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Abstract

The 2-D continuous wavelet transform has been applied to a number of problems in
astrophysics. We survey quickly some of these, then focus on two new applications.
The first one is the automatic detection and analysis of special objects from the
solar corona in the data taken by the EIT instrument aboard the SoHO satellite.
The second problem is the detection of gamma sources in the Universe, the difficulty
lying in the discrimination of faint sources against a highly nonuniform background
and the large number of sources (to be) measured by satellites like EGRET and
GLAST.

1 Introduction

The wavelet transform has become a standard tool in signal and image processing, and it
has found applications to almost all fields of physics, engineering and applied mathemat-
ics. In this paper, we will focus on its applications to astronomy and astrophysics imagery.
This means that we will consider the two-dimensional version of the transform and, more
precisely, the 2-D continuous wavelet transform (CWT). Its main use is for analysis and
feature detection in images, with special emphasis on the detection of singularities (con-
tours, sharp transitions, etc.). By contrast, the discrete WT is more appropriate for
signal compression and reconstruction, and it is the most popular version in the signal
processing community.

For the convenience of the reader, we recall in the Appendix the basic facts about the
2-D CWT. Further information may be found in the original paper [1], in review articles
such as [2] or [4], or in a the standard textbook like [14].
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2 Applications of the 2-D wavelet transform in astronomical
imaging

The wavelet transform has been applied to many different problems in astronomy and
astrophysics, both in 1-D and in 2-D. We will quickly review some of them, concentrating
on the latter, that is, application of the CWT to astronomical/astrophysical images.

The first attempt to apply the CWT for astrophysical images is due to the group
of A. Bijaoui in Nice, in 1990. In their pioneering paper [32], they used the CWT for
the analysis of galaxy clusters. The rationale for choosing the CWT is the following.
First, many astrophysical objects are variable (an extreme example is that of gamma
ray bursts!), which points towards a time-frequency method. Next, the Universe has a
distinctly hierarchical structure: stars, galaxies, galaxy clusters and superclusters corre-
spond to different scales (i.e., sizes), so that a time-scale analysis is better adapted. In
other words, wavelet analysis is a suitable tool. Now, the main problem is that of de-
tecting particular features, relations, groupings, etc, in images, which leads to prefer the
continuous WT over the discrete WT. Finally, there is in general no privileged direction,
nor particular oriented features in astrophysical images. All this suggests to use the sim-
plest isotropic 2-D wavelet, namely the 2-D Mexican hat. This was proposed in [32], and
followed by almost all later papers.

In the two papers [32, 33], the authors exploited galaxy counts to identify both galaxy
clusters and voids, pointing to a possible fractal structure. This led them to the analysis
of the large scale structure of the Universe, for which they developed a multiscale vision
model [8, 7] in order to detect and to characterize structures of different sizes (for numer-
ical reasons, also linked to the necessity of denoising the images, they later switched to a
discrete WT, based on spline wavelets). For instance, they proposed in [25] a morpholog-
ical indicator allowing a comparison between various cosmological models (for instance,
cold vs. hot dark matter). They have even applied their vision model to the analysis of
EIT images of the solar corona [29], that is, the ones we are going to discuss in Section 3.

Another topic where the CWT has been applied successfully is the analysis of the
X-ray structure of various objects, such as clusters of galaxies, following a suggestion by
Grebenev et al. [20]. This leads to a different class of problems. Indeed, such sources are
frequently at the limit of detection, so that statistical considerations become crucial. In
particular, we are here often in the photon-counting regime, the photon per pixel statistics
is significantly different from Gaussian and most sources are extended. The analysis of
such images by wavelet methods was further developed by Damiani et al. [13]. Our own
work reported in Section 4 uses a similar approach, but goes significantly deeper in the
analysis. In particular, considerable care will be devoted to the presence of Poisson noise
in the photon flux (note a recent attempt in the same direction by Bijaoui and Jammal
[10]).

A third research area where the CWT has been used is the detailed analysis of in-
dividual galaxies, notably in the group of P. Frick in Perm, Russia [17]. Of particular
importance is the cross-correlation between images obtained at different wavelengths. In
[18], the authors introduce the notion of wavelet spectrum, which is the proper general-
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ization to the wavelet setup of the familiar Fourier power spectrum.1 In the same vein,
the authors of [18] advocate the use of the wavelet cross-correlation function for compar-
ing the CWTs of their different images. Note that in their treatment they use both the
Mexican hat wavelet and, for a better separation of scales, their own isotropic wavelet,
defined in (A.13). This wavelet may have an independent interest.

Finally, a group from Santander, Spain, has undertaken a systematic analysis, by
wavelet methods, of the COBE data on the cosmic microwave bakground (CMB) radi-
ation. In a first step, they studied the local (i.e., in small sky patches) temperature
anisotropies in the CMB, including denoising the images, using both Haar and Mexican
hat wavelets (not necessarily isotropic) [30, 31]. Later [11], they used the isotropic Mexi-
can hat to detect and determine the flux of point sources superimposed on the CMB, in
conditions simulating the Planck Surveyor mission. As they point out, and we will have
more to say on that later, the advantage of the wavelet method is that no assumption
has to be made regarding the statistical properties of the point source population or the
underlying emission of the CMB. They showed that the isotropic Mexican hat wavelet is
in fact optimal for detecting point sources, and they also made a detailed comparison of
the wavelet method with the standard maximum-entropy method [37]. Their conclusion
is that the two methods are in fact complementary and can be combined to improve the
accuracy of the detection.

