What can we learn from the Compressed Sensing theory?

Laurent Jacques (ICTEAM/ELEN, UCL)

March 22, 2012. Ecole Centrale de Lille, France.

I. Sparsity is everywhere ...

Sparse Signal Representation

Informative signals are composed of structures ...

3-D data

(1/2)

Data on Graph

Biology

Video

Astronomy

Sparse Signal Representation

- * Signal $x \in \mathbb{R}^N$ (e.g. N = pixel number, voxels, graph nodes, ...)
- * There exists a "sparsity" basis (e.g. wavelets, Fourier, ...)

$$\Psi = (\Psi_1, \cdots, \Psi_D) \in \mathbb{R}^{N \times D}$$

where x has a linear representation

$$x = \sum_{\substack{j=1 \\ \alpha_j = 1}}^{D} \alpha_j \Psi_j = \Psi \alpha$$

 $\alpha \in \mathbb{R}^D$ is the coefficient vector.

* <u>Sparsity</u>:

$$\#\{i:\alpha_i\neq 0\}\ll N \qquad \|\alpha-\alpha_K\|\ll \|\alpha\|$$

(2/2)

General Sparsity Application

- 1. <u>Data Compression/Transmission</u> (by definition);
- 2. <u>Data restoration</u> :
 - * Denoising,
 - * Debluring,
 - * Inpainting, ...

3. <u>Simplified model and interpretation (e.g. in ML)</u>

General Sparsity Application

- 1. <u>Data Compression/Transmission</u> (by definition);
- 2. <u>Data restoration</u> :
 - * Denoising,
 - * Debluring,
 - * Inpainting, ...

3. Simplified model and interpretation (e.g., in ML)

More generally,

For regularizing (stabilizing) inverse problems

Impact on data sampling philosophy !

(applications: optics, biomedical, astronomy, \dots)

II. Adjusting sampling to sparsity

Sampling with Sparsity

• Paradigm shift:

"Computer readable" sensing

+ prior information

Signal

(1/2)

Human

Optimized setup: sampling rate \propto information

• <u>Examples</u>:

Radio-Interferometry, Compressed Sensing, MRI, Deflectometry, Seismology, ...

Sampling with Sparsity

(2/2)

but ... non-linear reconstruction schemes!

<u>Regularized inverse problems:</u>

Reconstruct $x \in \mathbb{R}^N$ from $y = \text{Sensing}(x) \in \mathbb{R}^M$ given a sparse model on x. Examples: Tomography, frequency/partial observations, ... $x^* = \operatorname{argmin} \mathcal{S}(u) \text{ s.t. } \operatorname{Sensing}(u) \approx \operatorname{Sensing}(x)$ $u \in \mathbb{R}^N$ Sparsity metric: e.g., small $\mathcal{S}(\alpha) = \|\alpha\|_1$ if $u = \Psi \alpha$, Noise: Gaussian, Poisson, ... small Total Variation $\mathcal{S}(u) = \|\nabla u\|$

III. Compressed Sensing

CS in a nutshell:

"Forget" Dirac, forget Nyquist, ask *few* (linear) *questions* about your informative (sparse) signal, and recover it *differently* (non-linearly)"

UCL (interste intersteeling) epil dicteam ELEN

UCL Université de louvain

UCL Université (a) CPU dicteam ELEN

IV. CS and Quantization

Joint work with:

D. Hammond (U. Oregon, USA)

J. Fadili (ENSICaen, France)

Quantization of CS Measurements

* Turning Measurements into bits \rightarrow scalar quantization

$$y = \mathcal{Q}[\Phi x] \in \Omega^M,$$

with:

victeam ELEN

- $\Omega = \{ \omega_i \in \mathbb{R} : 1 \leq i \leq B \}, \ (B = 2^R) \qquad (\text{levels}) \qquad \Box$
- $T = \{t_i \in \overline{\mathbb{R}} : 1 \leq i \leq B + 1, t_i \leq t_{i+1}\} \quad \text{(thresholds)} \quad \bullet$

$$\forall \lambda \in \mathbb{R}, \qquad \mathcal{Q}[\lambda] = \omega_i \iff \lambda \in \mathcal{R}_i \triangleq [t_i, t_{i+1}), \\ \forall u \in \mathbb{R}^M, \quad (\mathcal{Q}[u])_j = \mathcal{Q}[u_j]$$

$$\begin{array}{c} \lambda & \omega_i \\ t_i & & t_{i+1} \end{array} \left(\text{e.g. Lloyd-Max} \right) \end{array}$$

