Keep the phase!

Signal recovery in phase-only compressive sensing

Laurent Jacques* and Thomas Feuillen+

*: INMA, UCLouvain, Belgium. +: Uni Lu, Luxembourg

October 31st, 2023

A bit of history ... Oppenheim and Lim, 1981:

"What's the most important information between the spectral amplitude and phase of signals?"

A bit of history ... Oppenheim and Lim, 1981:

"What's the most important information between the spectral amplitude and phase of signals?"

A simple experiment: Let ${\mathcal F}$ the (2-D) discrete Fourier transform (DFT)

Original image $f \in \mathbb{R}^{N_X \times N_y}$; & we compute $\mathcal{F}f \in \mathbb{C}^{N_X \times N_y}$

A bit of history ... Oppenheim and Lim, 1981:

"What's the most important information between the spectral amplitude and phase of signals?"

A simple experiment: Let \mathcal{F} the (2-D) discrete Fourier transform (DFT)

Original image $f \in \mathbb{R}^{N_X \times N_Y}$; & we compute $\mathcal{F}f \in \mathbb{C}^{N_X \times N_Y}$

Image reconstructed with spectral amplitude

$$f' = \mathcal{F}^{-1}(\underbrace{|\mathcal{F}f|})$$

*: applied component-wise

A bit of history ... Oppenheim and Lim, 1981:

"What's the most important information between the spectral amplitude and phase of signals?"

A simple experiment: Let \mathcal{F} the (2-D) discrete Fourier transform (DFT)

Original image $f \in \mathbb{R}^{N_X \times N_y}$; & we compute $\mathcal{F}f \in \mathbb{C}^{N_X \times N_y}$

Image reconstructed with spectral amplitude

*: applied component-wise

Image reconstructed with spectral phase

$$f' = \mathcal{F}^{-1}(\underbrace{\frac{\mathcal{F}f}{|\mathcal{F}f|}})$$

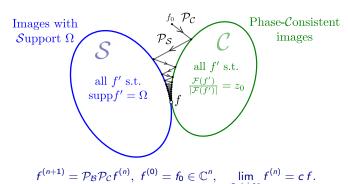
Fact: \exists algorithm to recover certain images from their spectral phase (up to a global amplitude).

Fact: \exists algorithm to recover certain images from their spectral phase (up to a global amplitude).

- ⇒ Use alternate projections onto convex sets, i.e.,
 - **>** given $z_0 = \mathcal{F}(f)/|\mathcal{F}(f)|$, the observed spectral phases,
 - lacktriangledown assuming $f\in\mathcal{S}:=$ set of images supported on $\Omega\subset\mathbb{R}^2$ (with $|\Omega|\leqslant \mathit{N_x\mathit{N_y}}$).

Fact: ∃ algorithm to recover certain images from their spectral phase (up to a global amplitude).

- ⇒ Use alternate projections onto convex sets, i.e.,
 - **>** given $z_0 = \mathcal{F}(f)/|\mathcal{F}(f)|$, the observed spectral phases,
 - lacktriangledown assuming $f\in\mathcal{S}:=$ set of images supported on $\Omega\subset\mathbb{R}^2$ (with $|\Omega|\leqslant N_xN_y$).



Applying this method to our example ... (i.e., with Ω set from

Applying this method to our example \dots (i.e., with Ω set from lacktriangledown

1st iteration (init with ones) (normalized SNR: 6.6 dB)

10 iterations (normalized SNR: 11.6 dB)

^{*:} This is equivalent to oversampling the Fourier domain of f.

Applying this method to our example ... (i.e., with Ω set from •

1st iteration (init with ones) (normalized SNR: 6.6 dB)

10 iterations (normalized SNR: 11.6 dB)

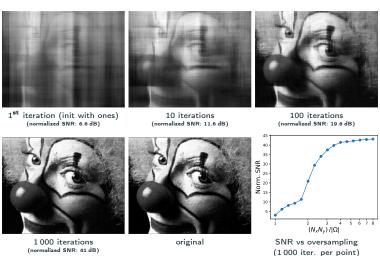
100 iterations (normalized SNR: 19.6 dB)

1 000 iterations (normalized SNR: 41 dB)

original

^{*:} This is equivalent to oversampling the Fourier domain of f.

Applying this method to our example \dots (i.e., with Ω set from ${}_{f 0}$



^{*:} This is equivalent to oversampling the Fourier domain of f.

Why could it be useful?

Numerous Fourier/spectral sensing applications:

- Magnetic resonance imaging (MRI);
- Radar systems;
- > Michelson interferometry / Fourier transform imaging;

Why could it be useful?

Numerous Fourier/spectral sensing applications:

- Magnetic resonance imaging (MRI);
- > Radar systems;
- Michelson interferometry / Fourier transform imaging;
- > Aperture synthesis by radio interferometry.

Challenges:

- Massive data stream imposes new data compression strategies.
- ➤ Compress but keep useful information (e.g., for subsequent imaging).
- \blacktriangleright Large magnitude variations \Rightarrow different compression impact.

Why could it be useful?

Numerous Fourier/spectral sensing applications:

- Magnetic resonance imaging (MRI);
- > Radar systems;
- Michelson interferometry / Fourier transform imaging;
- Aperture synthesis by radio interferometry.