Then, more recently, the Santander group turned to a global analysis of the CMB,
trying to detect potential non-Gaussian CMB temperature fluctuations. This is an im-
portant observation for cosmology, for any non-Gaussianity would be an evidence for a
departure from standard inflationary theories. Since the data used in these experiments
is the full sky COBE-DMR data, it is clear that the sphericity of the data has to be taken
into account. As a consequence, one has to resort to spherical wavelets. A first attempt
was made by Barreiro et al. [6], using spherical Haar wavelets. Then the Santander group
introduced the spherical Mexican hat, establishing the superior capability of the latter
over the Haar wavelets [26]. The net result of these investigations is that the CMB tem-
perature fluctuations [12] are consistent with a Gaussian distribution, thus vindicating
the standard theories.

All these papers, and many more we have not quoted, prove that the CWT, both
Euclidean and spherical, is a powerful tool in the analysis of astrophysical images. The
two new applications presented here will be an eloquent confirmation of that statement.

3 Application of the CWT in Solar astronomy

Since 1996, the Extreme-ultraviolet Imaging Telescope (EIT) on board the Solar and
Heliospheric Observatory (SoHO) satellite observes the Sun in four wavelengths: 171 Å,
195 Å, 284 Å and 304 Å (see Figure 1). These correspond respectively to particular
emission lines of Iron (IX-X, XII, XV) and Helium (II), and thus to special temperatures
which are typical of those of the Sun Corona in the first three wavelengths, and of the
Transition Region in the fourth one [15].

1This quantity, which is defined as M(a) =
∫
R2 d2�b |WI(�b, a)|2, was also introduced by some of us [3]

in a totally different context (detection of symmetries in 2-D patterns.)
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304 Å (red) 171 Å (blue)

195 Å (green) 274 Å (yellow)

Figure 1: Images of the Sun in the four recorded wavelengths of EIT

3.1 The problem

The Sun Corona is physically very complex and contains a huge amount of different events
appearing at different location and scales. Solar astronomers are interested in the physics
which can be deduced from them to improve our knowledge of the global Sun. One way
to achieve this is to make time statistics on features of special solar objects.2 Because of
the large number of EIT pictures (currently greater than 100 000), astronomers aim also
to realize this analysis automatically by some well-suited algorithms.

However, many conceptual problems arise due to the difference between the human
description of things and the true (logical) computer vision. These can be summarized
into two main questions:

• How to define a Sun corona object in simple terms, that is, in sufficiently simple
concepts which can be managed by a computer program?

2This follows the discovery of the 11 year solar cycle by the periodicity in time of the latitude of the
sunspots.
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• How to determine the relevant characteristics of such an object and how to translate
them as simply as possible?

After a short description of the common Sun corona objects, we will show that the con-
tinuous wavelet transform (CWT) offers tools to answer these fundamental questions.

3.2 Special coronal objects

The physical objects of the Sun corona result in general from convective motions in the
solar mantle and/or of magnetic interactions with hot material. Here is a list of the
principal objects, ordered by size, from the smallest to the largest (for more information
see [22, 15, 28]):

Magnetic network: In the red 304 Å images, the magnetic network constitutes a tex-
tured solar background resulting of the advection of small magnetic flux by the
convective motion in the solar mantle.

Brightenings: Brightenings are visible in all EIT images and are related to magnetic
topology changes to a lower energy states. Their typical scale in an image is close of
the pixel size, but they brighten and fade away on a time scale ranging from several
minutes to hours.

Flares: A sudden and energetic local brightening in an active region (see below).

Bright points: Bright points (BP) are small regions with enhanced emission. They are
located above pairs of magnetic features of opposite polarity in the photosphere.
We can see them in the quiet corona and in coronal holes. They present a lifetime
ranging between two hours and two days.

Magnetic loops (or Loops): These objects result from the filling of magnetic field lines
with plasma. Because the temperature of this material varies along the loop, the
footpoints of the loop are more precise in the 171 Å, because they are cooler than
the loop summit, which is better seen in the 195 Å. The magnetic loops may be
part of the same active region, connecting two regions of opposite flux, or even join
different ARs.

Active regions: They show up as a region of large increase in the ultraviolet flux on the
image. Their typical size is about 10% of the solar radius. Physically, these active
regions (AR) contains hot material in smaller and larger loops around and inside
a region of enhanced magnetic flux. Because active regions are deeply related to
the well known Sun spots, they appear in two bands of latitude according to the
evolution of the main solar cycle of 11 years: They live at high latitudes at the
solar minimum (beginning of the cycle) and move towards the equator at the solar
maximum.

Coronal holes: Coronal holes (CH) are large regions where the magnetic field lines are
open and are advected by the solar wind into interplanetary space. Because the
energy is advected away, the CH are colder than the closed magnetic field regions
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Figure 2: The main Sun corona objects. The top left quadrant is the 304 Å wavelength
image, the rest corresponds to 171 Å.

and they appear effectively like dark holes in the EIT images. Their morphology
evolve with time and they become very small during the Sun maximum.

A visual summary of the solar objects defined above is presented in Figure 2. There are
also features which are not related to the Sun physics, but either to defects of the SoHO
satellite due to its aging, or to its interaction with some external events. The main ones
are the cosmic ray hits, which, by the interactions of cosmic rays with the EIT CCD
camera, plague the images with many bright pixels or bright straight lines, depending on
the cosmic orientation relatively to the CCD surface.

