When Buffon's needle problem helps in quantizing the Johnson-Lindenstrauss Lemma

Laurent Jacques - ISPGroup
University of Louvain (UCL), Belgium

ICCHA5, Vanderbilt University
May 19, 2014

1. Linear dimensionality reduction

ICCHA5, Vanderbilt Univ.

Linear Dimensionality Reduction

Linear Dimensionality Reduction

Linear Dimensionality Reduction

 Applications of such a problem? Many!

Linear Dimensionality Reduction

Applications of such a problem? Many!

- Approximate Nearest Neighbors
- Query in Big Databases
- Machine Learning
- Signal Processing in a (easy) compressed domain
- Randomized algorithms

Linear Dimensionality Reduction

, The Johnson-Lindenstrauss Lemma (1984)

Lemma 1 Given an error $0<\epsilon<1$, and a point set $\mathcal{S} \subset \mathbb{R}^{N}$. If M is such that

$$
M>M_{0}=O\left(\epsilon^{-2} \log |\mathcal{S}|\right)
$$

then, there exists a (Lipschitz) mapping $\boldsymbol{f}: \mathbb{R}^{N} \rightarrow \mathbb{R}^{M}$ such that

$$
(1-\epsilon)\|\boldsymbol{u}-\boldsymbol{v}\| \leqslant\|\boldsymbol{f}(\boldsymbol{u})-\boldsymbol{f}(\boldsymbol{v})\| \leqslant(1+\epsilon)\|\boldsymbol{u}-\boldsymbol{v}\|,
$$

for all $\boldsymbol{u}, \boldsymbol{v} \in \mathcal{S}$.

Linear Dimensionality Reduction

, The Johnson-Lindenstrauss Lemma (1984)

Lemma 1 Given an error $0<\epsilon<1$, and a point set $\mathcal{S} \subset \mathbb{R}^{N}$. If M is such that

$$
M>M_{0}=O\left(\epsilon^{-2} \log |\mathcal{S}|\right),
$$

then, there exists a (Lipschitz) mapping $\boldsymbol{f}: \mathbb{R}^{N} \rightarrow \mathbb{R}^{M}$ such that

$$
(1-\epsilon)\|\boldsymbol{u}-\boldsymbol{v}\| \leqslant\|\boldsymbol{f}(\boldsymbol{u})-\boldsymbol{f}(\boldsymbol{v})\| \leqslant(1+\epsilon)\|\boldsymbol{u}-\boldsymbol{v}\|,
$$

for all $\boldsymbol{u}, \boldsymbol{v} \in \mathcal{S}$.
\Rightarrow isometry between $\left(\mathcal{S}, \ell_{2}\right)$ and $\left(\boldsymbol{f}(\mathcal{S}), \ell_{2}\right)$

Linear Dimensionality Reduction

- The Johnson-Lindenstrauss Lemma (1984) proof sketch:
- Randomness helps! (Achlioptas 2003)
" and "measure concentration" (Ledoux, Talagrand, ...)

Weird things happens in high dimension!
$\mathbb{P}\left[\right.$ vector $\left.\in \mathbb{S}_{\epsilon}\right] \rightarrow_{N} 1$ and exponentially!

Linear Dimensionality Reduction

, The Johnson-Lindenstrauss Lemma (1984) proof sketch:

- Randomness helps! (Achlioptas 2003)
" and "measure concentration" (Ledoux, Talagrand, ...)
Let $\boldsymbol{\Phi} \in \mathbb{R}^{M \times N}$ with $\Phi_{i j} \sim_{\text {iid }} \mathcal{N}(0,1 / M)$, then, for $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{R}^{N}$,

$$
\mathbb{P}[\mid \| \underbrace{\boldsymbol{\Phi}(\boldsymbol{u}-\boldsymbol{v}})\left\|^{2}-\right\| \boldsymbol{u}-\boldsymbol{v}\left\|^{2} \mid \geqslant \epsilon\right\| \boldsymbol{u}-\boldsymbol{v} \|^{2}] \leqslant 2 e^{-M \epsilon^{2} / 3}
$$

Gaussian vector in \mathbb{R}^{M}

Linear Dimensionality Reduction

, The Johnson-Lindenstrauss Lemma (1984) proof sketch:

- Randomness helps! (Achlioptas 2003)
- and "measure concentration" (Ledoux, Talagrand, ...)

Let $\boldsymbol{\Phi} \in \mathbb{R}^{M \times N}$ with $\Phi_{i j} \sim_{\text {iid }} \mathcal{N}(0,1 / M)$, then, for $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{R}^{N}$,

$$
\mathbb{P}\left[\left|\|\boldsymbol{\Phi}(\boldsymbol{u}-\boldsymbol{v})\|^{2}-\|\boldsymbol{u}-\boldsymbol{v}\|^{2}\right| \geqslant \epsilon\|\boldsymbol{u}-\boldsymbol{v}\|^{2}\right] \leqslant 2 e^{-M \epsilon^{2} / 3},
$$

