

1. Context : Towards Lenslesss Endoscopy

How to see neurons firing?

- \triangleright Image at microscale, in depth.
- \succ With the least invasivity.

Solution:

- \rightarrow Lensless endoscopy!
- Case of study [1] Single pixel detector → Core Wavefront Optics shaper (SLM)Imaged Fluorescence signal (biological) Highlighted point sample
- \triangleright SLM controls the light injected in each core of the MCF.
 - \triangleright The cores are aranged in a Golden Fermat's spiral [1].
 - \triangleright The light reflected/reemitted by the sample is integrated in a single-pixel detector.

- \triangleright The cores define a set Ω critical for the sensing \Leftrightarrow speckle illumination.
- \triangleright Far-field assumption: MCF diameter \ll Sample-Distal End distance.
- \triangleright Field-of-view \Leftrightarrow speckle illumination diameter \Leftrightarrow core mode field.

3. Interferometric structural models
Low complexity model (LCM) in f LCM in \mathcal{I}_{Ω}
Spike model (I) Low-rankness
$\bar{f}(\boldsymbol{x}) = \sum_{i=1}^{K} \rho_i \delta(\boldsymbol{x} - \boldsymbol{x}_i) \text{ for } K \ll Q \qquad \qquad \boldsymbol{\mathcal{I}}_{\Omega}[\bar{f}] = \sum_i \rho_i \boldsymbol{u}(\boldsymbol{x}_i) \boldsymbol{u}^*(\boldsymbol{x}_i), \boldsymbol{u}(\boldsymbol{x})_j := e^{i2\pi \boldsymbol{p}_j^\top \boldsymbol{x}}$
Sparsity in $\{\psi\}_{k=1}^d$ Sparsity in $\{\mathcal{I}_{\Omega}[\psi_k]\}_{k=1}^d$
$\bar{f}(\boldsymbol{x}) = \sum_{k=1}^{d} \rho_k \psi_k(\boldsymbol{x}) \text{ with } \ \boldsymbol{\rho}\ _0 = K \ll d \qquad \qquad \boldsymbol{\mathcal{I}}_{\Omega}[\bar{f}] = \sum_{k \rho_k \neq 0}^{K} \rho_k \boldsymbol{\mathcal{I}}_{\Omega}[\psi_k]$
Remark: \mathcal{I}_{Ω} is almost circulant $\Rightarrow \mathcal{I}_{\Omega} = C^* \mathcal{J} C$ with \mathcal{J} a circulant matrix. \Rightarrow Forward model = autocorrelative model to reduce computational cost
$y_m = oldsymbol{lpha}_m^* oldsymbol{\mathcal{J}} oldsymbol{\mathcal{C}} oldsymbol{lpha}_m = oldsymbol{eta}_m^* oldsymbol{\mathcal{J}} oldsymbol{eta}_m = (oldsymbol{eta}_m * oldsymbol{ar{eta}}_m) oldsymbol{F} oldsymbol{ar{f}}$
(1) Reconstruction algorithm: given $\mathcal{B} = \mathcal{A} \circ \mathcal{T} \circ F$
\blacktriangleright If f is discretised, and sparse in pixels, hope to solve the inverse problem with
$\hat{f} \in \operatorname{argmin}_{\boldsymbol{u}} \ \boldsymbol{u}\ _{1} \text{ s.t.} \ \underbrace{\boldsymbol{\mathcal{B}}(\boldsymbol{f}) + \boldsymbol{n}}_{\boldsymbol{y}} - \boldsymbol{\mathcal{B}}(\boldsymbol{u})\ _{1} \leqslant \epsilon $ (BPDN _{ℓ_1})
(2) ℓ_2/ℓ_1 instance optimality of BPDN $_{\ell_1}$: given $K > 2k$, if:
▷ for $k' \in \{K, K+k\}$, we have $\alpha_{k'} u _2 \le \mathcal{B}(u) _1 \le \beta_{k'} u _2$, $\forall k'$ -sparse u
\blacktriangleright and $\frac{1}{\sqrt{2}}\alpha_{k+K} - \beta_K \frac{\sqrt{k}}{\sqrt{2}} > \gamma > 0$,

References

[1] S. Sivankutty, V. Tsvirkun, G. Bouwmans, D. Kogan, D. Oron, E. R. An- dresen, and H. Rigneault. Extended field-of-view in a lensless endoscope using an aperiodic multicore fiber, Optics Letters, 41 (2016), p. 3531

[2] E. Candès, J. K. Romberg, and T. Tao. Stable signal recovery from incomplete and inaccurate measurements. Comm. on Pure and Applied Math., LIX:1207–1223, 2006.

[3] S. Guérit, S. Sivankutty, J. Lee, H. Rigneault, L. Jacques. Compressive Imaging Through Optical Fiber with Partial Speckle Scanning. SIAM Journal on Imaging Sciences, 2021.

Y. Chen, Y. Chi, and A. J. Goldsmith. Exact and stable covariance estimation from quadratic sampling via convex programming. IEEE Transactions on Information Theory, 61(7):4034–4059, 2015.

T. Cai, A. Zhang, et al. Rop: Matrix recovery via rank-one projections. Annals of Statistics, 43(1):102–138, 2015.

Conclusion

Forward problem close to phase retrieval, interferometric model, but still linear in f.

 \succ LCM in f yields LCM in \mathcal{I}_{Ω} .

 \triangleright Potential for computational cost reduction.

 \triangleright Theoretical guarantees.

 \succ First experimental results \Rightarrow Proof of concept.

People

* ISPGroup, ICTEAM, UCLouvain, Belgium Institut Fresnel, Marseille France CNRS, Université de Lille

Acknowledgment

LJ and OL are funded by Belgian National Science Foundation (F.R.S.-FNRS). Part of this research is funded by the Fonds de la Recherche Scientifique– FNRS under Grant no T. 0136.20 (Learn2Sense).