We should mention finally that all these images have a noise component, namely, a
readout noise coming from the CCD camera, the Solar noise and the photon-shot noise
(Poisson noise). The global noise is well approximated by Gaussian statistics, because of
the high counting effect (central limit theorem).
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3.3 Some tools from the CWT: Ridges of Maxima

In addition to the general formulas for the CWT given in the Appendix, we will consider
here the specific tools needed for the present application, namely to select some of the
solar corona phenomenons. Here we will restrict ourselves to isotropic (that is, rotation
invariant) wavelets, since these are the ones we need in the sequel. The general case is
discussed in the Appendix.

First we fix the notations. Given an image I ∈ L2(R2, d2�x ), its two-dimensional
continuous wavelet transform, with respect to the isotropic wavelet ψ, is defined as :

WI(�b, a) = a−2

∫
R2

d2�x ψ
(
a−1(�x−�b)

)
I(�x) , �b ∈ R2, a > 0, (3.1)

where the overbar denotes the complex conjugation. The quantity |WI |2 can be interpreted
as an energy density in the CWT space, that we will denote as

EI(�b, a) = |WI(�b, a)|2. (3.2)

Since the continuous wavelet transform is highly redundant, one may expect that
almost all the information is contained in a (relatively small) subset of the (�b, a) parameter
space. One possibility is to restrict oneself to a discrete subset (lattice), and this leads to
the theory of frames [14]. Another one is to consider only the regions where most of the
energy of the CWT is concentrated, namely, the lines of local maxima or ridges [24].

More specifically, a (vertical) ridge R is defined as the 3-D curve

ρ(a) = (�r(a), a)

such that, for each scale a ∈ R+, EI(�r(a), a) is locally maximum in space and r is a
continuous function of scale. Notice that one can also introduce horizontal ridges and
proceed, as in 1-D, to a stationary phase-type argument, as in [19].

Assuming that we are interested, in a first approach, in the small objects of the image
I, we may characterize a ridge by three main features.

The first one is the amplitude of the ridge, that is the value of EI on the ridge when
a tends to zero, that is,

AR = lim
a

>→0

EI(�r(a), a). (3.3)

The second one is the slope order, or slope, of EI on the ridge when a is close to 0:

SR = lim
a

>→0

d ln EI(�r(a), a)

d ln a
. (3.4)

The last feature is the ridge energy, that is, the integral of EI along the ridge, assuming
the latter to have a finite length, corresponding to the scale interval [0, amax]:

ER =

∫ amax

0

EI(�r(a), a)
da

a
. (3.5)

As in (A.5), the measure da/a follows from the L1 normalization of the wavelet (see A.2).
In practice, we will use only the amplitude and the slope of a ridge which are, in our

case, sufficient for the detection of small features.
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3.4 Classification of small features

The slope and the amplitude of the ridges allow us to distinguish the points of the image
I which give rise to these. A precious tool for this distinction is the histogram of the
amplitude in function of the slope, or the slope-amplitude histogram.

Let a0 the smallest relevant scale. Choose a sequence {�bj, 0 ≤ j ≤ K − 1} of max-

ima of EI(�b, a0), belonging to ridges {Rj, 0 ≤ j ≤ K − 1}. Then, given the set of all
corresponding couples (Sj,Aj)0≤j≤K−1, this histogram is built by the following simple
algorithm:

• Determine the desired size of the histogram H, say M ×N , and initialize H as the
zero M ×N matrix;

• Compute Smin and Smax, the minimum and the maximum of all the slopes (Sj)0≤j≤K−1,
respectively ;

• Compute Amin and Amax the minimum and the maximum of all the amplitudes
(Aj)0≤j≤K−1, respectively;

• Form the discretized slope S̃m = Smin + mSmax−Smin

M−1
for 0 ≤ m ≤ (M − 1), and the

discretized amplitude Ãn = Amin + nAmax−Amin

N−1
for 0 ≤ n ≤ (N − 1);

• Then, for k in 0, . . . , K − 1,

. Take the slope Sk and compute the index m such that S̃m is the nearest dis-
cretized slope from Sk, that is, the m such that

−0.5 < (M − 1)
S̃m − Sk

Smax − Smin

≤ 0.5; (3.6)

. Do the same with the amplitude and determine the index n such that

−0.5 < (N − 1)
Ãn −Ak

Amax −Amin

≤ 0.5; (3.7)

. Increment the (m, n) entry of H by one,

Hmn = Hmn + 1.

The histogram H reflects the 2-D distribution of the slope-amplitude couples. Identifying
distinct areas inside H is equivalent to detect different classes of small objects inside I.

3.5 Analysis of academic objects

To test our method, let us first analyze the smallest possible object, a singularity of height
C localized on a point �u. This is nothing but a Dirac distribution

I(�x) = C δ
(2)
�u (�x) = C δ(2)(�x− �u). (3.8)
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Figure 3: Analysis of singularities and Gaussians. (a) The original academic image; (b)
The slope-amplitude histogram (the logarithm of the amplitude is plotted to reduce the
range); (c) The selection of points in the singularity population (triangles), or in the
Gaussian population (circle).