Challenges:

- Massive data stream imposes new data compression strategies.
- ➤ Compress but keep useful information (e.g., for subsequent imaging).
- **>** Large magnitude variations \Rightarrow different compression impact.

Questions: Which systems are compatible with phase-only signal estimation?

Why asking?

- > If compatible, insensitive to large amplitudes variations (by definition).
- If robust, easy to compress information: just quantize the spectral phase!

Let's collect m < n measurements about x from this linear model:

$$\mathbf{y} = \mathbf{A}\mathbf{x} + \epsilon \in \mathbb{C}^m, \tag{CS}$$

with:

- **»** a low-complexity vector $\mathbf{x} \in \mathcal{L} \subset \mathbb{C}^n$ (e.g., a vectorized image) with \mathcal{L} the set of sparse signals, low-rank matrices, . . .
- \Rightarrow a complex sensing matrix $\mathbf{A} \in \mathbb{C}^{m \times n}$.
- **>** a given (additive) noise $\epsilon \in \mathbb{C}^m$ and $\|\epsilon\| \leqslant \varepsilon$.

Let's collect m < n measurements about x from this linear model:

$$\mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{\epsilon} \in \mathbb{C}^m,$$
 (CS)

with:

- **»** a low-complexity vector $x \in \mathcal{L} \subset \mathbb{C}^n$ (e.g., a vectorized image) with \mathcal{L} the set of sparse signals, low-rank matrices, . . .
- \triangleright a complex sensing matrix $\mathbf{A} \in \mathbb{C}^{m \times n}$,
- ▶ a given (additive) noise $\epsilon \in \mathbb{C}^m$ and $\|\epsilon\| \leqslant \varepsilon$.

Compressive sensing:

Despite m < n, if m larger than \mathcal{L} 's "dimension", and \mathbf{A} is "random", the vector \mathbf{x} can be exactly recovered (or estimated if $\epsilon \neq 0$).

[Candès and Tao, 2005; Foucart and Rauhut, 2013]

Let's be more specific . . . let's focus on the Gaussian case.

Restricted isometry property

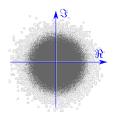
For some $0 < \delta < 1$ and k < m < n, if

$$m \geqslant C \delta^{-2} k \log(n/k),$$

and
$$\sqrt{m} A_{ij} \sim_{\text{i.i.d.}} \mathbb{C} \mathcal{N}(0,2) \sim \mathcal{N}(0,1) + i \mathcal{N}(0,1)$$
,

then, with high probability (w.h.p.),

$$(1-\delta)\|\mathbf{v}\|^2 \le \|\mathbf{A}\mathbf{v}\|^2 \le (1+\delta)\|\mathbf{v}\|^2$$
. $\forall k$ -sparse \mathbf{v} .



 $(RIP(k,\delta))$

Let's be more specific . . . let's focus on the Gaussian case.

Restricted isometry property

For some $0 < \delta < 1$ and k < m < n, if

$$m \geqslant C \delta^{-2} k \log(n/k),$$

and $\sqrt{m} A_{ij} \sim_{\text{i.i.d.}} \mathbb{C} \mathcal{N}(0,2) \sim \mathcal{N}(0,1) + i \mathcal{N}(0,1)$,

??

then, with high probability (w.h.p.),

$$(1-\delta)\|\mathbf{v}\|^2 \leqslant \|\mathbf{A}\mathbf{v}\|^2 \leqslant (1+\delta)\|\mathbf{v}\|^2, \quad \forall k$$
-sparse \mathbf{v} . (RIP (k,δ))

So, why does CS work? Given y = Ax with x a k-sparse signal, we have

$$\Rightarrow$$
 RIP $(2k, \delta) \Rightarrow ||y - Au||^2 = ||A(x - u)||^2 \approx ||x - u||^2$, for all k-sparse u .

 \Rightarrow **A** is essentially invertible over the set of sparse vectors; just estimate **x** by finding a sparse **u** zeroing or minimizing $||y - Au||^2$!

The RIP supports (one of) the "fundamental theorem(s) of CS"

Theorem: If $\bf A$ is RIP $(2k,\delta)$ with $0<\delta<\delta_0$ (e.g., $\delta_0=1/\sqrt{2}$), then the basis pursuit denoise estimate: $\hat{\bf x}=\arg\min \quad \|{\bf u}\|_1 \qquad \text{s.t.} \quad \|{\bf y}-{\bf A}{\bf u}\|\leqslant \varepsilon, \tag{BP}$

$$\hat{\mathbf{x}} = \underset{\mathbf{u} \in \mathbb{C}^n}{\text{arg min}} \underbrace{\|\mathbf{u}\|_1}_{\text{sparsity promoting}} \text{ s.t. } \underbrace{\|\mathbf{y} - \mathbf{A}\mathbf{u}\| \leqslant \varepsilon}_{\text{data fidelity}}, \tag{BPDN}$$

See, e.g., Candès, 2008; Foucart and Rauhut, 2013.

