymbol{x}^{\star} should respect the linear model $\boldsymbol{A}_{\boldsymbol{z}} \hat{\boldsymbol{x}}=\boldsymbol{e}_{1}$ since $\boldsymbol{x}^{\star} \in\left\{\boldsymbol{u} \in \mathbb{R}^{n}: \boldsymbol{A}_{\boldsymbol{z}} \hat{\boldsymbol{u}}=\boldsymbol{e}_{1}\right\}$.
> We know this estimate should be sparse (as for \boldsymbol{x}^{\star})
\Rightarrow As in linear CS, we can compute \hat{x} from a basis pursuit program (BP)

$$
\hat{\boldsymbol{x}}=\underset{\boldsymbol{u} \in \mathbb{C} n}{\arg \min }\|\boldsymbol{u}\|_{1} \text { s.t. } \quad \boldsymbol{A}_{z} \boldsymbol{u}=\boldsymbol{e}_{1}, \quad\left(\operatorname{BP}\left(\boldsymbol{A}_{z}, \boldsymbol{e}_{1}\right)\right)
$$

Question: How far is $\hat{\boldsymbol{x}}$ from \boldsymbol{x}^{\star} ? Well, let's see if $\boldsymbol{A}_{\boldsymbol{z}}$ respects the RIP!

Given $\boldsymbol{z}=\operatorname{sign}_{\mathbb{C}}(\boldsymbol{A} \boldsymbol{x})$, how could $\boldsymbol{A}_{\boldsymbol{z}}:=\left(\boldsymbol{\alpha}_{\boldsymbol{z}}^{\Re}, \boldsymbol{\alpha}_{\boldsymbol{z}}^{\Im}, \boldsymbol{H}_{z}^{\top}\right)^{\top}$ respect the RIP?
For a sparse \boldsymbol{v},

$$
\left\|\boldsymbol{A}_{z} \boldsymbol{v}\right\|^{2}:=\left|\left\langle\boldsymbol{\alpha}_{z}, \boldsymbol{v}\right\rangle\right|^{2}+\left\|\boldsymbol{H}_{z} \boldsymbol{v}\right\|^{2}
$$

Given $\boldsymbol{z}=\operatorname{sign}_{\mathbb{C}}(\boldsymbol{A} \boldsymbol{x})$, how could $\boldsymbol{A}_{\boldsymbol{z}}:=\left(\boldsymbol{\alpha}_{\boldsymbol{z}}^{\Re}, \boldsymbol{\alpha}_{\boldsymbol{z}}^{\Im}, \boldsymbol{H}_{z}^{\top}\right)^{\top}$ respect the RIP?
For a sparse \boldsymbol{v},

$$
\left\|\boldsymbol{A}_{z} \boldsymbol{v}\right\|^{2}:=\left|\left\langle\boldsymbol{\alpha}_{z}, \boldsymbol{v}\right\rangle\right|^{2}+\left\|\boldsymbol{H}_{z} \boldsymbol{v}\right\|^{2}
$$

you can show that, for complex Gaussian \boldsymbol{A} :
$\rangle\left\langle\boldsymbol{\alpha}_{\boldsymbol{z}}, \boldsymbol{v}\right\rangle=\left\langle\frac{1}{\kappa \sqrt{m}} \boldsymbol{A}^{*} \boldsymbol{z}, \boldsymbol{v}\right\rangle \approx\left\langle\frac{\boldsymbol{x}}{\|\boldsymbol{x}\|}, \boldsymbol{v}\right\rangle \approx$ projection of \boldsymbol{v} onto $\mathcal{X}:=\mathbb{R} \boldsymbol{x}$
Proof: $\frac{1}{m} \mathbb{E}\left\langle\operatorname{sign}_{\mathbb{C}} \boldsymbol{A} \boldsymbol{u}, \sqrt{m} \boldsymbol{A} \boldsymbol{v}\right\rangle=\kappa\left\langle\frac{\boldsymbol{u}}{\|\boldsymbol{u}\|}, \boldsymbol{v}\right\rangle$ if $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{S}^{n-1}$
\rightarrow sign product embedding (SPE) \equiv extension $\forall k$-sparse $\boldsymbol{v}(w h p)$.
\rightarrow pick $\boldsymbol{u}=\boldsymbol{x}$