- Union bound on $\binom{|\mathcal{S}|}{2}=O\left(|\mathcal{S}|^{2}\right)$ pairs in $\mathcal{S}: \mathbb{P}\left[\cup_{j} \mathcal{E}_{j}\right] \leqslant \sum_{j} \mathbb{P}\left[\mathcal{E}_{j}\right]$
$\Rightarrow \mathbb{P}(\exists$ failure for one pair in $\mathcal{S}) \leqslant 2 e^{2 \log |\mathcal{S}|-M \epsilon^{2} / 3} \underset{\text { e.g. }}{<} 2 / 3$
- $\exists \boldsymbol{f}$ for JL Lemma!
if $M \geqslant M_{0}=O\left(\epsilon^{-2} \log |\mathcal{S}|\right)$
(boost $1-\mathbb{P}$ asking that $\exists \operatorname{good} \boldsymbol{\Phi}$ over many trials)

2. Quantizing the J-L Lemma -- prologue --

ICCHA5, Vanderbilt Univ.

What is quantization?

Generality:

Intuitively: "Quantization maps a continuous (bounded) domain to a set of finite elements (or codebook)"

$$
\mathcal{Q}[x] \in\left\{q_{1}, q_{2}, \cdots\right\}
$$

Oldest example: rounding off $\lfloor x\rfloor,\lceil x\rceil, \ldots \quad \mathbb{R} \rightarrow \mathbb{Z}$

What is quantization?

- Generality:

Intuitively: "Quantization maps a continuous (bounded) domain to a set of finite elements (or codebook)"

, Needed for:
, storing/computing/transmitting information
, turning continuous values in bits (digitization)
, quantifying/measuring information

Scalar quantization

Principle in 1-D:

Scalar quantization

Principle in 1-D:

$$
\mathcal{Q}[\lambda]=\omega_{i} \quad \Leftrightarrow \quad \lambda \in\left[t_{i}, t_{i+1}\right]
$$

From now on: Given a resolution $\delta>0$,

$$
\mathcal{Q}[\lambda]=\delta\lfloor\lambda / \delta\rfloor \quad \in \mathbb{Z}_{\delta}:=\delta \mathbb{Z}
$$

and $(\mathcal{Q}[\boldsymbol{v}])_{j}=\mathcal{Q}\left[v_{j}\right]$ for vectors.

Remark: $\left|\lambda-\mathcal{Q}[\lambda]-\frac{1}{2} \delta\right| \leqslant \frac{1}{2} \delta$ for all λ

$$
\Rightarrow \text { Quant. error }=\frac{1}{2} \delta
$$

Quantizing JL (first attempt)

Given a mapping $\boldsymbol{f}: \mathbb{R}^{N} \rightarrow \mathbb{R}^{M}$ s.t. $\frac{1}{\sqrt{M}} \boldsymbol{f}$ is JL e.g., $\boldsymbol{f}(\cdot)=\boldsymbol{\Phi} \cdot$ with $\Phi_{i j} \sim_{\text {iid }} \mathcal{N}(0,1) \quad \Rightarrow$ constant dynamic for $f_{j}(\cdot)$ (important for quantizing)

Quantizing JL (first attempt)

Given a mapping $\boldsymbol{f}: \mathbb{R}^{N} \rightarrow \mathbb{R}^{M}$ s.t. $\frac{1}{\sqrt{M}} \boldsymbol{f}$ is JL e.g., $\boldsymbol{f}(\cdot)=\boldsymbol{\Phi} \cdot$ with $\Phi_{i j} \sim_{\text {iid }} \mathcal{N}(0,1) \quad \Rightarrow$ constant dynamic for $f_{j}(\cdot)$

Form $\boldsymbol{\psi}:=\mathcal{Q} \circ \boldsymbol{f}: \mathbb{R}^{N} \rightarrow \mathbb{Z}_{\delta}^{M}$
Then, with $M \geqslant M_{0}=O\left(\epsilon^{-2} \log |\mathcal{S}|\right)$, and $\forall \boldsymbol{u}, \boldsymbol{v} \in \mathcal{S}$,

$$
(1-\epsilon)\|\boldsymbol{u}-\boldsymbol{v}\|-\delta \leqslant \frac{1}{\sqrt{M}}\|\boldsymbol{\psi}(\boldsymbol{u})-\boldsymbol{\psi}(\boldsymbol{v})\| \leqslant(1+\epsilon)\|\boldsymbol{u}-\boldsymbol{v}\|+\delta,
$$

\Rightarrow quasi-isometry between $\left(\mathcal{S}, \ell_{2}\right)$ and $\left(\boldsymbol{f}(\mathcal{S}), \ell_{2}\right)$

Quantizing JL (first attempt)

Given a mapping $\boldsymbol{f}: \mathbb{R}^{N} \rightarrow \mathbb{R}^{M}$ s.t. $\frac{1}{\sqrt{M}} \boldsymbol{f}$ is JL e.g., $\boldsymbol{f}(\cdot)=\boldsymbol{\Phi} \cdot$ with $\Phi_{i j} \sim_{\text {iid }} \mathcal{N}(0,1) \quad \Rightarrow$ constant dynamic for $f_{j}(\cdot)$