Quantization and CS: the former association

* Most of the time... Uniform Quantization

 $(Q_{\alpha}[y])_i = \alpha \lfloor (y)_i / \alpha \rfloor + \alpha / 2.$

with $t_i = i\alpha$, $t_{i+1} - t_i = \alpha$, $\omega_i = (t_i + t_{i+1})/2 = (i + 1/2)\alpha$

- * Reconstruction: since $||y \Phi x||_{\infty} \leq \frac{\alpha}{2}$
 - * quantization \approx uniform noise: $u_i = y_i (\Phi x)_i \sim_{\text{iid}} \mathcal{U}([-\frac{\alpha}{2}, \frac{\alpha}{2}])$
 - * BPDN with $\epsilon_{2}^{2}(\alpha) = E[||u||_{2}^{2}] + \kappa \operatorname{Var}^{\frac{1}{2}}[||u||_{2}^{2}]$ = $M \frac{\alpha^{2}}{12} + \kappa M^{\frac{1}{2}} \frac{\alpha^{2}}{6\sqrt{5}}$ If RIP

$$egin{aligned} \mathbf{x}^{*} &= rg\min_{oldsymbol{u} \in \mathbb{R}^{N}} \|oldsymbol{u}\|_{1} ext{ s.t. } \|oldsymbol{y} - oldsymbol{\Phi}oldsymbol{u}\|_{2} \leqslant \epsilon_{2} \ \|oldsymbol{x} - oldsymbol{x}^{*}\| = O(lpha) \end{aligned}$$

Quantization and CS: the former association

* Most of the time... Uniform Quantization

$$(Q_{\alpha}[y])_i = \alpha \lfloor (y)_i / \alpha \rfloor + \alpha / 2.$$

with $t_i = i\alpha$, $t_{i+1} - t_i = \alpha$, $\omega_i = (t_i + t_{i+1})/2 = (i + 1/2)\alpha$

- * Reconstruction: since $||y \Phi x||_{\infty} \leq \frac{\alpha}{2}$
 - * quantization \approx uniform noise: $u_i = y_i (\Phi x)_i \sim_{\text{iid}} \mathcal{U}([-\frac{\alpha}{2}, \frac{\alpha}{2}])$
 - * BPDN with $\epsilon_2^2(\alpha) = E[||u||_2^2] + \kappa \operatorname{Var}^{\frac{1}{2}}[||u||_2^2]$ = $M \frac{\alpha^2}{12} + \kappa M^{\frac{1}{2}} \frac{\alpha^2}{6\sqrt{5}}$

But, not adapted: if x^* solution of BPDN, * $Q_{\alpha}[\Phi x^*] \neq y$, i.e. no Quantization Consistency (QC) * ℓ_2 constraint \approx Gaussian distribution (MAP - cond. log. lik.)

Uniform CS Dequantizers

New optimization schemes (towards the constraint $||y - \Phi v||_{\infty}$):

$$\Delta_{1,p}(y,\epsilon) = \underset{v \in \mathbb{R}^N}{\operatorname{arg\,min}} \|v\|_1 \text{ s.t. } \|y - \Phi v\|_p \leqslant \epsilon, \quad (\mathbf{BPDQ}_p)$$

for "Basis Pursuit DeQuantizer" of moment $p \ge 1$ BPDQ_p adapted to GGD noise (of shape p): $n_i \sim pdf \propto exp - |t/b|^p$ (b > 0)

If Φ is RIP_p of order K, *i.e.*,

$$\exists \mu_p > 0, \ \delta \in (0,1),$$

$$\sqrt{1-\delta} \|v\|_2 \leqslant \frac{1}{\mu_p} \|\Phi v\|_p \leqslant \sqrt{1+\delta} \|v\|_2,$$

for all K sparse signals v.

Then, reconstruction error $O(\alpha/\sqrt{p+1})$.

Uniform CS Dequantizers

New optimization schemes (towards the constraint $||y - \Phi v||_{\infty}$):

$$\Delta_{1,p}(y,\epsilon) = \underset{v \in \mathbb{R}^N}{\operatorname{arg\,min}} \|v\|_1 \text{ s.t. } \|y - \Phi v\|_p \leqslant \epsilon, \quad (\mathbf{BPDQ}_p)$$

for "Basis Pursuit DeQuantizer" of moment $p \ge 1$ BPDQ_p adapted to GGD noise (of shape p): $n_i \sim pdf \propto exp - |t/b|^p$ (b > 0)

If Φ is RIP_p of order K, *i.e.*,

$$\exists \mu_p > 0, \ \delta \in (0,1),$$

$$\sqrt{1-\delta} \|v\|_2 \leqslant \frac{1}{\mu_p} \|\Phi v\|_p \leqslant \sqrt{1+\delta} \|v\|_2,$$

for all K sparse signals v.