One easily computes that CWT of I is

WI(�b, a) =
C

a2
ψ(a−1(�u−�b)), (3.9)

and

EI(�b, a) =
C2

a4

∣∣ψ(a−1(�u−�b))
∣∣2. (3.10)

It is easy to see that, if ψ has a maximum in zero, then EI is maximum in �u for all scales.
The equation of the ridge associated is simply (�u, a) for all a ∈ R+. The amplitude of
this ridge tends to the infinity and the slope has the value −4.
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For the second case, we take a simple Gaussian localized in �w, of width σ and height D:

I(�x) = D exp(−|�x− �w|2
2σ2

) (3.11)

A detailed calculation shows that WI has also a vertical ridge localized in �w with a
maximum in a = σ. The amplitude of this ridge is proportional to D and the slope is
now positive.

These two examples show that the amplitude is a criterion to select small objects
according to their intensity. Then the slope decides whether we are facing a singularity
or a larger object modeled by a Gaussian.

3.6 Numerical test

Before computing any histogram, some remarks must be made about the difference be-
tween the continuous theoretical world and the discretized view of the programming.

First remark, the image I is not continuous and infinite, but discrete and with a fixed
size. In this context, the integrals of the CWT become large sums which approximate the
continuous framework if the sampling, related to the size of I, is sufficient.

Second remark, the scale a cannot effectively go to zero in (3.3) and (3.4). Indeed,
the wavelet ψ must be sampled enough on the grid which determined the image. So,
equivalently, there will be a minimal scale a0 for which ψ̂�b a0

is essentially contained in the
frequency domain [−π, π)× [−π, π) (assuming the sampling period T is equal to 1).

This being said, let us analyze an academic image I of size 256× 256 consisting of a
collection of randomly placed singularities and Gaussians of small size and compute the
related slope-amplitude histogram, knowing that, in this case, the minimal scale a0 of the
Mexican Hat defined in (A.10) is close to 0.9.

In Figure 3(b), we can clearly see two distinct populations in the slope-amplitude
histogram. The population on the left-hand side (left dashed circle) corresponds to sin-
gularities of I with a slope centered around −4. The right area (right circle) is linked to
the Gaussians. A rough selection of points according to the sign of the slope is made in
Figure 3(c): Negative slopes are triangles, and positive ones are circles. Singularities and
Gaussians are effectively selected separately.

3.7 Application

In this section, we apply the preceeding technique to the selection of cosmic ray hits and
of bright points in the EIT images. The former are well described by singularities, because
cosmics burn only a few pixels on the CCD camera of the satellite, and the latter can be
modeled by Gaussians of small size.

The analyzed EIT image is shown in Figure 4(a). It is the top-left quadrant of a
284 Å wavelength image of 512x512 size. The slope-amplitude histogram, computed for
a0 = 1,is presented in Figure 4(b). It displays a fainter distinction of population than in
the academic example. Indeed, the white noise related to the picture recording has for
main effect the spreading of the well-defined academic areas of Figure 3(b).

Then, we have added on this histogram (see Figure 4(b)) a selection of objects, which,

for cosmics, corresponds to the maxima �bj of EI(., a0) such that lnAj > 2 and Sj < 0,
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Figure 4: Analysis of an EIT image: (a) The top-left quadrant of a 284Å wavelength
EIT image; (b) The slope-amplitude histogram; (c) The selected cosmics (triangles) and
bright points (circles).

and for bright points, to those for which Sj > 0. The amplitude thresholding prevents
from taking too faint singularities coming from quantization and Gaussian noise.

The result is shown in Figure 4(c). The cosmics are detected everywhere in the image
(because they are not related to solar physics), while the bright points appear mainly on
the solar disk (on-disk).

In Figure 5, a zoom is made on a particular on-disk area of the Sun. The selection
effect is now clearer than in the global image.
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(a) (b)

Figure 5: A closer look on a small on-disk region of the Sun: (a) Bright points selection;
(b) Cosmics selection.

3.8 Conclusion and open questions

We have presented some simple methods based on the Continuous Wavelet Transform to
discriminate two kinds of simple events in the Sun Corona pictures, the cosmic ray hits
and the bright points.

In this context, some rough thresholdings have been set in the slope-amplitude his-
togram to eliminate the noise effects. However, a precise statistical study remains to be
made on these selections according to the SNR3 of the analyzed images and their CWT’s.

We may ask also if a possibility exists to better distinguish more complex Solar phe-
nomenon like the active regions, the magnetic loops or the textured magnetic network of
the 304 Å wavelength pictures.

A solution to these questions can be foreseen by future techniques exploiting the full
information carried by the vertical ridges of the CWT. Indeed, our method uses only the
first relevant scale of these ones, that is, only their beginning. Information about possible
maxima of EI along these ridges is interesting to know the typical scale which defines an
object.

Several hierachical criteria based on the CWT may also help us to detect the inclusion
of small events, like the brightenings, into larger ones, like the active regions. The shape
of strong response areas in the CWT coefficients at different scales could be useful in this
context. Several studies in this direction exist already like, for instance [33].

Finally, one could gain by using the anisotropic (directional) CWT [2, 3, 4]. Many
Solar events present indeed an anisotropic behavior. The magnetic loops, for instance,
are locally equivalent to straight lines characterized by a particular width. At a scale
proportional to this width, the anisotropic CWT coefficients should vary for different

3Signal to Noise Ratio

12



angles θ relatively to the main direction of this line. A magnetic loop signature could
perhaps be found inside this variation.