The RIP supports (one of) the "fundamental theorem(s) of CS"

Theorem: If **A** is RIP($2k, \delta$) with $0 < \delta < \delta_0$ (e.g., $\delta_0 = 1/\sqrt{2}$), then the *basis pursuit denoise* estimate:

$$\hat{\mathbf{x}} = \underset{\mathbf{u} \in \mathbb{C}^n}{\text{arg min}} \underbrace{\|\mathbf{u}\|_1}_{\text{sparsity promoting}} \text{ s.t. } \underbrace{\|\mathbf{y} - \mathbf{A}\mathbf{u}\| \leqslant \varepsilon}_{\text{data fidelity}}, \tag{BPDN}$$

satisfies the instance optimality

$$\underbrace{\|\mathbf{x} - \hat{\mathbf{x}}\|}_{\text{dec. error}; \approx \text{MSE}} \leqslant C \underbrace{\frac{\|\mathbf{x} - \mathbf{x}_k\|_1}{\sqrt{k}}}_{\text{deviation to sparsity}} + \underbrace{D\varepsilon}_{\text{noise}}.$$

See, e.g., Candès, 2008; Foucart and Rauhut, 2013.

Phase-Only Sensing Model for CS

Inspired by Oppenheim and Lim, 1981; Boufounos, 2013,

let's consider the phase-only (non-linear) compressive sensing model:

$$z = \operatorname{sign}_{\mathbb{C}}(Ax) + \epsilon \in \mathbb{C}^m,$$
 (PO-CS)

where:

- **>** $A ∈ \mathbb{C}^{m \times n}$ is complex, but x is a real (\triangle), k-sparse vector;
- \Rightarrow sign_C $(re^{i\theta}) := e^{i\theta}$ (and 0 if r = 0), applied pointwise;
- **>** and $\epsilon \in \mathbb{C}^m$ a bounded noise with $\|\epsilon\|_{\infty} \leqslant \tau$ for some $\tau \geqslant 0$.

Phase-Only Sensing Model for CS

Inspired by Oppenheim and Lim, 1981; Boufounos, 2013,

let's consider the phase-only (non-linear) compressive sensing model:

$$z = \operatorname{sign}_{\mathbb{C}}(Ax) + \epsilon \in \mathbb{C}^m,$$
 (PO-CS)

where:

- **>** $A ∈ \mathbb{C}^{m \times n}$ is complex, but x is a real (\triangle), k-sparse vector;
- $> \operatorname{sign}_{\mathbb{C}}(re^{i\theta}) := e^{i\theta}$ (and 0 if r = 0), applied pointwise;
- lacktriangle and $\epsilon\in\mathbb{C}^m$ a bounded noise with $\|\epsilon\|_\infty\leqslant au$ for some $au\geqslant 0$.

Key observations:

1. If $x \to Cx$ with C > 0, z is unchanged

(signal amplitude is lost)

Phase-Only Sensing Model for CS

Inspired by Oppenheim and Lim, 1981; Boufounos, 2013,

let's consider the phase-only (non-linear) compressive sensing model:

$$z = \operatorname{sign}_{\mathbb{C}}(Ax) + \epsilon \in \mathbb{C}^m,$$
 (PO-CS)

where: $\rightarrow A \in \mathbb{C}^{m \times n}$ is complex, but x is a real (\triangle), k-sparse vector;

- \Rightarrow sign_C($re^{i\theta}$) := $e^{i\theta}$ (and 0 if r=0), applied pointwise;
- lacktriangle and $\epsilon\in\mathbb{C}^m$ a bounded noise with $\|\epsilon\|_\infty\leqslant au$ for some $au\geqslant 0$.

Key observations:

- 1. If $x \to Cx$ with C > 0, z is unchanged (signal amplitude is lost)
- **2.** If both ${\it A}$ and ${\it x}$ are real, then ${\it z} \in \{\pm 1\}^m$ (real PO-CS ightarrow 1-bit CS)

Fact: In noiseless 1-bit CS, best estimate s.t. $\|\hat{x} - x\| = \Omega(1/m)$ if $m \uparrow$. [Boufounos and Baraniuk, 2008; Jacques et al., 2013; Plan and Vershynin, 2012]

Principle: Turn the non-linear PO model into linear one.

A. Let's normalize x: Any renormalized signal cx (c > 0), and in particular

$$x^* := \frac{\kappa \sqrt{m}}{\|Ax\|_1} x$$
, with $\kappa := \sqrt{\frac{\pi}{2}}$,

preserves PO measurements, i.e., $sign_{\mathbb{C}}(Ax) = sign_{\mathbb{C}}(Ax^*)$.

Therefore, we focus on the recovery of x^* (\rightarrow encodes signal direction)

that satisfies
$$\|\mathbf{A}\mathbf{x}^*\|_1 = \kappa \sqrt{m}$$
.

A. Let's normalize x: Any renormalized signal cx (c > 0), and in particular

$$\mathbf{x}^{\star} := \frac{\kappa \sqrt{m}}{\|\mathbf{A}\mathbf{x}\|_{1}} \mathbf{x}, \quad \text{with } \kappa := \sqrt{\frac{\pi}{2}},$$

preserves PO measurements, i.e., $sign_{\mathbb{C}}(Ax) = sign_{\mathbb{C}}(Ax^*)$.

Therefore, we focus on the recovery of x^* (\rightarrow encodes signal direction)

that satisfies
$$\|\mathbf{A}\mathbf{x}^*\|_1 = \kappa \sqrt{m}$$
.