Form $\boldsymbol{\psi}:=\mathcal{Q} \circ \boldsymbol{f}: \mathbb{R}^{N} \rightarrow \mathbb{Z}_{\delta}^{M}$
Then, with $M \geqslant M_{0}=O\left(\epsilon^{-2} \log |\mathcal{S}|\right)$,

$$
(1-\epsilon)\|\boldsymbol{u}-\boldsymbol{v}\|-\delta \leqslant \frac{1}{\sqrt{M}}\|\boldsymbol{\psi}(\boldsymbol{u})-\boldsymbol{\psi}(\boldsymbol{v})\| \leqslant(1+\epsilon)\|\boldsymbol{u}-\boldsymbol{v}\|+\delta,
$$

both smaller than $\delta / 2$
Proof (easy): $|\mathcal{Q}(a)-\mathcal{Q}(b)|=\left|b-\mathcal{Q}(b)-\frac{1}{2} \delta-\left(a-\mathcal{Q}(a)-\frac{1}{2} \delta\right)+(a-b)\right|$

$$
\left\{\begin{array}{l}
\leqslant|a-b|+\delta \\
\geqslant|a-b|-\delta
\end{array}\right.
$$

$$
\leqslant(1+\epsilon)\|\boldsymbol{u}-\boldsymbol{v}\| \quad(\text { by JL })
$$

Then, with 2 more lines, $\frac{1}{\sqrt{M}}\|\mathcal{Q}(\boldsymbol{f}(\boldsymbol{u}))-\mathcal{Q}(\boldsymbol{f}(\boldsymbol{v}))\| \leqslant \frac{1}{\sqrt{M}\|\boldsymbol{f}(\boldsymbol{u})-\boldsymbol{f}(\boldsymbol{v})\|}+\delta$ and

$$
\frac{1}{\sqrt{M}}\|\mathcal{Q}(\boldsymbol{f}(\boldsymbol{u}))-\mathcal{Q}(\boldsymbol{f}(\boldsymbol{v}))\| \geqslant \frac{1}{\sqrt{M}}\|\boldsymbol{f}(\boldsymbol{u})-\boldsymbol{f}(\boldsymbol{v})\|-\delta .
$$

Quantizing JL (first attempt)

Given a mapping $\boldsymbol{f}: \mathbb{R}^{N} \rightarrow \mathbb{R}^{M}$ s.t. $\frac{1}{\sqrt{M}} \boldsymbol{f}$ is JL e.g., $\boldsymbol{f}(\cdot)=\boldsymbol{\Phi} \cdot$ with $\Phi_{i j} \sim_{\text {iid }} \mathcal{N}(0,1) \Rightarrow$ constant dynamic for $f_{j}(\cdot)$

Form $\boldsymbol{\psi}:=\mathcal{Q} \circ \boldsymbol{f}: \mathbb{R}^{N} \rightarrow \mathbb{Z}_{\delta}^{M}$
Then, with $M \geqslant M_{0}=O\left(\epsilon^{-2} \log |\mathcal{S}|\right)$,

Quantizing JL (first attempt)

Given a mapping $\boldsymbol{f}: \mathbb{R}^{N} \rightarrow \mathbb{R}^{M}$ s.t. $\frac{1}{\sqrt{M}} \boldsymbol{f}$ is JL e.g., $\boldsymbol{f}(\cdot)=\boldsymbol{\Phi} \cdot$ with $\Phi_{i j} \sim_{\text {iid }} \mathcal{N}(0,1) \quad \Rightarrow$ constant dynamic for $f_{j}(\cdot)$

Form $\boldsymbol{\psi}:=\mathcal{Q} \circ \boldsymbol{f}: \mathbb{R}^{N} \rightarrow \mathbb{Z}_{\delta}^{M}$
Then, with $M \geqslant M_{0}=O\left(\epsilon^{-2} \log |\mathcal{S}|\right)$,
$\left.(1-\epsilon) \| \boldsymbol{u}-\boldsymbol{v})-\delta \leqslant \frac{1}{\sqrt{M}}\|\boldsymbol{\psi}(\boldsymbol{u})-\boldsymbol{\psi}(\boldsymbol{v})\| \leqslant(1+\epsilon) \| \boldsymbol{u}-\boldsymbol{v}\right)+\delta$,
(decaying, good!)
(constant, weird!?)
multiplicative error \longleftrightarrow additive error
Problem: $\epsilon=O\left(\sqrt{\log |\mathcal{S}| / M_{0}}\right)$ but δ is constant!
Can we hope better?

What's known? Binary Quantization

(equiv. to $\delta \gg \operatorname{diam} \mathcal{S}$)

- Let's define

$$
\boldsymbol{\psi}(\boldsymbol{u}):=\operatorname{sign}(\boldsymbol{\Phi} \boldsymbol{u}) \Leftrightarrow \psi_{j}(\boldsymbol{u})=\operatorname{sign}\left(\boldsymbol{\varphi}_{j} \cdot \boldsymbol{u}\right) \in\{ \pm 1\}
$$

What's known? Binary Quantization

(equiv. to $\delta \gg \operatorname{diam} \mathcal{S}$)