4 Detection of gamma-ray sources in the Universe

When it comes to the detection and analysis of gamma-ray sources in the Universe, the
way data analysis is carried out depends on the energy range explored by the telescope.
This is not only due to the nature of emitting objects, or to the difficulty of designing
appropriate detectors, but also to the gradually lower photon counting rate as the energy
increases. For example, in average 100 ultraviolet photons from the Sun are expected
to be detected in one second by each pixel of the SoHO CCD camera, whereas about 1
gamma photon is recorded by the whole gamma-ray space telescope EGRET during the
same period! This correspondingly decreases accuracy and significance of any statistical
decision, like event detection. Equally important for the data analyst, the nature of
photon-counting processes induces an intrinsic “noise”, called Poisson noise, requiring
more statistical care than the usual Gaussian noise. Very sparse information is to be
extracted very carefully. This is briefly discussed in the sequel.

The problem we address in this section is the detection of sources in the raw data
of the above-mentioned telescope EGRET (20 MeV - 30 GeV photons). Sources are
point-like objects like pulsars or active galactic nuclei and appear in the data as a few
detected photons coming from the same direction in the sky. The whole issue is to give a
meaning to the coincidence of finding these photons together, hence to conclude (or not)
that they were produced by chance from the diffuse background (interaction of cosmic
rays with interstellar clouds). Besides the detection significance, the position, magnitude
and spectral characteristics of a source are other desirable quantities determined from the
data. This may seem a very humble problem to solve, but, as outlined above, the scope
of questions one can answer at 1 GeV is considerably restricted compared to the wealth
of the analysis in the previous section.

4.1 Sample data and the classical solutions

Every dot on Figure 6 is a detected photon, of energy 100 MeV or above, during the
viewing period 21.0 of EGRET. A ‘position’ on this counting map refers to a direction
in the sky, and the map is modeled as approximately flat. Such counting maps are very
broadly modeled as counting (Poisson) processes from two contributions, the background
flux and the flux from the sources. That is, we do not directly observe light intensities,
but rather photons that are randomly created from the corresponding physical objects
(point-like objects or extended objects like interstellar gases). Moreover, the detector is
far from being perfect: Direction and energy of an incoming photon are recorded with an
error that translates into the convolution of the above mentioned fluxes by a bell-shaped
function, the PSF (Point-Spread Function). Here the PSF is more heavy-tailed than a
Gaussian, see [27] for details.

As most recognition tasks in data analysis, gamma-ray source detection is often carried
out by a maximum likelihood (ML) method. That is, a parameterized source model is
fitted to data through maximization of the probability that the data arose as a realization
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Figure 6: Detected photons above 100 MeV during EGRET viewing period (VP) 21.0.

of the suggested model. This involves a heavy nonlinear optimization procedure and an
initial guess from the user to set the parameter values (height, width and position, say)
to their optimal values. But one eventually ends up with a very faithful account of the
physical properties of each source. There are statistical reasons to think that it is hard
to beat the quality of ML estimation, like the minimum variance property (see [16]). The
reference for ML source detection in EGRET data is [27].

Our concern, however, is to develop a simpler source detection method based on the
continuous wavelet transform. Roughly speaking, the idea is the following:

1. Group the events in a chosen interval of energies into a single 2-D counting map,
like in Figure 6.

2. Filter (convolve) the map with a Mexican hat wavelet at a given scale.

3. The source candidates are the maxima of the wavelet transform. Based on some
statistical criterion, a detection significance will be given to each maximum. The
higher the significance, the more likely the candidate be a true source.

4. Steps 2 and 3 can be repeated using wavelets at different scales.

In order to give the status of source candidate to the maxima of the wavelet transform,
we must make sure that relevant information (the sources) is properly decorrelated from
noise (the background). For achieving our program we choose a Mexican hat wavelet, for
the following reasons:

• Because of the vanishing moment condition (A.12), it filters away constant and
linear components in the background.

• Its isotropic bell shape responds mostly to bell-shaped sources.
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• Its good localization in space allows to discriminate events according to their po-
sition. This is why we prefer the Laplacian of a Gaussian to the Laplacian of the
heavy-tailed PSF.

• Its good localization in the frequency plane permits to discriminate events according
to their relative scale.

We have already mentioned in Section 2 several application of wavelets to X-ray source
detection, notably [13]. The interested reader can also consult our early report [36].

The statistical performance of a wavelet method is presumably poorer than what
can be achieved by maximum likelihood (ML). But remember the two main drawbacks
of the ML methods : (1) High computational complexity of the implementation and
(2) Supervision of the optimization process. These issues now simply disappear, since
wavelets allow a real-time automatic processing of the same job. To stress again the
difference between the two tools, we can think of wavelet methods as providing an initial
guess for more thorough ML identification of the source parameters, or as on-board data
processing module to warn the astronomers in case of a sudden gamma-ray burst.

Before giving the details of our analysis procedure, let us mention that other ap-
proaches, such as [34], make use of the more popular discrete wavelet transform (DWT) to
solve related problems like the identification of extended objects, that is, multiscale struc-
tures. The DWT is a computationally attractive alternative to the continuous wavelet
transform, but it imposes a strong restriction on the choice of filter used. For example,
the Mexican hat is not admissible in the pyramidal decomposition scheme of the DWT.
Moreover, it restricts the scale a to be a power of 2. A balance must be made between
quality of the analysis and speed of implementation.