Then, reconstruction error $O(\alpha/\sqrt{p+1})$.

But no free lunch: $M = O((K \log N/K)^{p/2})$

 \Rightarrow Another reading: limited range of valid p for a given M (and K)!

Numerical illustration

Original

2-D

12 bins/meas. Rand. Fourier

V. 1-bit CS

Joint work with:

- J. Laska (Rice U., USA)
- P. Boufounos (MERL, USA)
- R. Baraniuk (Rice U., USA)

1-bit Compressed Sensing

1-bit Compressed Sensing

M-bits! But, which information inside y_s ?

M-bits! But, which information inside y_s ?

[FIG1] Stated number of bits versus sampling rate.

[From "Analog-to-digital converters" B. Le, T.W. Rondeau, J.H. Reed, and C.W.Bostian, IEEE Sig. Proc. Magazine, Nov 2005]

e - 22/03/2012.

Intuitively ... x on S^2 , M vectors $\{\varphi_i : 1 \leq i \leq M\}$

$$\begin{array}{l} \textbf{Binary Stable Embedding} \quad A(\boldsymbol{x}) := \operatorname{sign}\left(\boldsymbol{\Phi}\boldsymbol{x}\right) \\ \textbf{Let } \boldsymbol{\Phi} \sim \mathcal{N}^{M \times N}(0, 1), \mbox{ fix } 0 \leqslant \eta \leqslant 1 \mbox{ and } \epsilon > 0. \mbox{ If } \\ M \geqslant \frac{4}{\epsilon^2} \left(K \ln(N) + 2K \ln(\frac{50}{\epsilon}) + \ln(\frac{2}{\eta})\right), \\ \textbf{then } \boldsymbol{\Phi} \mbox{ is a } B\epsilon SE \mbox{ with } \Pr > 1 - \eta. \\ \hline \boldsymbol{M} = O(\epsilon^{-2}K \ln N) \\ \hline \boldsymbol{d}_{\mathrm{ang}}(\boldsymbol{x}, \boldsymbol{s}) - \epsilon \leqslant \boldsymbol{d}_H(A(\boldsymbol{x}), A(\boldsymbol{s})) \leqslant \boldsymbol{d}_{\mathrm{ang}}(\boldsymbol{x}, \boldsymbol{s}) + \epsilon \\ \mbox{ Angular distance } \\ \textbf{Hamming distance} \\ \textbf{Consistent + sparse reconstruction = bounded (angular) error ! } \\ \epsilon = O\left(\sqrt{K/M} \log(NM)\right) \end{array}$$

Numerical Reconstructions:

* [Boufounos, Baraniuk 2008]

$$\boldsymbol{x}^* = \operatorname*{arg\,min}_{\boldsymbol{u}} \|\boldsymbol{u}\|_1$$
 s.t. $\operatorname{diag}(A(\boldsymbol{x})) \Phi \boldsymbol{u} > 0$ and $\|\boldsymbol{u}\|_2 = 1$

+ other iterative methods: Matching Sign pursuit (MSP), Restricted-Step Shrinkage (RSS)

* Binary Iterative Hard Thresholding (BIHT):

Given $\boldsymbol{y}_s = A(\boldsymbol{x})$ and K, set l = 0, $\boldsymbol{x}^0 = 0$: ($\tau > 0$ controls gradient descent)

Stop when $d_H(\boldsymbol{y}_s, A(\boldsymbol{x}^{l+1})) = 0$ or $l = \max$. iter.

with $\eta_K(\boldsymbol{u}) = \text{best } K$ -term approximation of \boldsymbol{u}

····→ minimizes $\mathcal{J}(\boldsymbol{x}) = \|[\operatorname{diag}(\boldsymbol{y}_s)(\Phi \boldsymbol{x})]_-\|_1$, with $(\lambda)_- = (\lambda - |\lambda|)/2$ (connections with ML hinge loss, 1-bit classification)

Understa de la constanti de la

VI. CS ideas for imaging

"Rice One-pixel Camera"

Marco F. Duarte, Mark A. Davenport, Dharmpal Takhar, Jason N. Laska, Ting Sun, Kevin F. Kelly and Richard G. Baraniuk

CS CMOS Camera

Joint work with: P. Vandergheynst, A. Schmid, Y. Leblebici, EPFL, Suisse

Radio-Interferometry

Joint work with: Y. Wiaux, P. Vandergheynst, EPFL, Suisse. A. Scaife, Cambridge, UK.