- Let's define

$$
\boldsymbol{\psi}(\boldsymbol{u}):=\operatorname{sign}(\boldsymbol{\Phi} \boldsymbol{u}) \Leftrightarrow \psi_{j}(\boldsymbol{u})=\operatorname{sign}\left(\boldsymbol{\varphi}_{j} \cdot \boldsymbol{u}\right) \in\{ \pm 1\}
$$

What's known? Binary Quantization

(equiv. to $\delta \gg \operatorname{diam} \mathcal{S}$)

- Let's define

$$
\begin{aligned}
& \boldsymbol{\psi}(\boldsymbol{u}):=\operatorname{sign}(\boldsymbol{\Phi} \boldsymbol{u}) \Leftrightarrow \psi_{j}(\boldsymbol{u})=\operatorname{sign}\left(\boldsymbol{\varphi}_{j} \cdot \boldsymbol{u}\right) \in\{ \pm 1\} \\
& \mathbb{P}\left[\psi_{j}(\boldsymbol{u}) \neq \psi_{j}(\boldsymbol{v})\right]=\frac{1}{\pi} \operatorname{angle}(\boldsymbol{u}, \boldsymbol{v})=\theta_{u v} / \pi \\
& \Rightarrow X_{j}=\frac{1}{2}\left|\psi_{j}(\boldsymbol{u})-\psi_{j}(\boldsymbol{v})\right| \sim \operatorname{Bernoulli}\left(\frac{\theta_{u v}}{\pi}\right) \in\{0,1\}
\end{aligned}
$$

What's known? Binary Quantization

(equiv. to $\delta \gg \operatorname{diam} \mathcal{S}$)

- Let's define

$$
\begin{gathered}
\boldsymbol{\psi}(\boldsymbol{u}):=\operatorname{sign}(\boldsymbol{\Phi} \boldsymbol{u}) \Leftrightarrow \psi_{j}(\boldsymbol{u})=\operatorname{sign}\left(\boldsymbol{\varphi}_{j} \cdot \boldsymbol{u}\right) \in\{ \pm 1\} \\
\mathbb{P}\left[\psi_{j}(\boldsymbol{u}) \neq \psi_{j}(\boldsymbol{v})\right]=\frac{1}{\pi} \operatorname{angle}(\boldsymbol{u}, \boldsymbol{v})=\theta_{u v} / \pi \\
\Rightarrow X_{j}=\frac{1}{2}\left|\psi_{j}(\boldsymbol{u})-\psi_{j}(\boldsymbol{v})\right| \sim \operatorname{Bernoulli}\left(\frac{\theta_{u v}}{\pi}\right) \in\{0,1\}
\end{gathered}
$$

From [Goemans, Williamson 1995], [LJ et al. 2011], [Plan 2011]
For $M \geqslant M_{0}=O\left(\epsilon^{-2} \log |\mathcal{S}|\right)$,

$$
\theta_{u v}-\epsilon \leqslant \frac{1}{2 M}\|\boldsymbol{\psi}(\boldsymbol{u})-\boldsymbol{\psi}(\boldsymbol{v})\|_{1} \leqslant \theta_{u v}+\epsilon
$$

for all $\boldsymbol{u}, \boldsymbol{v} \in \mathcal{S}$.

What's known? Binary Quantization

(equiv. to $\delta \gg \operatorname{diam} \mathcal{S}$)

- Let's define

$$
\begin{gathered}
\boldsymbol{\psi}(\boldsymbol{u}):=\operatorname{sign}(\boldsymbol{\Phi} \boldsymbol{u}) \Leftrightarrow \psi_{j}(\boldsymbol{u})=\operatorname{sign}\left(\boldsymbol{\varphi}_{j} \cdot \boldsymbol{u}\right) \in\{ \pm 1\} \\
\mathbb{P}\left[\psi_{j}(\boldsymbol{u}) \neq \psi_{j}(\boldsymbol{v})\right]=\frac{1}{\pi} \operatorname{angle}(\boldsymbol{u}, \boldsymbol{v})=\theta_{u v} / \pi \\
\Rightarrow X_{j}=\frac{1}{2}\left|\psi_{j}(\boldsymbol{u})-\psi_{j}(\boldsymbol{v})\right| \sim \operatorname{Bernoulli}\left(\frac{\theta_{u v}}{\pi}\right) \in\{0,1\}
\end{gathered}
$$

From [Goemans, Williamson 1995], [LJ et al. 2011], [Plan 2011]

$$
\begin{aligned}
& \text { For } M \geqslant M_{0}=O\left(\epsilon^{-2} \log |\mathcal{S}|\right) \\
& \qquad \theta_{u v}-\epsilon \leqslant \frac{1}{2 M}\|\boldsymbol{\psi}(\boldsymbol{u})-\boldsymbol{\psi}(\boldsymbol{v})\|_{1} \leqslant \theta_{u v}+\epsilon,
\end{aligned}
$$

for all $\boldsymbol{u}, \boldsymbol{v} \in \mathcal{S}$.
Here, we do see a decaying additive error! $\epsilon=O\left(\sqrt{\log |S| / M_{0}}\right)$

3. The finding of Buffon's needle

ICCHA5, Vanderbilt Univ.