We can also note at this point that the ‘almost flat’ approximation used above, namely
that a direction in the sky (a point on the sphere) can locally be represented by two planar
coordinates, is not necessary. If a more global data analysis is required, we can always
switch to the genuine spherical wavelet transform, introduced in its continuous form in
[5], and briefly discussed in the Appendix. This makes no conceptual difference in what
follows, only the algorithms will be more CPU-time consuming.

4.2 Our decision criteria

Let us move on to the following more specific questions.

What is the detection criterion?
Or in other words, how big should the values of the wavelet transform be to conclude
that a peak is indeed a source? Our criterion is based on a physical model of the
background interstellar gamma-ray emission, related to the distribution of hydrogen
in the galaxy, which can be found in [23]. The idea is to measure the discrepancy
between this model and the data in the wavelet domain. Peaks will be considered
sources if they significantly overshoot the model. More precisely, we can measure
the probability, in the wavelet domain, that the data arise as a realization of a
counting process involving the background model as generating flux. Let us denote
by µB(x) this background model, X(x) ∼ Po(tµB(x)) its Poisson realization,4 and

4It is a Poisson random variable for each position x, the exposure time is denoted by t.
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Figure 7: Probability density function of the wavelet transform values for a low intensity
background computed directly from the expression (4.1). The histogram gives the values
obtained by simulation.

Y (x) =
∫

dx′ψa(x−x′)X(x′) the wavelet transform of X(x) at scale a. The detection
significance of a source at x is hence defined as

P (Y (x) < y obs(x)) ,

where y obs is the value of the wavelet transform of the observed data, at scale a
and at position x. The closer this probability to 1, the more likely a source at x.
This can be viewed as a statistical hypothesis test: The null hypothesis H0, which
corresponds to the absence of source, is tested vs. hypothesis H1 which takes into
account all possible alternatives, among others the presence of a source. The test
statistic is Y (x) and the null hypothesis is precisely rejected with a probability equal
to P (Y (x) < y obs(x)).

Now the computation of these quantities (i.e., the tail values of the cumulative
distribution function of Y (x)) is far from being straightforward. It is a simple
probability exercise to prove an exact formula for the moment generating function
of Y (x), even in the presence of a nonuniform background, and we can also prove
other implicit characterizations of the probability density ‘function’ fY (x)(y) of Y (x).
But what really matters is to find a fast and reliable algorithm for computing the
quantities of interest, whatever t or the total background flux.5 So far, in a nutshell,
we have found the most useful formulation to be

fY (x)(y) =
∑
n≥0

µne−µ

n!
hx - . . . - hx︸ ︷︷ ︸

ntimes

(y), a.e., (4.1)

5Note to specialists: We believe these difficulties are linked to the very singular nature of fY (x). It
is nowhere continuous, not even bounded locally, even when t → ∞. The central limit theorem is to be
understood in a weak sense.
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where hx(y) =
∫ µB(x)

µ
δ(y − ψ(x)) dx is the weighted histogram of the wavelet,

µ =
∫

µB(x) dx is the total photon flux and - denotes the convolution. Here t is
uniformly set to 1, but the formalism easily extends to nonuniform exposures (and
flat-fielded intensity maps). The convolutions can now be computed numerically on
a fine grid using the FFT, going from one power of two to the next. The terms of
the sum in n are fast decreasing. The cumulative distribution function then follows
by numerically integrating the density function.

An example of a probability density function obtained using this procedure is shown
in Figure 7. The computed function is in very good agreement with Monte-Carlo
simulations of the distribution of the wavelet transform values.

How to estimate the total photon flux from a source?
Intuitively, the bigger the value of the wavelet transform at the position of a source,
the larger the flux of the source. And since the wavelet transform is linear, this
relation should be linear too. That is correct modulo complications due to the
presence of an unknown background of magnitude comparable to the one of the
source. We can however use our coarse a priori background model to remove part
of this bias.

Our estimator of the flux of a source detected to be at position x is not y obs(x), but
rather

Φ =
y obs(x)−WµB(x)

WµS(x)
,

where WµB(x) and WµS(x) are the wavelet transforms at x (and at a given scale, as
always) of the modeled background flux and of the modeled source flux respectively.
This estimator can be proven to be asymptotically unbiased (i.e., when the exposure
time or all the fluxes tend to infinity), provided the models are correct. Confidence
intervals on this statistic can also be derived.

How to estimate the position of a source?
Intuitively, the source candidates should be located at the maxima of the wavelet
transform. As above, this is true only for flat backgrounds. We account for its
nonuniformity in a correction to the quantity to maximize in order to get the position
of the source candidate. The position estimator is thus not argmaxx y obs(x) but
rather

x∗ = argmax
x

(y obs(x)−WµB(x))

Again, assuming the models are correct, this subtraction restores asymptotic unbi-
asedness. The corresponding confidence regions (this is 2-D now) are depicted on
Figure 8.

How to choose the scale of the wavelet for best performance?
Since the physical source is point-like, recorded sources look like the impulse re-
sponse of the detector, i.e., the PSF. Hence the best choice for the scale parameter
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Figure 8: Detected sources using the wavelet analysis of the EGRET viewing period 21.0
for E>100 MeV, the contours give the significance level from 4 to 16 σ. Superimposed
stars give the positions of the third EGRET catalog sources detected over 4 σ [21].

is that leading to a wavelet with width comparable to the one of the PSF. This
width does not vary much from source to source, it only depends on the energy of
the incoming photons. A source emitting proportionally more at high energies than
low energies is said to be ‘hard’, or to have a low spectral index and has a rather
peaked PSF: It is best detected at small scale. On the contrary, a ‘soft’ source has
a rather flat PSF and is best detected at a larger scale. This dependence of the
optimal scale parameter on the spectral index is illustrated on Figure 9.