Rationale:

- > Well, it's useful for our proofs 3
- **>** For complex Gaussian $\sqrt{m} \mathbf{A} \sim \mathbb{C} \mathcal{N}^{m \times n}(0,2)$ and $g \sim \mathcal{N}(0,1)$,

$$\mathbb{E}|g| = \kappa \quad \Rightarrow \quad \mathbb{E}||\mathbf{A}\mathbf{x}||_1 = \kappa \sqrt{m} \, ||\mathbf{x}|| \quad \Rightarrow \quad ||\mathbf{x}^{\star}|| \approx 1.$$

 $\Rightarrow x^*$ is (almost) a unit length vector, *i.e.*, a direction.

B. Let's find linear constraints: From the noiseless model

$$z = \operatorname{sign}_{\mathbb{C}}(Ax^*),$$

we see that the vector $\mathbf{u} = \mathbf{x}^{\star} \in \mathbb{R}^n$ respects both:

$$\underbrace{\langle \mathbf{z}, \mathbf{A} \mathbf{u} \rangle}_{=\parallel \mathbf{A} \mathbf{x}^{*} \parallel_{1} \text{ if } \mathbf{u} = \mathbf{x}^{*}} = \kappa \sqrt{m} \quad \Leftrightarrow \underbrace{\langle \frac{1}{\kappa \sqrt{m}} \mathbf{A}^{*} \mathbf{z}, \mathbf{u} \rangle}_{:=\alpha_{\mathbf{z}}} = 1 \quad \text{(normalization)}$$

B. Let's find linear constraints: From the noiseless model

$$z = \operatorname{sign}_{\mathbb{C}}(Ax^*),$$

we see that the vector $\mathbf{u} = \mathbf{x}^{\star} \in \mathbb{R}^n$ respects both:

$$\begin{cases} \underbrace{\langle \mathbf{z}, \mathbf{A} \mathbf{u} \rangle}_{= \parallel A \mathbf{x}^{*} \parallel_{\mathbf{1}} \text{ if } u = \mathbf{x}^{*}} = \kappa \sqrt{m} & \Leftrightarrow \left\langle \frac{1}{\kappa \sqrt{m}} \mathbf{A}^{*} \mathbf{z}, \mathbf{u} \right\rangle = 1 & \text{(normalization)} \\ \operatorname{diag}(\mathbf{z})^{*} \mathbf{A} \mathbf{u} = \left(\underbrace{z_{1}^{*} \cdot (\mathbf{A} \mathbf{u})_{1}}_{= \mid (A \mathbf{x}^{*})_{1} \mid \text{ if } u = \mathbf{x}^{*}} \right)^{\top} \in \mathbb{R}_{+}^{m} & \text{(phase consistency)} \\ = |(A \mathbf{x}^{*})_{1}| & \operatorname{if } u = \mathbf{x}^{*} & = |(A \mathbf{x}^{*})_{m}| & \operatorname{if } u = \mathbf{x}^{*} \end{cases}$$

B. Let's find linear constraints: From the noiseless model

$$z = \operatorname{sign}_{\mathbb{C}}(Ax^*),$$

we see that the vector $u = x^* \in \mathbb{R}^n$ respects both:

$$\begin{cases} \underbrace{\langle \mathbf{z}, \mathbf{A} \mathbf{u} \rangle}_{= \parallel \mathbf{A} \mathbf{x}^{*} \parallel_{1} \text{ if } \mathbf{u} = \mathbf{x}^{*}} = \kappa \sqrt{m} & \Leftrightarrow \left\langle \frac{1}{\kappa \sqrt{m}} \mathbf{A}^{*} \mathbf{z}, \mathbf{u} \right\rangle = 1 & \text{(normalization)} \\ \operatorname{diag}(\mathbf{z})^{*} \mathbf{A} \mathbf{u} = \left(\underbrace{z_{1}^{*} \cdot (\mathbf{A} \mathbf{u})_{1}}_{= \mid (\mathbf{A} \mathbf{x}^{*})_{1} \mid \text{ if } \mathbf{u} = \mathbf{x}^{*}} = \underbrace{|(\mathbf{A} \mathbf{x}^{*})_{m} \mid \text{ if } \mathbf{u} = \mathbf{x}^{*}}_{= \mid (\mathbf{A} \mathbf{x}^{*})_{m} \mid \text{ if } \mathbf{u} = \mathbf{x}^{*}} \end{cases}$$
(phase consistency)

Let's relax "phase consistency": we only impose $\operatorname{diag}(z)^* Au \in \mathbb{R}^m$, that is

$$0 = \Im(\operatorname{diag}(z)^* \mathbf{A} \mathbf{u}) = (\operatorname{diag}(z)^{\Re} \mathbf{A}^{\Im} - \operatorname{diag}(z)^{\Im} \mathbf{A}^{\Re}) \mathbf{u} =: \mathbf{H}_z \mathbf{u}.$$

Moreover, "normalization" means

$$\langle \boldsymbol{\alpha}_{\mathbf{z}}, \boldsymbol{u} \rangle = 1 \quad \Leftrightarrow \quad \langle \boldsymbol{\alpha}_{\mathbf{z}}^{\Re}, \boldsymbol{u} \rangle = 1, \ \langle \boldsymbol{\alpha}_{\mathbf{z}}^{\Im}, \boldsymbol{u} \rangle = 0.$$

In summary, $u = x^*$ respects the relaxed, real m + 2 constraints . . .