Comte de Buffon

Georges-Louis Leclerc, Comte de Buffon
French Naturalist: 1707-1788
Published 36 volumes of "L'Histoire Naturelle" Father of the field of "Geometrical Probability"
http://www.buffon.cnrs.fr

Buffon's needle problem

[Buffon's problem 1733, Buffon's solution 1777]
"I suppose that in a room where the floor is simply divided by parallel joints one throws a stick ("needle") in the air, and that one of the players bets that the stick will not cross any of the parallels on the floor, and that the other in contrast bets that the stick will cross some of these parallels;
one asks for the chances of these two players."

Buffon's needle problem

$$
\begin{gathered}
\mathbb{P}[\mathrm{N}(u, \theta) \cap \mathcal{G} \neq \emptyset] \\
=?
\end{gathered}
$$

with $u \sim \mathcal{U}([0, \delta])$ and $\theta \sim \mathcal{U}([0,2 \pi])$

Buffon's needle problem

Fact 1: if $L<\delta, \mathbb{P}=\frac{2}{\pi \delta} L \left\lvert\, \begin{gathered}\text { (small integral } \\ \text { to solve) }\end{gathered}\right.$

with $u \sim \mathcal{U}([0, \delta])$ and $\theta \sim \mathcal{U}([0,2 \pi])$

Buffon's needle problem

(small integral to solve)

Has been used for estimating π ! (first "Monte Carlo" method)

with $u \sim \mathcal{U}([0, \delta])$ and $\theta \sim \mathcal{U}([0,2 \pi])$

Buffon's needle problem

Fact 1: if $L<\delta, \mathbb{P}=\frac{2}{\pi \delta} L$

Fact 2: if $L \geqslant \delta, \mathbb{P} \neq \frac{2}{\pi \delta} L$ but

$$
\mathbb{E} X=\frac{2}{\pi \delta} L
$$

with $X=\#\{\mathrm{~N}(u, \theta) \cap \mathcal{G}\}$.

Proof: cut N in parts smaller than δ and sum expectations!

\mathcal{G}
with $u \sim \mathcal{U}([0, \delta])$ and $\theta \sim \mathcal{U}([0,2 \pi])$

Buffon's needle problem

Fact 1: if $L<\delta, \mathbb{P}=\frac{2}{\pi \delta} L$

Fact 2: if $L \geqslant \delta, \mathbb{P} \neq \frac{2}{\pi \delta} L$ but

$$
\mathbb{E} X=\frac{2}{\pi \delta} L
$$

with $X=\#\{\mathrm{~N}(u, \theta) \cap \mathcal{G}\}$.

Fact 3: It works for "noodles"
(smooth curves)!

with $u \sim \mathcal{U}([0, \delta])$ and $\theta \sim \mathcal{U}([0,2 \pi])$

Buffon in N-D? ${ }^{[14,2013]}$

Buffon in N-D?

(discr. r.v.) Let $X=\#\{\mathrm{~N}(u, \Omega) \cap \mathcal{G}\}$, with $\Omega \sim \mathcal{U}(S O(N)), u \sim \mathcal{U}([0, \delta])$.

Buffon in N-D?

(discr. r.v.) Let $X=\#\{\mathrm{~N}(u, \Omega) \cap \mathcal{G}\}$, with $\Omega \sim \mathcal{U}(S O(N)), u \sim \mathcal{U}([0, \delta])$.

Buffon in N-D?

(discr. r.v.) Let $X=\#\{\mathrm{~N}(u, \Omega) \cap \mathcal{G}\}$, with $\Omega \sim \mathcal{U}(S O(N)), u \sim \mathcal{U}([0, \delta])$.

We still have: $\mathbb{E} X=\tau_{N} \frac{L}{\delta}$,
with $\tau_{N}=\frac{\Gamma\left(\frac{N}{2}\right)}{\left.\sqrt{\pi \Gamma\left(\frac{N}{2}\right)}{ }^{2}\right)} \simeq_{N} 1 / \sqrt{N}$
Moreover,

$$
p_{k}:=\mathbb{P}[X=k] \text { is computable! }
$$

(and all its moments: $\left.\mathbb{E} X^{q} \leqslant c_{q}(L / \delta)^{q}, c_{q}>0\right)$
We write:
$X \sim \operatorname{Buffon}(L / \delta, N)$
with $0 \leqslant X \leqslant\lceil L / \delta\rceil$.

4. Quantizing the J-L Lemma -- epilogue --

Where's the equivalence? (what's the point?)

Scalar Quantization resolution $\delta>0$

Where's the equivalence?

Let $\psi(\boldsymbol{x})=\mathcal{Q}(\boldsymbol{\varphi} \cdot \boldsymbol{x}+u)$, for $\boldsymbol{x} \in \mathbb{R}^{N}$

\mathcal{G}^{\prime}

random

$$
\left|\mathcal{Q}(\boldsymbol{\varphi} \cdot \boldsymbol{x}+u)-Q\left(\boldsymbol{\varphi} \cdot \boldsymbol{x}^{\prime}+u\right)\right|
$$

(conditionnally to $\|\boldsymbol{\varphi}\|$)

- grid $\mathcal{G} \leftrightarrow$ quant. \mathcal{Q} with resol. δ
- needle $\mathrm{N} \leftrightarrow$ segment $\overline{\boldsymbol{x} \boldsymbol{x}^{\prime}}$
- fixed grid $\mathcal{G} /$ random $\mathrm{N} \leftrightarrow$ random grid $\mathcal{G} /$ fixed $\overline{\boldsymbol{x} \boldsymbol{x}^{\prime}}$

For M quantized projections?