Most of the 270 EGRET sources are not identified. The intrinsic resolution of high
energy gamma-ray detectors is not good enough to provide strong constraints on the
source position; it is therefore difficult to find counterparts at other wavelengths. Their
nature is still a mystery that the next generation telescope GLAST will help to solve. A
large fraction of identified sources consists in active galaxies whose nucleus is a massive
black hole (up to 109MSun) surrounded by an accretion disk of matter falling in the grav-
itational well. Besides, strong jets of ultra-relativistic matter and radiation are emitted
perpendicularly to the disk. Active galactic nuclei (AGN) detected in gamma-rays above
100 MeV have a jet pointed towards the Earth. Their emission is very variable, so that
they are often undetected when they are in a quiescent state and then, in a short time,
they become very bright.

Viewing period 21.0 is a high latitude observation in which an AGN is in flaring state;
3EG J0237+1635 was detected at 10 σ in [21] and is 16σ here. Several other sources are
also present above 4 σ. The procedure described above has been applied and results are
shown in Figure 8. One can see that all but one sources are seen. One should also note
that the bright AGN position is slightly wrong, because of the presence of a faint source
in the vicinity that is not detected. To detect this kind of source, the algorithm must be
applied a second time after the addition of the significant sources to the background.
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Figure 9: Significance for the detection of a source, expressed in number of sigmas, as a
function of the scale parameter of the wavelet. The wavelet is centered at the position of
the source. Each curve refers to a different spectral index, from lower (peaked curve) to
higher (flat curve). The position of the maxima of these curves changes as the spectral
index changes.

4.3 Conclusion

Our attempt at developing an alternative method to the usual maximum likelihood esti-
mation will probably prove to be relevant in the years to come. Indeed, the next generation
gamma-ray telescope, GLAST, is to be launched in March 2006 and its complexity (pa-
rameters to take into account, volume of the data stream) will make it impossible to build
a source catalog following EGRET’s old-school procedure. The algorithms must be made
more efficient in some way. Wavelets will not be the key to the whole problem, of course,
but will hopefully help develop alternative viewpoints.

Appendix: The 2-D continuous wavelet transform

Given an image I, that is, a finite energy signal I ∈ L2(R2, d2�x ), its two-dimensional
continuous wavelet transform, with respect to the wavelet ψ, is defined as the scalar
product, in the sense of L2(R2, d2�x ), of I with ψ:

WI(�b, a, θ) =

∫
R2

d2�x ψ�b a θ(�x) I(�x) , (A.1)

where the overbar denotes the complex conjugation, ψ�b a θ is a copy of ψ translated by
�b ∈ R2, dilated by a factor a > 0, and rotated by an angle θ ∈ [0, 2π], that is,

ψ�b a θ(�x) =
1

a2
ψ

(
1

a
r−1
θ (�x−�b)

)
, (A.2)

with rθ the rotation matrix of angle θ. Notice that ψ�b a θ is L1(R2, d2�x ) normalized, i.e.
‖ψ�b a θ‖1 = ‖ψ‖1 .
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The wavelet function ψ must be well localized both in position �x and in spatial fre-
quency �k, which means that it is (numerically) negligible outside of bounded subsets of
R

2 in each variable. In addition, to guarantee that no information is lost in the coeffi-
cients WI , that is, to be able to reconstruct I from these elements, we must impose an
admissibility requirement on ψ, namely

cψ ≡ (2π)2

∫
R2

d2�k
|ψ̂(�k)|2
‖k‖2 <∞. (A.3)

Under mild regularity assumptions, the admissibility condition (A.3) implies the following
easier one, which simply means that the function ψ has zero mean:

ψ̂(�0) = 0 ⇐⇒
∫
R2

d2�x ψ(�x) = 0. (A.4)

Strictly speaking, the condition (A.4) is only necessary, but in fact it is almost sufficient
(see [14] for a precise mathematical statement), and for all practical purposes (A.4) may
be taken as admissibility condition. In this case, the function ψ is called a wavelet.

Combining the admissibility condition with the support properties of ψ, one naturally
interprets the CWT as a local (bandpass) filter in all four variables (�b, a, θ), in other

words, the CWT sees the content of I, if any, at the location �b, at the scale a and in the
direction θ. Equivalently, the wavelet coefficient WI is strong where the image I resembles
locally ψ�b a θ.

