
Chapter 10  

How does digital cinema compress images? 

In spite of the strong temporal redundancy of video, in the Digital Cinema 
industry each image from a movie is compressed separately   
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The development of digital technologies has drastically modified the re-
quirements and constraints that a good image representation format should 
meet. Originally, the requirements were to achieve good compression effi-
ciency while keeping the computational complexity low. This has lead in 
1992 to the standardization of the JPEG format, which is still widely used 
today (see Chapter 8). Over the years however, many things have evolved: 
more computing power is available and the development of Internet has 
required image representation formats to be more flexible and network-
oriented, to enable efficient access to images through heterogeneous de-
vices. 

In this context, the JPEG committee worked on an advanced and versatil 
image compression algorithm, called JPEG2000 (Rabbani and Joshi 2002, 
Skodras et al 2001, Taubman and Marcellin 2002). It became an Interna-



2      A. Descampe, C. De Vleeschouwer, L. Jacques, F. Marqués 

tional Standard from the ISO1 in 2001. Since then, it has been adopted on a 
growing number of professional markets that require both high quality im-
ages and intrinsic scalability, i.e. intrinsic ability to seamlessly adapt to the 
user needs and available resources2. Among those markets, we should cite 
Digital Cinema (DC)3, which has adopted JPEG2000 as its official stan-
dard (DCI 2005), or the contribution4 segment of broadcast solutions 
(Symes 2006). Other potential applications are medical imaging (Tzannes 
and Ebrahimi 2003, Foos et al. 2003), remote sensing (Zhang and Wang 
2005), and audio-visual archives (Janosky and Witthus 2004). 

Fig. 10.1 illustrates the high compression efficiency (Santa-Cruz et al. 
2002) by comparing a JPEG and a JPEG2000 image at two different com-
pression ratios. However, the feature that makes JPEG2000 really unique 
is its scalability. From a functional point of view, image scaling can be 
done at four different levels (see Fig. 10.2): 
 
1 The resolution: the wavelet transform (further described below) reor-

ganizes the information in so-called resolution levels, each of them 
incrementally refining the spatial resolution of the image. Starting 
from the original full resolution, each successive level transforms its 
input image into a four times smaller5 image plus details coefficients. 
Independent encoding of low resolution image and details coefficients 
enables access at multiple resolutions. 

2 The bit-depth: data is entropy-encoded on a “per bit-plane” basis. This 
means that most significant bits of all wavelet coefficients are en-
coded before less significant ones. By grouping encoded bits of equal 
significance, we obtain quality layers. The first quality layer gives a 
coarse version of the image (only the most significant bits of each 
pixel are used), which is further refined by subsequent quality layers. 

                                                      
1 International Organization for Standardization 
2 In a more general sense, scalability is defined as “the ability of a computer 

application or product (hardware or software) to continue to function well when it 
(or its context) is changed in size or volume in order to meet a user need” (from 
http://www.whatis.com).  

3 It might sound surprising that a still image codec is used, instead of an MPEG 
video standard (see Chapter 9). However, extensive tests have revealed that the 
advantage of exploiting temporal redundancy between successive frames is sig-
nificantly reduced for the high resolution and quality levels required by Digital 
Cinema (Smith and Villasenor 2004, Fossel et al. 2003, Marpe et al. 2003). 

4 The contribution, in broadcast, is the transfer of high quality versions of the 
distributed media between different broadcast providers. 

5 Each level divides the image width and height by 2. 
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3 The spatial location: any spatial area inside an image can easily be 
extracted from a JPEG2000 codestream without having to process 
other parts of this image. 

4 The colour component: when an image is made of several compo-
nents (like in colour images or, more generally, multi-modal images), 
each component is coded independently and can therefore be ex-
tracted separately. 

 

 
 

  
 

  

Fig. 10.1 Subjective comparison between JPEG (left) and JPEG2000 (right) com-
pression efficiency. First row: original image. Second row: compression ratio of 
170. Third row: compression ratio of 65. 
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Fig. 10.2 Scalability in JPEG2000: Starting from a JPEG2000 codestream, image 
information can be extracted in several different ways: (a) by resolution, (b) by 
quality layer, (c) by spatial location, (d) by component (Y, Cb and Cr components, 
represented with a grayscale color map). 

Based on the above image representation mechanisms, a JPEG2000 
codestream organizes the image data in a hierarchical set of packets, each 
one containing the information related to a given quality layer from a gi-
ven resolution, in a given spatial location of one of the image components. 
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Thereby, one can easily extract the exact portion of information that corre-
sponds to his/her needs (in terms of image area, resolution, etc) and avail-
able resources (bandwidth, display, etc).  

The rest of the Chapter further explains and demonstrates the fundamen-
tal mechanisms that support such a versatile scalability. Specifically, the 
wavelet transform, the bit-plane encoder, and the grouping of bit-planes 
into quality layers are respectively considered in Section 10.1, Section 10.2 
and Section 10.3. MATLAB proof-of-concept experiments are proposed in 
Section 10.4. For completeness, Section 10.5 concludes with a survey of 
the complete pipeline implemented to generate a JPEG2000 codestream, 
based on the concepts introduced along the Chapter. 