Given $\boldsymbol{z}=\operatorname{sign}_{\mathbb{C}}(\boldsymbol{A} \boldsymbol{x})$, how could $\boldsymbol{A}_{\boldsymbol{z}}:=\left(\boldsymbol{\alpha}_{\boldsymbol{z}}^{\Re}, \boldsymbol{\alpha}_{\boldsymbol{z}}^{\Im}, \boldsymbol{H}_{z}^{\top}\right)^{\top}$ respect the RIP?
For a sparse \boldsymbol{v},

$$
\left\|\boldsymbol{A}_{z} \boldsymbol{v}\right\|^{2}:=\left|\left\langle\boldsymbol{\alpha}_{z}, \boldsymbol{v}\right\rangle\right|^{2}+\left\|\boldsymbol{H}_{z} \boldsymbol{v}\right\|^{2}
$$

you can show that, for complex Gaussian \boldsymbol{A} :
$\rangle\left\langle\boldsymbol{\alpha}_{\boldsymbol{z}}, \boldsymbol{v}\right\rangle=\left\langle\frac{1}{\kappa \sqrt{m}} \boldsymbol{A}^{*} \boldsymbol{z}, \boldsymbol{v}\right\rangle \approx\left\langle\frac{\boldsymbol{x}}{\|\boldsymbol{x}\|}, \boldsymbol{v}\right\rangle \approx$ projection of \boldsymbol{v} onto $\mathcal{X}:=\mathbb{R} \boldsymbol{x}$
Proof: $\frac{1}{m} \mathbb{E}\left\langle\operatorname{sign}_{\mathbb{C}} \boldsymbol{A} \boldsymbol{u}, \sqrt{m} \boldsymbol{A} \boldsymbol{v}\right\rangle=\kappa\left\langle\frac{\boldsymbol{u}}{\|\boldsymbol{u}\|}, \boldsymbol{v}\right\rangle$ if $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{S}^{n-1}$
\rightarrow sign product embedding (SPE) \equiv extension $\forall k$-sparse $\boldsymbol{v}(w h p)$.
\rightarrow pick $\boldsymbol{u}=\boldsymbol{x}$
> $\boldsymbol{H}_{z} \boldsymbol{x}=0$ (by construction)
$\rightarrow \boldsymbol{H}_{z} \boldsymbol{v}=\boldsymbol{H}_{z} \boldsymbol{v}^{\perp}$, with $\boldsymbol{v}^{\perp}:=\boldsymbol{v}-\left\langle\boldsymbol{v}, \frac{x}{\|x\|}\right\rangle \frac{x}{\|\boldsymbol{x}\|} \in \mathcal{X}^{\perp}$

Given $\boldsymbol{z}=\operatorname{sign}_{\mathbb{C}}(\boldsymbol{A} \boldsymbol{x})$, how could $\boldsymbol{A}_{\boldsymbol{z}}:=\left(\boldsymbol{\alpha}_{\boldsymbol{z}}^{\Re}, \boldsymbol{\alpha}_{\boldsymbol{z}}^{\Im}, \boldsymbol{H}_{z}^{\top}\right)^{\top}$ respect the RIP?
For a sparse \boldsymbol{v},

$$
\left\|\boldsymbol{A}_{z} \boldsymbol{v}\right\|^{2}:=\left|\left\langle\boldsymbol{\alpha}_{z}, \boldsymbol{v}\right\rangle\right|^{2}+\left\|\boldsymbol{H}_{z} \boldsymbol{v}\right\|^{2}
$$

you can show that, for complex Gaussian \boldsymbol{A} :
$\rangle\left\langle\boldsymbol{\alpha}_{\boldsymbol{z}}, \boldsymbol{v}\right\rangle=\left\langle\frac{1}{\kappa \sqrt{m}} \boldsymbol{A}^{*} \boldsymbol{z}, \boldsymbol{v}\right\rangle \approx\left\langle\frac{\boldsymbol{x}}{\|\boldsymbol{x}\|}, \boldsymbol{v}\right\rangle \approx$ projection of \boldsymbol{v} onto $\mathcal{X}:=\mathbb{R} \boldsymbol{x}$
Proof: $\frac{1}{m} \mathbb{E}\left\langle\operatorname{sign}_{\mathbb{C}} \boldsymbol{A} \boldsymbol{u}, \sqrt{m} \boldsymbol{A} \boldsymbol{v}\right\rangle=\kappa\left\langle\frac{\boldsymbol{u}}{\|\boldsymbol{u}\|}, \boldsymbol{v}\right\rangle$ if $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{S}^{n-1}$
\rightarrow sign product embedding (SPE) \equiv extension $\forall k$-sparse $\boldsymbol{v}(w h p)$.
\rightarrow pick $\boldsymbol{u}=\boldsymbol{x}$
> $\boldsymbol{H}_{z} \boldsymbol{x}=0$ (by construction)
$\rightarrow \boldsymbol{H}_{z} \boldsymbol{v}=\boldsymbol{H}_{z} \boldsymbol{v}^{\perp}$, with $\boldsymbol{v}^{\perp}:=\boldsymbol{v}-\left\langle\boldsymbol{v}, \frac{x}{\|x\|}\right\rangle \frac{x}{\|\boldsymbol{x}\|} \in \mathcal{X}^{\perp}$
$>$ and H_{z} RIP on $2 k$-sparse signals $\cap \mathcal{X}^{\perp}$:

$$
\left\|\boldsymbol{H}_{z} \boldsymbol{v}^{\perp}\right\|^{2} \approx\left\|\boldsymbol{v}^{\perp}\right\|^{2}
$$

Given $\boldsymbol{z}=\operatorname{sign}_{\mathbb{C}}(\boldsymbol{A} \boldsymbol{x})$, how could $\boldsymbol{A}_{\boldsymbol{z}}:=\left(\boldsymbol{\alpha}_{\boldsymbol{z}}^{\Re}, \boldsymbol{\alpha}_{\boldsymbol{z}}^{\Im}, \boldsymbol{H}_{z}^{\top}\right)^{\top}$ respect the RIP?
For a sparse \boldsymbol{v},

$$
\left\|\boldsymbol{A}_{z} \boldsymbol{v}\right\|^{2}:=\left|\left\langle\alpha_{z}, \boldsymbol{v}\right\rangle\right|^{2}+\left\|\boldsymbol{H}_{z} \boldsymbol{v}\right\|^{2} \approx\left\langle\frac{x}{\|\boldsymbol{x}\|}, \boldsymbol{v}\right\rangle^{2}+\left\|\boldsymbol{v}^{\perp}\right\|^{2}=\|\boldsymbol{v}\|^{2}
$$

you can show that, for complex Gaussian \boldsymbol{A} :
$\rangle\left\langle\boldsymbol{\alpha}_{\boldsymbol{z}}, \boldsymbol{v}\right\rangle=\left\langle\frac{1}{\kappa \sqrt{m}} \boldsymbol{A}^{*} \boldsymbol{z}, \boldsymbol{v}\right\rangle \approx\left\langle\frac{\boldsymbol{x}}{\|\boldsymbol{x}\|}, \boldsymbol{v}\right\rangle \approx$ projection of \boldsymbol{v} onto $\mathcal{X}:=\mathbb{R} \boldsymbol{x}$
Proof: $\frac{1}{m} \mathbb{E}\left\langle\operatorname{sign}_{\mathbb{C}} \boldsymbol{A} \boldsymbol{u}, \sqrt{m} \boldsymbol{A} \boldsymbol{v}\right\rangle=\kappa\left\langle\frac{\boldsymbol{u}}{\|\boldsymbol{u}\|}, \boldsymbol{v}\right\rangle$ if $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{S}^{n-1}$
\rightarrow sign product embedding (SPE) \equiv extension $\forall k$-sparse $\boldsymbol{v}(w h p)$.
\rightarrow pick $\boldsymbol{u}=\boldsymbol{x}$
> $\boldsymbol{H}_{z} \boldsymbol{x}=0$ (by construction)
$\rightarrow \boldsymbol{H}_{z} \boldsymbol{v}=\boldsymbol{H}_{z} \boldsymbol{v}^{\perp}$, with $\boldsymbol{v}^{\perp}:=\boldsymbol{v}-\left\langle\boldsymbol{v}, \frac{x}{\|x\|}\right\rangle \frac{x}{\|\boldsymbol{x}\|} \in \mathcal{X}^{\perp}$
$>$ and H_{z} RIP on $2 k$-sparse signals $\cap \mathcal{X}^{\perp}$:

$$
\left\|\boldsymbol{H}_{z} \boldsymbol{v}^{\perp}\right\|^{2} \approx\left\|\boldsymbol{v}^{\perp}\right\|^{2}
$$

Final statement:
Theorem: Given x and $0<\delta<1, \sqrt{m} \boldsymbol{A} \sim \mathbb{C N}^{m \times n}(0,2)$, if

$$
m \geqslant C \delta^{-2} k \log (n / k)
$$

then, w.h.p., \boldsymbol{A}_{z} satisfies the RIP (k, δ).

Final statement:
Theorem: Given x and $0<\delta<1, \sqrt{m} \boldsymbol{A} \sim \mathbb{C} \mathcal{N}^{m \times n}(0,2)$, if

$$
m \geqslant C \delta^{-2} k \log (n / k)
$$

then, w.h.p., \boldsymbol{A}_{z} satisfies the $\operatorname{RIP}(k, \delta)$.