$$\mathbf{A}_z \mathbf{u} = \mathbf{e}_1 := (1,0,\cdots,0)^{ op}$$
 \Rightarrow This is a linear sensing model! Like " $\mathbf{A}_x = \mathbf{y}$ "

with

$$\mathbf{A}_{\mathbf{z}} := (\boldsymbol{\alpha}_{\mathbf{z}}^{\Re}, \boldsymbol{\alpha}_{\mathbf{z}}^{\Im}, \mathbf{H}_{\mathbf{z}}^{\top})^{\top} \in \mathbb{R}^{(m+2) \times n}.$$

In other words,

- A good estimate x̂ of x* should respect the linear model A_zx̂ = e₁ since x* ∈ {u ∈ Rⁿ : A_zû = e₁}.
- > We know this estimate should be sparse (as for x^*)

In summary, $\mathbf{u} = \mathbf{x}^*$ respects the relaxed, real m+2 constraints . . .

$$\mathbf{A}_z \mathbf{u} = \mathbf{e}_1 := (1, 0, \cdots, 0)^{\top}$$
 \Rightarrow This is a linear sensing model! Like " $\mathbf{A}_x = \mathbf{y}$ "

with

$$\mathbf{A}_{\mathbf{z}} := (\boldsymbol{lpha}_{\mathbf{z}}^{\Re}, \boldsymbol{lpha}_{\mathbf{z}}^{\Im}, \mathbf{H}_{\mathbf{z}}^{\top})^{\top} \in \mathbb{R}^{(m+2) \times n}.$$

In other words,

- ▶ A good estimate \hat{x} of x^* should respect the linear model $A_z\hat{x} = e_1$ since $x^* \in \{u \in \mathbb{R}^n : A_z\hat{u} = e_1\}$.
- > We know this estimate should be sparse (as for x^*)
- \Rightarrow As in linear CS, we can compute \hat{x} from a basis pursuit program (BP)

$$\hat{\mathbf{x}} = \underset{\mathbf{u} \in \mathbb{C}^n}{\min} \|\mathbf{u}\|_1 \text{ s.t. } \mathbf{A}_{\mathbf{z}}\mathbf{u} = \mathbf{e}_1,$$
 (BP($\mathbf{A}_{\mathbf{z}}, \mathbf{e}_1$))

Question: How far is \hat{x} from x^* ? Well, let's see if A_z respects the RIP!

Given $z = \operatorname{sign}_{\mathbb{C}}(Ax)$, how could $A_z := (\alpha_z^{\Re}, \alpha_z^{\Im}, H_z^{\top})^{\top}$ respect the RIP? For a sparse v,

$$\|\mathbf{A}_{\mathbf{z}}\mathbf{v}\|^2 := |\langle \alpha_{\mathbf{z}}, \mathbf{v} \rangle|^2 + \|\mathbf{H}_{\mathbf{z}}\mathbf{v}\|^2$$

Given $z = \operatorname{sign}_{\mathbb{C}}(Ax)$, how could $A_z := (\alpha_z^{\Re}, \alpha_z^{\Im}, H_z^{\top})^{\top}$ respect the RIP? For a sparse v,

$$\|\mathbf{A}_{\mathbf{z}}\mathbf{v}\|^2 := \left|\langle \boldsymbol{\alpha}_{\mathbf{z}}, \mathbf{v} \rangle\right|^2 + \|\mathbf{H}_{\mathbf{z}}\mathbf{v}\|^2$$

you can show that, for complex Gaussian A:

$$\langle \alpha_{\mathbf{z}}, \mathbf{v} \rangle = \langle \frac{1}{\kappa \sqrt{m}} \mathbf{A}^* \mathbf{z}, \mathbf{v} \rangle \approx \langle \frac{\mathbf{x}}{\|\mathbf{x}\|}, \mathbf{v} \rangle \approx \text{projection of } \mathbf{v} \text{ onto } \mathcal{X} := \mathbb{R} \mathbf{x}$$

Proof.
$$\frac{1}{m}\mathbb{E}\langle \operatorname{sign}_{\mathbb{C}} \mathbf{A}\mathbf{u}, \sqrt{m}\mathbf{A}\mathbf{v}\rangle = \kappa\langle \frac{\mathbf{u}}{\|\mathbf{u}\|}, \mathbf{v}\rangle \text{ if } \mathbf{u}, \mathbf{v} \in \mathbb{S}^{n-1}$$

- \rightarrow sign product embedding (SPE) \equiv extension $\forall k$ -sparse v (whp).
- \rightarrow pick u = x

Given $z = \operatorname{sign}_{\mathbb{C}}(Ax)$, how could $A_z := (\alpha_z^{\Re}, \alpha_z^{\Im}, H_z^{\top})^{\top}$ respect the RIP? For a sparse v,

$$\|\mathbf{A}_{\mathbf{z}}\mathbf{v}\|^2 := |\langle \alpha_{\mathbf{z}}, \mathbf{v} \rangle|^2 + \|\mathbf{H}_{\mathbf{z}}\mathbf{v}\|^2$$

you can show that, for complex Gaussian A:

$$\langle \alpha_z, v \rangle = \langle \frac{1}{\kappa \sqrt{m}} A^* z, v \rangle \approx \langle \frac{x}{\|x\|}, v \rangle \approx \text{projection of } v \text{ onto } \mathcal{X} := \mathbb{R} x$$