Starting from the definition, a straightforward calculation yields a Plancherel relation
for the CWT, which manifests the fact that no energy is lost in the CWT parameter
space:

‖I‖2 =

∫
R2

d2�x |I(�x)|2 =
1

cψ

∫
R2

∫
R+

∫ 2π

0

d2�b
da

a
dθ |WI(�b, a, θ)|2 . (A.5)

From this relation, which justifies the admissibility condition cψ < ∞, |WI |2 can be
interpreted as an energy density in the CWT space (and thus the support property of the

wavelet means that most of the energy of ψ and ψ̂ lives in the support of these functions).
We will denote this energy density as

EI(�b, a, θ) = |WI(�b, a, θ)|2. (A.6)

As a consequence of the Plancherel relation (A.5), one obtains an exact reconstruction
formula of the image from its wavelet transform:

I(�x) = c−1
ψ

∫∫∫
d2�b

da

a
dθ ψ�b,a,θ(�x) WI(�b, a, θ). (A.7)

Now, if the wavelet ψ is rotation invariant, as will be the case in most applications
discussed below, the rotation matrix rθ has no effect and we get ψ�b a θ(�x) ≡ ψ�b a(�x) =

a−2ψ(a−1(�x−�b)). Thus the formulas simplify to

WI(�b, a) =

∫
R2

d2�x ψ�b a(�x) I(�x) , (A.8)

I(�x) = 2π c−1
ψ

∫∫
d2�b

da

a
ψ�b,a(�x) WI(�b, a). (A.9)
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We emphasize that the CWT transforms a two-dimensional image into a function
depending on four variables (two dimensions for �b, one for a and θ), and it is therefore
highly redundant. This property is actually very useful, since it enables the CWT to
discriminate between an object living at a given scale and a larger event at the same
location. We will exploit this in the analysis of EIT images, in Section 3.

Among the isotropic or rotation invariant wavelets, the simplest one is the so-called
Mexican hat, namely the Laplacian of a Gaussian (thus also called LOG wavelet):

ψH(�x) = −∆ exp(−1
2
|�x|2) = (2− |�x|2) exp(−1

2
|�x|2). (A.10)

In Fourier space, this gives

ψ̂H(�k) = |�k|2 exp(−1
2
|�k|2) . (A.11)

Thus, the Mexican hat is a real, isotropic, wavelet, well localized both in space (the
essential support of ψH is a disc with radius proportional to the scale) and in the spatial

frequency plane (the essential support of ψ̂H is an annulus with inner and outer radii
proportional to the inverse of the scale). As a consequence, the CWT of an image I with
respect to ψH is simply the Laplacian of a smoothed version of the original image I by a
Gaussian of size a. Thus the maxima of EI detect the maxima of the curvature of I at a
given scale, that is, mainly its peaks.

In addition, this wavelet has two vanishing moments:∫
R2

d2�x ψH(�x) =

∫
R2

d2�x xk ψH(�x) = 0, k = 1, 2. (A.12)

It is therefore insensitive to constant and linear components in the background (for in-
stance, a smooth gradient in the intensity of the image).

Another isotropic wavelet, introduced in [18] under the rather funny name of Pet hat,
is defined in Fourier space as

ψ̂(�k) =

{
cos2(π

2
log2

|�k|
2π

) : π < |�k| < 4π

0 : |�k| < π, |�k| > 4π.
(A.13)

This wavelet has a better resolving power in scale than the Mexican hat.
For some applications described in the text, one has to consider the Universe globally,

taking into account its spherical shape. This means that one should then use a spherical
wavelet transform. While a discrete approach to the latter (spherical Haar wavelets) was
designed by Sweldens [35], a full continuous CWT on the 2-sphere S2 was constructed
in [5]. The idea is simply to take the plane R2 as the tangent plane at the North Pole
of S2 and lift functions on R2 to functions on S2 by inverse stereographic projection.
Introducing polar coordinates both on the plane and on the sphere, the correspondence
reads:

S2 � (θ, ϕ)⇐⇒ (r, ϕ) ≡ (2 tan
θ

2
, ϕ).

For square integrable functions, this leads to a unitary map between the respective Hilbert
spaces, I−1 : L2(R2, d2�x )→ L2(S2, sin θ dθ dϕ), namely,

(I−1f)(θ, ϕ) =
2

1 + cos θ
f(2 tan

θ

2
, ϕ). (A.14)
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In the case of an isotropic wavelet ψ(r), with r = |�x|, the correspondence is simply

(I−1ψ)(θ) =
2

1 + cos θ
ψ(2 tan

θ

2
). (A.15)

Then, choosing for ψ the Mexican hat wavelet ψH, one gets the spherical Mexican hat
wavelet.

References

[1] J-P. Antoine, P. Carrette, R. Murenzi, and B. Piette, Image analysis with two-
dimensional continuous wavelet transform, Signal Proc., 31 (1993) 241–272

[2] J-P. Antoine and R. Murenzi, Two-dimensional wavelet analysis in image processing,
Physicalia Mag., 16 (1994) 105–134

[3] J-P. Antoine, R. Murenzi, and P. Vandergheynst, Directional wavelets revisited:
Cauchy wavelets and symmetry detection in patterns, Appl. Comput. Harmon. Anal.,
6 (1999) 314–345

[4] J-P. Antoine, The 2-D wavelet transform, physical applications and generalizations,
in Wavelets in Physics , pp. 23–75; J. C. van den Berg (ed.), Cambridge Univ. Press,
Cambridge, 1999

[5] J-P. Antoine and P. Vandergheynst, Wavelets on the 2-sphere: A group-theoretical
approach, Appl. Comput. Harmon. Anal., 7 (1999) 262–291

[6] R.B. Barreiro, M.P. Hobson, A.N. Lasenby, A.J. Banday, K.M. Gorski, and G. Hin-
shaw, Testing the Gaussianity of the COBE DMR data with spherical wavelets, Mon.
Not. R. Astron. Soc., 318 (2000) 475–481
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