Consequences:

$>$ For $\hat{\boldsymbol{x}}=\operatorname{BP}\left(\boldsymbol{A}_{z}, \boldsymbol{e}_{1}\right)$, if $\boldsymbol{A}_{\boldsymbol{z}}$ is $\operatorname{RIP}\left(\delta<\delta_{0}, 2 k\right)$, we get exact reconstruction of signal direction, i.e., $\hat{x}=x^{\star}$!
$>+$ Stability \& robustness (aka instance optimality) with BPDN (see paper)

Simulations

Let's plot a phase-transition curve: we generate $\sqrt{m} \boldsymbol{A} \sim \mathbb{C N}^{m \times 256}(0,2)$ \&
> 20 -sparse vectors in \mathbb{R}^{256};
> $m \in[1,256]$ and average over 100 trials;
> Reconstruction successful if $S N R \geqslant 60 \mathrm{~dB}$.

Simulations

Let's plot a phase-transition curve: we generate $\sqrt{m} \boldsymbol{A} \sim \mathbb{C N}^{m \times 256}(0,2)$ \&
> 20-sparse vectors in \mathbb{R}^{256};
$>m \in[1,256]$ and average over 100 trials;
> Reconstruction successful if $\mathrm{SNR} \geqslant 60 \mathrm{~dB}$.

Simulations

Let's be a little more daring ... and forget Gauss

Simulations

Let's be a little more daring ... and forget Gauss

Bernoulli random matrix
$A_{i j} \sim_{\mathrm{iid}}\{ \pm 1 \pm \mathrm{i}\}$

Random partial Fourier
($A=$ sub-sampled $\mathcal{F}(x)$)

Simulations

Let's be a little more daring ... and forget Gauss

Bernoulli random matrix $A_{i j} \sim_{\mathrm{iid}}\{ \pm 1 \pm \mathrm{i}\}$

Random partial Fourier
($A=$ sub-sampled $\mathcal{F}(x)$)

Interestingly:
> These results are not covered by theory.
> Bernoulli random matrices do not work for 1-bit CS.
> Fourier sensing has PO-CS counter-examples (that cannot be recovered)! e.g., for $\boldsymbol{x}^{\prime}:=\boldsymbol{h} * \boldsymbol{x}$ with $\hat{h}_{k}>0, \forall k, \quad \operatorname{sign}_{\mathbb{C}}\left(\boldsymbol{A} \boldsymbol{x}^{\prime}\right)=\operatorname{sign}_{\mathbb{C}}(\boldsymbol{A} \boldsymbol{x})$.

Take-Away Messages

1. In Gauss' world, despite:
> the non-linearity of its sensing model,
> and the bad example of 1-bit CS (the "real" PO-CS),
phase-only compressive sensing works "as well as" (linear) CS.
2. What is recovered/estimated is the signal direction (via x^{\star}).
3. Applications: phase-quantization procedures with bounded distortion e.g., in radar, MRI, ...
4. Open/Closed questions:
> (minor) Extension to complex signals \& uniform result
\rightarrow Chen and Ng, 2023
> (major) Theoretical extension to other random sensing matrices.

Thank you!

LJ, T. Feuillen, "The importance of phase in complex compressive sensing", IEEE Transactions on Information Theory, 67(6), 4150-4161. arXiv:2001.02529®

Boufounos, Petros T (2013). "Sparse signal reconstruction from phase-only measurements". In: Proc. Int. Conf. Sampling Theory and Applications (SampTA)],(July 1-5 2013). Citeseer.

Boufounos, Petros T and Richard G Baraniuk (2008). "1-bit compressive sensing". In: 2008 42nd Annual Conference on Information Sciences and Systems. IEEE, pp. 16-21.

Candès, EJ and T Tao (2005). "Decoding by linear programming". In: IEEE Transactions on Information Theory 51.12, pp. 4203-4215.

Candès, Emmanuel J. (May 2008). "The restricted isometry property and its implications for compressed sensing". In: Comptes Rendus Mathematique 346.9-10, pp. 589-592.

Chen, Junren and Michael K Ng (2023). "Uniform exact reconstruction of sparse signals and low-rank matrices from phase-only measurements". In: IEEE Transactions on Information Theory 69.10, pp. 6739-6764.

Foucart, Simon and Holger Rauhut (2013). A Mathematical Introduction to Compressive Sensing. Springer New York.