Let $\boldsymbol{\psi}(\boldsymbol{x})=\mathcal{Q}(\boldsymbol{\Phi} \boldsymbol{x}+\boldsymbol{u})$ for $\boldsymbol{x} \in \mathbb{R}^{N}$ with $\boldsymbol{\Phi} \sim \mathcal{N}^{M \times N}(0,1)$ and $\boldsymbol{u} \sim \mathcal{U}^{M}([0, \delta])$

For M quantized projections?

$$
\begin{aligned}
& \text { Let } \boldsymbol{\psi}(\boldsymbol{x})=\mathcal{Q}(\boldsymbol{\Phi} \boldsymbol{x}+\boldsymbol{u}) \text { for } \boldsymbol{x} \in \mathbb{R}^{N} \\
& \text { with } \boldsymbol{\Phi} \sim \mathcal{N}^{M \times N}(0,1) \text { and } \boldsymbol{u} \sim \mathcal{U}^{M}([0, \delta])
\end{aligned}
$$

Proposition For each $1 \leqslant j \leqslant M$ and conditionally to the knowledge of $r_{j}=\left\|\varphi_{j}\right\|$, we have

$$
X_{j}:=\frac{1}{\delta}\left|(\boldsymbol{\psi}(\boldsymbol{x}))_{j}-\left(\boldsymbol{\psi}\left(\boldsymbol{x}^{\prime}\right)\right)_{j}\right| \sim_{\mathrm{iid}} \text { Buffon }\left(\frac{r_{j}}{\delta}\left\|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right\|, N\right) .
$$

Proof: 1 page but intuition was given before.

For M quantized projections?

Let $\boldsymbol{\psi}(\boldsymbol{x})=\mathcal{Q}(\boldsymbol{\Phi} \boldsymbol{x}+\boldsymbol{u})$ for $\boldsymbol{x} \in \mathbb{R}^{N}$ with $\boldsymbol{\Phi} \sim \mathcal{N}^{M \times N}(0,1)$ and $\boldsymbol{u} \sim \mathcal{U}^{M}([0, \delta])$

Proposition For each $1 \leqslant j \leqslant M$ and conditionally to the knowledge of $r_{j}=\left\|\varphi_{j}\right\|$, we have

$$
X_{j}:=\frac{1}{\delta}\left|(\boldsymbol{\psi}(\boldsymbol{x}))_{j}-\left(\boldsymbol{\psi}\left(\boldsymbol{x}^{\prime}\right)\right)_{j}\right| \sim_{\mathrm{iid}} \operatorname{Buffon}\left(\frac{r_{j}}{\delta}\left\|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right\|, N\right) .
$$

Proof: 1 page but intuition was given before.
Moreover,

> Buffon
$\mathbb{E} X_{j}=\mathbb{E}_{r_{j}}\left(\mathbb{E}\left(X_{j} \mid r_{j}\right)\right) \stackrel{\text { expect. }}{=} \tau_{N} \mathbb{E}_{r_{j}}\left(\frac{r_{j}}{\delta}\left\|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right\|\right)=\frac{\sqrt{2}}{\sqrt{\pi}} \frac{1}{\delta}\left\|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right\|$, since $\mathbb{E}\left\|\boldsymbol{\varphi}_{j}\right\|=\frac{\sqrt{2}}{\left(\mathcal{T N}_{N} \sqrt{\pi}\right.}!(\operatorname{Chi}(N)$ distr.) \longrightarrow coincidences happen!

and finally ...

 (reminder: $\boldsymbol{\psi}(\boldsymbol{x})=\mathcal{Q}(\boldsymbol{\Phi} \boldsymbol{x}+\boldsymbol{u})$)Knowing/bounding the expectation/moments of X_{j} and using measure concentration (by Bernstein) for

$$
\frac{1}{M} \sum_{j} X_{j}=\frac{1}{\delta M}\left\|\boldsymbol{\psi}(\boldsymbol{x})-\boldsymbol{\psi}\left(\boldsymbol{x}^{\prime}\right)\right\|_{1}
$$

and finally ...

 (reminder: $\boldsymbol{\psi}(\boldsymbol{x})=\mathcal{Q}(\boldsymbol{\Phi} \boldsymbol{x}+\boldsymbol{u}))$, Knowing/bounding the expectation/moments of X_{j}

- and using measure concentration (by Bernstein) for

Quasi-isometry!

$$
\frac{1}{M} \sum_{j} X_{j}=\frac{1}{\delta M}\left\|\boldsymbol{\psi}(\boldsymbol{x})-\boldsymbol{\psi}\left(\boldsymbol{x}^{\prime}\right)\right\|_{1}
$$

Lemma 1 Given an error $0<\epsilon<1$, and a point set $\mathcal{S} \subset \mathbb{R}^{N}$. If M is such that

$$
M \geqslant M_{0}=O\left(\epsilon^{-2} \log |\mathcal{S}|\right),
$$

then, for $c>0$ and with high probability, we have

$$
(1-\epsilon)\left\|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right\|-c \delta \epsilon \leqslant \frac{\sqrt{\pi}}{M \sqrt{2}}\left\|\boldsymbol{\psi}(\boldsymbol{x})-\boldsymbol{\psi}\left(\boldsymbol{x}^{\prime}\right)\right\|_{1} \leqslant(1+\epsilon)\left\|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right\|+c \delta \epsilon,
$$

for all $\boldsymbol{x}, \boldsymbol{x}^{\prime} \in \mathcal{S}$.

and finally ...