Joint work with: Y. Wiaux, P. Vandergheynst, EPFL, Suisse. A. Scaife, Cambridge, UK.

multifocal lens

Problem:

Reconstructing the refractive index map of transparent materials from light deflection measurements under multiple orientations.

- Interests:
 - (transparent) object surface topology
 - default detection in glass, crystal growth
- <u>Advantages of deflectometry</u>:
 - Insensitive to vibrations (vs. interferometry)
 - Less sensitive to dispersive medium
 - Precision: up to 10nm flatness deviation on 50mm FOV

Joint work with: A. Gonzalez, Ph. Antoine, C. De Vleeschouwer (UCL)

$$\Delta(\tau,\theta) \simeq \int_{\mathbb{R}^2} \left(\boldsymbol{\nabla} n(\boldsymbol{x}) \cdot \boldsymbol{p}_{\theta} \right) \, \delta(\tau - \boldsymbol{x} \cdot \boldsymbol{p}_{\theta}) \, \mathrm{d}^2 \boldsymbol{x}$$

= Weighted Fourier Sampling

$$y_j = \hat{\Delta}(\omega_j, heta_j) = i(\operatorname{sign} \omega_j) \, \hat{n}(\omega_j, heta_j)$$

 $oldsymbol{y} = oldsymbol{WSFn} + oldsymbol{\epsilon}$

<u>Problem</u>:

Reconstructing the refractive index map of transparent materials from light deflection measurements under multiple orientations.

• <u>Interests</u>:

- (transparent) object surface topology
- default detection in glass, crystal growth
- Advantages of deflectometry:
 - Insensitive to vibrations (vs. interferometry)
 - Less sensitive to dispersive medium
 - Precision: up to 10nm flatness
 deviation on 50mm FOV

Joint work with: A. Gonzalez, Ph. Antoine, C. De Vleeschouwer (UCL)

 \boldsymbol{S}

$$\Delta(\tau,\theta) \simeq \int_{\mathbb{R}^2} \left(\boldsymbol{\nabla} n(\boldsymbol{x}) \cdot \boldsymbol{p}_{\theta} \right) \, \delta(\tau - \boldsymbol{x} \cdot \boldsymbol{p}_{\theta}) \, \mathrm{d}^2 \boldsymbol{x}$$

= Weighted Fourier Sampling

$$y_j = \hat{\Delta}(\omega_j, heta_j) = i(ext{sign } \omega_j) \, \hat{n}(\omega_j, heta_j)$$

 $oldsymbol{y} = oldsymbol{WSFn} + oldsymbol{\epsilon}$

UCL Université catholique de Louvain

epl

Joint work with: A. Gonzalez, Ph. Antoine, C. De Vleeschouwer (UCL)

 \boldsymbol{S}

Sparsity model - TV

$$S(n) = ||n||_{TV}$$

$$= \int_{\mathbb{R}} ||\nabla n(\mathbf{x})|| \, \mathrm{d}\mathbf{x}$$

<u>Sparsity model - TV</u> $\mathcal{S}(n) = \|n\|_{TV}$ $=\int_{\mathbb{R}} \|\boldsymbol{\nabla} n(\boldsymbol{x})\| \,\mathrm{d}\boldsymbol{x}$

TV Rec.

Joint work with: A. Gonzalez, Ph. Antoine, C. De Vleeschouwer (UCL)

UCL Université catholique de Louvain epl

⊲icteam ELEN

Conclusion

Conclusion

- Sparsity prior involves new sensing methods:
 e.g., Compressed Sensing, Compressive Imaging.
- ▶ <u>Future</u>:
 - * more sensing examples: <u>http://nuit-blanche.blogspot.com</u> hyperspectral, network, GPR, Lidar, ... (explosion)
 - * better sparsity prior:
 structured, model-based, mixed-norm (Cevher, Bach, ...)
 co-sparsity/analysis model (Gribonval, Nam, Davies, Elad, Candes)
 - * non-linear CS?
 1-bit CS is one instance, phase recovery (Candès),
 polychromatic CT, ...

Thank you!

<u>CS Links</u>:

http://dsp.rice.edu/cs http://dsp.rice.edu/1bitCS/ http://nuit-blanche.blogspot.com/

Appendix

Numerical illustration

Histograms of $\alpha^{-1}(y - \Phi x_p^*)_i$

M

- * N=1024, K=16, Gaussian Φ , 80 quant. bins
- * 500 K-sparse (canonical basis)
- * Non-zero components follow $\mathcal{N}(0,1)$
- * BPDQ_p solved by proximal optimization and operator splitting (Douglas - Rachford)
 <u>http://wiki.epfl.ch/bpdq</u>