Jacques, Laurent et al. (2013). "Robust 1-bit compressive sensing via binary stable embeddings of sparse vectors". In: IEEE Transactions on Information Theory 59.4, pp. 2082-2102.

Oppenheim, A.V. and J.S. Lim (1981). "The importance of phase in signals". In: Proceedings of the IEEE 69.5, pp. 529-541.

Plan, Yaniv and Roman Vershynin (2012). "Robust 1-bit compressed sensing and sparse logistic regression: A convex programming approach". In: IEEE Transactions on Information Theory 59.1, pp. 482-494.

- Extra slides -

Extra simulations: noisy case

We generate $\sqrt{m} \boldsymbol{A} \sim \mathbb{C N}^{m \times 256}(0,2)$ \&
> 20-sparse vectors in \mathbb{R}^{256};
$>m \in[1,256]$ and average over 100 trials;
$>\boldsymbol{z}=\operatorname{sign}_{\mathbb{C}}(\boldsymbol{A} \boldsymbol{x})+\boldsymbol{\xi}$, with $\boldsymbol{\xi} \in \mathbb{C}^{m}$ and $\|\boldsymbol{\xi}\|_{\infty} \leqslant \tau$.

Simplifying hypothesis

Phase-only observation in Compressive Sensing?

Simplifying hypothesis

Phase-only observation in Compressive Sensing?
Let's first simplify the context ...

1. We consider the sensing of real vectors $\boldsymbol{x} \in \mathbb{R}^{n}$.

Note: If complex signal x, we can always rewrite

$$
\boldsymbol{A} x=\left(\boldsymbol{A}^{\Re}+\mathrm{i} \boldsymbol{A}^{\Im}\right)\left(\boldsymbol{x}^{\Re}+\mathrm{i} \boldsymbol{x}^{\Im}\right)=(\boldsymbol{A}, \mathrm{i} \boldsymbol{A})\binom{\boldsymbol{x}^{\Re}}{\boldsymbol{x}^{\Im}}=\overline{\boldsymbol{A}} \overline{\boldsymbol{x}}
$$

with $\bar{x} \in \mathbb{R}^{2 n}$ and $\overline{\boldsymbol{A}} \in \mathbb{C}^{m \times 2 n}$.

Simplifying hypothesis

Phase-only observation in Compressive Sensing?
Let's first simplify the context . . .

1. We consider the sensing of real vectors $\boldsymbol{x} \in \mathbb{R}^{n}$.

Note: If complex signal x, we can always rewrite

$$
\boldsymbol{A} x=\left(\boldsymbol{A}^{\Re}+\mathrm{i} \boldsymbol{A}^{\Im}\right)\left(\boldsymbol{x}^{\Re}+\mathrm{i} \boldsymbol{x}^{\Im}\right)=(\boldsymbol{A}, \mathrm{i} \boldsymbol{A})\binom{\boldsymbol{x}^{\Re}}{\boldsymbol{x}^{\Im}}=\overline{\boldsymbol{A}} \overline{\boldsymbol{x}}
$$

with $\bar{x} \in \mathbb{R}^{2 n}$ and $\overline{\boldsymbol{A}} \in \mathbb{C}^{m \times 2 n}$.

Caveat: This can impact the signal model e.g., sparse in $\mathbb{C}^{n} \equiv$ group sparse in $\mathbb{R}^{2 n}$.

Simplifying hypothesis

Phase-only observation in Compressive Sensing?
Let's first simplify the context ...

1. We consider the sensing of real vectors $\boldsymbol{x} \in \mathbb{R}^{n}$.

Note: If complex signal \boldsymbol{x}, we can always rewrite

$$
\boldsymbol{A} x=\left(\boldsymbol{A}^{\Re}+\mathrm{i} \boldsymbol{A}^{\Im}\right)\left(\boldsymbol{x}^{\Re}+\mathrm{i} \boldsymbol{x}^{\Im}\right)=(\boldsymbol{A}, \mathrm{i} \boldsymbol{A})\binom{\boldsymbol{x}^{\Re}}{\boldsymbol{x}^{\Im}}=\overline{\boldsymbol{A}} \overline{\boldsymbol{x}}
$$

with $\bar{x} \in \mathbb{R}^{2 n}$ and $\bar{A} \in \mathbb{C}^{m \times 2 n}$.

Caveat: This can impact the signal model e.g., sparse in $\mathbb{C}^{n} \equiv$ group sparse in $\mathbb{R}^{2 n}$.
2. We focus here on the case of sparse vectors in \mathbb{R}^{n}.

However, extension to any low-complexity signals is possible (with small "dimension", that is Gaussian mean width)