 (reminder: $\boldsymbol{\psi}(\boldsymbol{x})=\mathcal{Q}(\boldsymbol{\Phi} \boldsymbol{x}+\boldsymbol{u}))$, Knowing/bounding the expectation/moments of X_{j}

- and using measure concentration (by Bernstein) for

Quasi-isometry!

$$
\frac{1}{M} \sum_{j} X_{j}=\frac{1}{\delta M}\left\|\boldsymbol{\psi}(\boldsymbol{x})-\boldsymbol{\psi}\left(\boldsymbol{x}^{\prime}\right)\right\|_{1}
$$

Lemma 1 Given an error $0<\epsilon<1$, and a point set $\mathcal{S} \subset \mathbb{R}^{N}$.
 then, for $c>0$ and with high probability, we have $(1-\epsilon)\left\|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right\|-c \delta \epsilon \leqslant \frac{\sqrt{\pi}}{M \sqrt{2}}\left\|\boldsymbol{\psi}(\boldsymbol{x})-\boldsymbol{\psi}\left(\boldsymbol{x}^{\prime}\right)\right\|_{1} \leqslant(1+\epsilon)\left\|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right\|(c \delta \epsilon$
for all $\boldsymbol{x}, \boldsymbol{x}^{\prime} \in \mathcal{S}$.
decaying multiplicative and additive errors!

5. A few numerical tests

Simulations

Idea: testing $V_{\psi}=\frac{\sqrt{\pi}}{M \sqrt{2}}\left\|\mathcal{Q}(\boldsymbol{\Phi} \boldsymbol{x}+\boldsymbol{u})-\mathcal{Q}\left(\boldsymbol{\Phi} \boldsymbol{x}^{\prime}+\boldsymbol{u}\right)\right\|_{1}$

- $N=256, M \in\{64,128, \cdots, 1024\}$ and $\delta \in[0.1,4]$.
- For each $(M, N, \delta), 100$ trials on $\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}, \boldsymbol{\Phi}\right)$ with $\left\|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right\|=1$ (WLOG)

Simulations

$$
\text { Idea: testing } V_{\psi}=\frac{\sqrt{\pi}}{M \sqrt{2}}\left\|\mathcal{Q}(\boldsymbol{\Phi} \boldsymbol{x}+\boldsymbol{u})-\mathcal{Q}\left(\boldsymbol{\Phi} \boldsymbol{x}^{\prime}+\boldsymbol{u}\right)\right\|_{1}
$$

- $N=256, M \in\{64,128, \cdots, 1024\}$ and $\delta \in[0.1,4]$.
- For each $(M, N, \delta), 100$ trials on $\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}, \boldsymbol{\Phi}\right)$ with $\left\|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right\|=1$ (WLOG)

$$
\begin{aligned}
& t_{\psi} \text { s.t. } \\
& \mathbb{P}\left[V_{\psi}>1+t_{\psi}\right]=5 \%
\end{aligned}
$$

Simulations

$$
\text { Idea: testing } V_{\psi}=\frac{\sqrt{\pi}}{M \sqrt{2}}\left\|\mathcal{Q}(\boldsymbol{\Phi} \boldsymbol{x}+\boldsymbol{u})-\mathcal{Q}\left(\boldsymbol{\Phi} \boldsymbol{x}^{\prime}+\boldsymbol{u}\right)\right\|_{1}
$$

$$
N=256, M \in\{64,128, \cdots, 1024\} \text { and } \delta \in[0.1,4]
$$

- For each $(M, N, \delta), 100$ trials on $\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}, \boldsymbol{\Phi}\right)$ with $\left\|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right\|=1$ (WLOG)

$$
\begin{aligned}
& t_{\psi} \text { s.t. } \\
& \mathbb{P}\left[V_{\psi}>1+t_{\psi}\right]=5 \%
\end{aligned}
$$

Good match with:

$$
\begin{aligned}
t_{\psi} & \simeq(a \epsilon)+(b \epsilon) \delta \\
& \simeq(a+b \delta) \sqrt{1 / M}
\end{aligned}
$$

6. Conclusions

Conclusions and perspectives

Possible to prove a Q-JL: + and \times distortions exist!
Both distortions decays as $\sqrt{1 / M}$
Not shown here: almost a Q-JL with $\ell_{2} \rightarrow \ell_{2}$

Conclusions and perspectives

- Possible to prove a Q-JL: + and \times distortions exist!
- Both distortions decays as $\sqrt{1 / M}$
- Not shown here: almost a Q-JL with $\ell_{2} \rightarrow \ell_{2}$ Future:
- extend Q-JL to K-sparse vectors (QRIP?)
- useful for quantized compressed sensing :

A K-sparse signal \boldsymbol{x} is sensed by $\boldsymbol{q}=\mathcal{Q}[\boldsymbol{\Phi} \boldsymbol{x}]$
How to recover \boldsymbol{x} ?
Guarantees if \boldsymbol{x}^{*} both sparse and consistent with \boldsymbol{q} ?