Proof.
$$\frac{1}{m}\mathbb{E}\langle \operatorname{sign}_{\mathbb{C}} \mathbf{A} \mathbf{u}, \sqrt{m} \mathbf{A} \mathbf{v} \rangle = \kappa \langle \frac{\mathbf{u}}{\|\mathbf{u}\|}, \mathbf{v} \rangle \text{ if } \mathbf{u}, \mathbf{v} \in \mathbb{S}^{n-1}$$

- \rightarrow sign product embedding (SPE) \equiv extension $\forall k$ -sparse v (whp).
- \rightarrow pick u = x
- $H_z x = 0$ (by construction)

$$o oldsymbol{H_z} oldsymbol{v} = oldsymbol{H_z} oldsymbol{v}^\perp, ext{ with } oldsymbol{v}^\perp := oldsymbol{v} - \langle oldsymbol{v}, rac{oldsymbol{x}}{\|oldsymbol{x}\|}
angle rac{oldsymbol{x}}{\|oldsymbol{x}\|} \in \mathcal{X}^\perp$$

Given $z = \operatorname{sign}_{\mathbb{C}}(Ax)$, how could $A_z := (\alpha_z^{\Re}, \alpha_z^{\Im}, H_z^{\top})^{\top}$ respect the RIP? For a sparse v,

$$\|\mathbf{A}_{\mathbf{z}}\mathbf{v}\|^2 := |\langle \alpha_{\mathbf{z}}, \mathbf{v} \rangle|^2 + \|\mathbf{H}_{\mathbf{z}}\mathbf{v}\|^2$$

you can show that, for complex Gaussian A:

 $\langle \alpha_{\mathbf{z}}, \mathbf{v} \rangle = \langle \frac{1}{\kappa \sqrt{m}} \mathbf{A}^* \mathbf{z}, \mathbf{v} \rangle \approx \langle \frac{\mathbf{x}}{\|\mathbf{x}\|}, \mathbf{v} \rangle \approx \text{projection of } \mathbf{v} \text{ onto } \mathcal{X} := \mathbb{R} \mathbf{x}$

Proof.
$$\frac{1}{m}\mathbb{E}\langle \operatorname{sign}_{\mathbb{C}} \mathbf{A} \mathbf{u}, \sqrt{m} \mathbf{A} \mathbf{v} \rangle = \kappa \langle \frac{\mathbf{u}}{\|\mathbf{u}\|}, \mathbf{v} \rangle \text{ if } \mathbf{u}, \mathbf{v} \in \mathbb{S}^{n-1}$$

- \rightarrow sign product embedding (SPE) \equiv extension $\forall k$ -sparse v (whp).
- \rightarrow pick u = x
- \rightarrow $H_z x = 0$ (by construction)

$$o \mathbf{H}_{\mathbf{z}}\mathbf{v} = \mathbf{H}_{\mathbf{z}}\mathbf{v}^{\perp}$$
, with $\mathbf{v}^{\perp} := \mathbf{v} - \langle \mathbf{v}, \frac{\mathbf{x}}{\|\mathbf{x}\|} \rangle \frac{\mathbf{x}}{\|\mathbf{x}\|} \in \mathcal{X}^{\perp}$

> and H_z RIP on 2k-sparse signals $\cap X^{\perp}$:

$$\|\mathbf{H}_{\mathbf{z}}\mathbf{v}^{\perp}\|^2 \approx \|\mathbf{v}^{\perp}\|^2.$$

RIP for A_z ? (1/2)

Given $z = \operatorname{sign}_{\mathbb{C}}(Ax)$, how could $A_z := (\alpha_z^{\Re}, \alpha_z^{\Im}, H_z^{\top})^{\top}$ respect the RIP? For a sparse v,

$$\|\textbf{\textit{A}}_{\textbf{\textit{z}}}\textbf{\textit{v}}\|^2 := |\langle \boldsymbol{\alpha}_{\textbf{\textit{z}}},\textbf{\textit{v}}\rangle|^2 + \|\textbf{\textit{H}}_{\textbf{\textit{z}}}\textbf{\textit{v}}\|^2 \approx \langle \frac{\textbf{\textit{x}}}{\|\textbf{\textit{x}}\|},\textbf{\textit{v}}\rangle^2 + \|\textbf{\textit{v}}^\perp\|^2 = \|\textbf{\textit{v}}\|^2$$

you can show that, for complex Gaussian A:

$$\langle \alpha_{\mathbf{z}}, \mathbf{v} \rangle = \langle \frac{1}{\kappa \sqrt{m}} \mathbf{A}^* \mathbf{z}, \mathbf{v} \rangle \approx \langle \frac{\mathbf{x}}{\|\mathbf{x}\|}, \mathbf{v} \rangle \approx \text{projection of } \mathbf{v} \text{ onto } \mathcal{X} := \mathbb{R} \mathbf{x}$$

Proof.
$$\frac{1}{m}\mathbb{E}\langle \operatorname{sign}_{\mathbb{C}} \mathbf{A} \mathbf{u}, \sqrt{m} \mathbf{A} \mathbf{v} \rangle = \kappa \langle \frac{\mathbf{u}}{\|\mathbf{u}\|}, \mathbf{v} \rangle \text{ if } \mathbf{u}, \mathbf{v} \in \mathbb{S}^{n-1}$$