Lower bound $\left\|\boldsymbol{x}-\boldsymbol{x}^{*}\right\|=\Omega(K / M)$

Thank you!

A few references

W.B. Johnson and J. Lindenstrauss, "Extensions of Lipschitz mappings into a Hilbert space," Contemporary mathematics, vol. 26, no. 189-206, pp. 1, 1984.
S. Dasgupta and A. Gupta, "An elementary proof of the Johnson-Lindenstrauss Lemma," Tech. Rep. TR-99-006, Berkeley, CA, 1999.
P. T. Boufounos, "Universal Rate-Efficient Scalar Quantization," Sept. 2010.
D. Achlioptas, "Database-friendly random projections: Johnson-Lindenstrauss with binary coins," Journal of Computer and System Sciences, Jan. 2003.

LJ, J. N. Laska, P. T. Boufounos, and R. G. Baraniuk, "Robust 1-Bit Compressive Sensing via Binary Stable Embeddings of Sparse Vectors," IEEE Transactions on Information Theory, Vol. 59(4), pp. 2082-2102, 2013.
LJ, "A Quantized Johnson Lindenstrauss Lemma: The Finding of Buffon's Needle", http://arxiv.org/abs/1309.1507 (submitted)
My blog: "Le petit chercheur illustré", http://yetaspblog.wordpress.com

Appendix

Linear Dimensionality Reduction

, The Johnson-Lindenstrauss Lemma (1984) proof sketch:

- Randomness helps! (Achlioptas 2003)
- and "measure concentration" (Ledoux, Talagrand, ...)

Linear Dimensionality Reduction

, The Johnson-Lindenstrauss Lemma (1984) proof sketch:

- Randomness helps! (Achlioptas 2003)
" and "measure concentration" (Ledoux, Talagrand, ...)
Let $\boldsymbol{\Phi} \in \mathbb{R}^{M \times N}$ with $\Phi_{i j} \sim_{\text {iid }} \mathcal{N}(0,1 / M)$, then, for $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{R}^{N}$,

$$
\mathbb{P}\left[\left|\|\boldsymbol{\Phi}(\boldsymbol{u}-\boldsymbol{v})\|^{2}-\|\boldsymbol{u}-\boldsymbol{v}\|^{2}\right| \geqslant \epsilon\|\boldsymbol{u}-\boldsymbol{v}\|^{2}\right] \leqslant 2 e^{-M \epsilon^{2} / 3},
$$

- Union bound on $\binom{|\mathcal{S}|}{2}=O\left(|\mathcal{S}|^{2}\right)$ pairs in $\mathcal{S}: \mathbb{P}\left[\cup_{j} \mathcal{E}_{j}\right] \leqslant \sum_{j} \mathbb{P}\left[\mathcal{E}_{j}\right]$

Linear Dimensionality Reduction

, The Johnson-Lindenstrauss Lemma (1984) proof sketch:

- Randomness helps! (Achlioptas 2003)
" and "measure concentration" (Ledoux, Talagrand, ...)
Let $\boldsymbol{\Phi} \in \mathbb{R}^{M \times N}$ with $\Phi_{i j} \sim_{\text {iid }} \mathcal{N}(0,1 / M)$, then, for $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{R}^{N}$,

$$
\mathbb{P}\left[\left|\|\boldsymbol{\Phi}(\boldsymbol{u}-\boldsymbol{v})\|^{2}-\|\boldsymbol{u}-\boldsymbol{v}\|^{2}\right| \geqslant \epsilon\|\boldsymbol{u}-\boldsymbol{v}\|^{2}\right] \leqslant 2 e^{-M \epsilon^{2} / 3},
$$

- Union bound on $\binom{|\mathcal{S}|}{2}=O\left(|\mathcal{S}|^{2}\right)$ pairs in $\mathcal{S}: \mathbb{P}\left[\cup_{j} \mathcal{E}_{j}\right] \leqslant \sum_{j} \mathbb{P}\left[\mathcal{E}_{j}\right]$
$\Rightarrow \mathbb{P}(\exists$ failure for one pair in $\mathcal{S}) \leqslant 2 e^{2 \log |\mathcal{S}|-M \epsilon^{2} / 3} \underset{\text { e.g. }}{<} 2 / 3$

$$
\text { if } M \geqslant M_{0}=O\left(\epsilon^{-2} \log |\mathcal{S}|\right)
$$

Outline

1. An introduction to linear dimensionality reduction
2. Quantizing the J-L Lemma -- prologue

Quantization?
The naive way
What is know: binary embeddings ...
3. The finding of Buffon's needle
4. Quantizing the J-L Lemma -- epilogue
5. A few numerical tests
6. Conclusion