- \rightarrow sign product embedding (SPE) \equiv extension $\forall k$ -sparse v (whp).
- \rightarrow pick u = x
- \rightarrow $H_z x = 0$ (by construction)

$$o \mathbf{H}_{\mathbf{z}}\mathbf{v} = \mathbf{H}_{\mathbf{z}}\mathbf{v}^{\perp}$$
, with $\mathbf{v}^{\perp} := \mathbf{v} - \langle \mathbf{v}, \frac{\mathbf{x}}{\|\mathbf{x}\|} \rangle \frac{\mathbf{x}}{\|\mathbf{x}\|} \in \mathcal{X}^{\perp}$

> and H_z RIP on 2k-sparse signals $\cap X^{\perp}$:

$$\|\mathbf{H}_{\mathbf{z}}\mathbf{v}^{\perp}\|^2 \approx \|\mathbf{v}^{\perp}\|^2.$$

RIP for A_z ? (2/2)

Final statement:

Theorem: Given x and $0 < \delta < 1$, $\sqrt{m} \mathbf{A} \sim \mathbb{C} \mathcal{N}^{m \times n}(0, 2)$, if

$$m \geqslant C\delta^{-2}k\log(n/k),$$

then, w.h.p., A_z satisfies the RIP (k, δ) .

RIP for A_z ? (2/2)

Final statement:

Theorem: Given x and $0 < \delta < 1$, $\sqrt{m}\mathbf{A} \sim \mathbb{C}\mathcal{N}^{m \times n}(0,2)$, if

$$m \geqslant C\delta^{-2}k\log(n/k),$$

then, w.h.p., A_z satisfies the RIP (k, δ) .

Consequences:

- ▶ For $\hat{\mathbf{x}} = \mathrm{BP}(\mathbf{A}_z, \mathbf{e}_1)$, if \mathbf{A}_z is RIP($\delta < \delta_0, 2k$), we get exact reconstruction of signal direction, *i.e.*, $\hat{\mathbf{x}} = \mathbf{x}^*$!
- > + Stability & robustness (aka instance optimality) with BPDN (see paper)

Simulations (1/2)

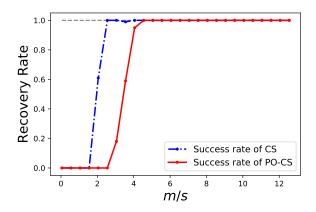
Let's plot a *phase-transition curve*: we generate $\sqrt{m} \mathbf{A} \sim \mathbb{C} \mathcal{N}^{m \times 256}(0,2)$ &

- \gt 20-sparse vectors in \mathbb{R}^{256} ;
- **>** $m \in [1, 256]$ and average over 100 trials;
- > Reconstruction successful if SNR \geqslant 60 dB.

Simulations (1/2)

Let's plot a phase-transition curve: we generate $\sqrt{m} \pmb{A} \sim \mathbb{C} \mathcal{N}^{m \times 256}(0,2)$ &

- **>** 20-sparse vectors in \mathbb{R}^{256} ;
- ▶ $m \in [1, 256]$ and average over 100 trials;
- ➤ Reconstruction successful if SNR ≥ 60 dB.

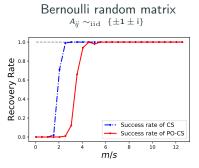


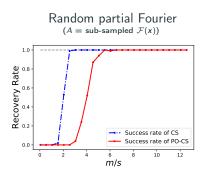
Simulations (2/2)

Let's be a little more daring ... and forget Gauss

Simulations (2/2)

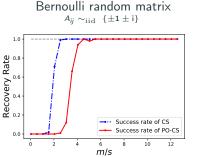
Let's be a little more daring ... and forget Gauss

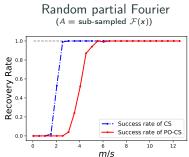




Simulations (2/2)

Let's be a little more daring . . . and forget Gauss





Interestingly:

- > These results are not covered by theory.
- > Bernoulli random matrices do not work for 1-bit CS.
- > Fourier sensing has PO-CS counter-examples (that cannot be recovered)!

e.g., for
$$\mathbf{x}' := \mathbf{h} * \mathbf{x}$$
 with $\hat{h}_k > 0, \forall k, \quad \operatorname{sign}_{\mathbb{C}}(\mathbf{A}\mathbf{x}') = \operatorname{sign}_{\mathbb{C}}(\mathbf{A}\mathbf{x}).$

Take-Away Messages

- 1. In Gauss' world, despite:
 - > the non-linearity of its sensing model,
 - and the bad example of 1-bit CS (the "real" PO-CS),
 phase-only compressive sensing works "as well as" (linear) CS.
- 2. What is recovered/estimated is the signal direction (via x^*).
- **3.** Applications: phase-quantization procedures with bounded distortion *e.g.*, in radar, MRI, . . .
- 4. Open/Closed questions:
 - ightharpoonup (minor) Extension to complex signals & uniform result ightharpoonup Chen and Ng, 2023
 - > (major) Theoretical extension to other random sensing matrices.

 $\cdot - \cdot - \cdot$

Thank you!

LJ, T. Feuillen, "The importance of phase in complex compressive sensing", IEEE Transactions on Information Theory, 67(6), 4150-4161. arXiv:2001.02529 €

Boufounos, Petros T (2013). "Sparse signal reconstruction from phase-only measurements". In: Proc. Int. Conf. Sampling Theory and Applications (SampTA)], (July 1-5 2013). Citeseer.

Boufounos, Petros T and Richard G Baraniuk (2008). "1-bit compressive sensing". In: 2008 42nd Annual Conference on Information Sciences and Systems. IEEE, pp. 16–21.

Candès, EJ and T Tao (2005). "Decoding by linear programming". In: IEEE Transactions on Information Theory 51.12, pp. 4203–4215.

Candès, Emmanuel J. (May 2008). "The restricted isometry property and its implications for compressed sensing". In: Comptes Rendus Mathematique 346.9-10, pp. 589–592.

Chen, Junren and Michael K Ng (2023). "Uniform exact reconstruction of sparse signals and low-rank matrices from phase-only measurements". In: *IEEE Transactions on Information Theory* 69.10, pp. 6739–6764.

Foucart, Simon and Holger Rauhut (2013). A Mathematical Introduction to Compressive Sensing. Springer New York.

Jacques, Laurent et al. (2013). "Robust 1-bit compressive sensing via binary stable embeddings of sparse vectors". In: IEEE Transactions on Information Theory 59.4, pp. 2082–2102.

Oppenheim, A.V. and J.S. Lim (1981). "The importance of phase in signals". In: Proceedings of the IEEE 69.5, pp. 529-541.

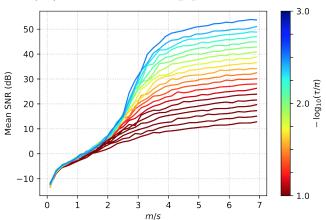
Plan, Yaniv and Roman Vershynin (2012). "Robust 1-bit compressed sensing and sparse logistic regression: A convex programming approach". In: IEEE Transactions on Information Theory 59.1, pp. 482–494.

— Extra slides —

Extra simulations: noisy case

We generate $\sqrt{m} \mathbf{A} \sim \mathbb{C} \mathcal{N}^{m \times 256}(0,2)$ &

- \gt 20-sparse vectors in \mathbb{R}^{256} ;
- > $m \in [1, 256]$ and average over 100 trials;
- z = sign_ℂ(Ax) + ξ, with ξ ∈ ℂ^m and $||ξ||_{∞} ≤ τ$.



Phase-only observation in Compressive Sensing?

Phase-only observation in Compressive Sensing?

Let's first simplify the context ...

1. We consider the sensing of real vectors $x \in \mathbb{R}^n$.

Note: If complex signal x, we can always rewrite

$$\mathbf{A} \mathbf{x} = (\mathbf{A}^{\Re} + i\mathbf{A}^{\Im})(\mathbf{x}^{\Re} + i\mathbf{x}^{\Im}) = (\mathbf{A}, i\mathbf{A}) \begin{pmatrix} \mathbf{x}^{\Re} \\ \mathbf{x}^{\Im} \end{pmatrix} = \overline{\mathbf{A}} \, \overline{\mathbf{x}},$$

with $\bar{\mathbf{x}} \in \mathbb{R}^{2n}$ and $\overline{\mathbf{A}} \in \mathbb{C}^{m \times 2n}$.

Phase-only observation in Compressive Sensing?

Let's first simplify the context ...

1. We consider the sensing of real vectors $x \in \mathbb{R}^n$.

Note: If complex signal x, we can always rewrite

$$\mathbf{A} \mathbf{x} = (\mathbf{A}^{\Re} + i\mathbf{A}^{\Im})(\mathbf{x}^{\Re} + i\mathbf{x}^{\Im}) = (\mathbf{A}, i\mathbf{A}) \begin{pmatrix} \mathbf{x}^{\Re} \\ \mathbf{x}^{\Im} \end{pmatrix} = \overline{\mathbf{A}} \, \overline{\mathbf{x}},$$

with $\bar{\mathbf{x}} \in \mathbb{R}^{2n}$ and $\overline{\mathbf{A}} \in \mathbb{C}^{m \times 2n}$.

Caveat: This can impact the signal model e.g., sparse in $\mathbb{C}^n \equiv \text{group sparse in } \mathbb{R}^{2n}$.

Phase-only observation in Compressive Sensing?

Let's first simplify the context ...

1. We consider the sensing of real vectors $x \in \mathbb{R}^n$.

Note: If complex signal x, we can always rewrite

$$\mathbf{A} \mathbf{x} = (\mathbf{A}^{\Re} + i\mathbf{A}^{\Im})(\mathbf{x}^{\Re} + i\mathbf{x}^{\Im}) = (\mathbf{A}, i\mathbf{A}) \begin{pmatrix} \mathbf{x}^{\Re} \\ \mathbf{x}^{\Im} \end{pmatrix} = \overline{\mathbf{A}} \bar{\mathbf{x}},$$

with $\bar{\mathbf{x}} \in \mathbb{R}^{2n}$ and $\overline{\mathbf{A}} \in \mathbb{C}^{m \times 2n}$.

Caveat: This can impact the signal model e.g., sparse in $\mathbb{C}^n \equiv \text{group sparse in } \mathbb{R}^{2n}$.

2. We focus here on the case of sparse vectors in \mathbb{R}^n .

However, extension to any low-complexity signals is possible (with small "dimension", that is *Gaussian mean width*)