10.1 Background – Introduction to wavelet and 
multiresolution transforms 

This Section introduces some basic concepts about wavelet analysis of 1-D 
and 2-D signals. Essentially, wavelets aim at changing the representation 
of a signal (i.e. the association of a time or a position with a certain value) 
so as to reorganize the information contained in the signal and reveal some 
properties that did not appear clearly in the initial representation. 

Before the birth of wavelet analysis, most of signal processing was per-
formed using global tools such as global signal statistics, Fourier trans-
form/series, global Discrete Cosine Transform (DCT), etc. These decom-
positions are global in the sense that they do not provide any information 
about the local signal structure. The DCT of a signal for instance points us 
“how many” frequencies are present inside a temporal sequence, but we do 
not know when each one was produced : there is no way to produce a mu-
sic partition with the Fourier reading of an orchestral symphony, you can 
just count the number of particular notes produced during the whole con-
cert. 

To address this weakness, some attempts were early made to “artifi-
cially” localize these techniques by computing them within several limited 
time intervals or support areas. However, this solution has its drawbacks. 
The image block artefact illustrated in Fig. 10.1 for the JPEG compression 
is for instance due to an image representation that is split across a set of 
independent and non-overlapping block-based DCT. 

In contrast, this windowing process is incorporated naturally within a 
time-frequency 1-D signal representation known as the Wavelet Transform 
(WT). As explained above, the WT gives birth to multiresolution descrip-
tions of any signal and can easily be generalized to image representation. 
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10.1.1 Think globally, act locally 

Let us start by dealing with 1-D continuous signal and see later how to 
practically manipulate signals digitally recorded as a discrete sequence of 
values. Our signal is a continuous function s(t) representing the recording 
of some physical process at every time t ∈ � . For convenience, s is not 
displaying weird behaviours and has, for instance, a finite energy; that is: 
  

{ }2 22 ( ) : ( )s L u u u t dt∈ = <∫�� � ∞  (10.1) 

 
In the purpose of analyzing the content of s, we may first compute its 

approximation 0A s  in the set V0 of signals that are constant on each inter-
val  for 0, [ , 1)nI n n= + ∈ � n ∈ � . To compute such an approximation, it is 
convenient to define  

1 if 0 1
( )

0 elsewhere
t

tϕ
≤ <⎧

= ⎨
⎩

 (10.2) 

 
The function ϕ, named the Haar scaling function, is fundamental for de-

scribing elements of V0. The set { }0 0, ( ) ( ) :n t t n nϕ ϕΦ = = − ∈� , made of 

translated copies of ϕ , is a basis for V0, i.e. any function of V0 can be de-
scribed as a linear combination of the ϕ0 elements. This basis is actually 
orthonormal according to the usual scalar product , 

i.e. 

, ( ) (u v u t v t dt〈 〉 = ∫� )

m0, 0,,n m nϕ ϕ δ〈 〉 = with nmδ the Kronecker's symbol, which is equal to 1 
if n = m and to 0 otherwise. 

Thanks to ϕ, the average of the signal s in interval [ )0, , 1nI n n= +  is 
simply computed by  

 
1

0 0,( ) , ( )
n

n n
a n s s t dtϕ

+
〈 〉 = ∫�  (10.3) 

  
Thus, 0 0,( ) ( )na n tϕ  is nothing but the approximation of s in I0,n by a con-
stant function of height a0(n). For the whole time line, the approximation 
reads: 

 

0 0 0,( ) ( )n
n

A s a n tϕ
∈
∑
�

�  (10.4) 
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Fig. 10.3 1st row: Original signal. 2nd row: Approximation A0s of this signal in V0

A simple approximation illustration is drawn in Fig. 10.3 for a toy signal 
s made of smooth, transient and oscillatory parts on the time interval 
[0,20].  As expected, 0 0A s V∈  approximates the initial s but we can notice 
that smoothed parts of s are better rendered than the transient ones. The 
very oscillating part between t = 5 and t = 9 is for instance completely 
smoothed while its sloppy trend is preserved. 

10.1.2 Approximate... but details matter 

The numerical example of the last Section suggests that we could tune the 
level of resolution of the piecewise constant function set on which s is pro-
jected to approximate with better success some parts of a given signal. 

In other words, we want to work now with the general space Vj of func-
tions constant on intervals ), 2 , 2 ( 1)j j

j nI n n− −⎡= +⎣ . Indices j and n are 

named the resolution and the position parameters respectively. The higher 
j, the better the approximation of s in Vj. 

These spaces Vj are hierarchically organized, i.e. each Vj is included into 
Vj+1. Moreover, { }/ 2

, ( ) 2 (2 ) :j j
j j n t t n nϕ ϕΦ = = − ∈ �  is the new or-

thonormal6 basis for Vj. Approximating s by j jA s V∈  is straightforward 
with: 
                                                      

6 The multiplicative constant 2j/2 in the definition of ϕj,n guarantees the unit 
normalization at all resolutions, i.e. ||ϕj,n || = 1  
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,( ) ( ), ( ) ( ),j j j n j j n
n

A s a n t a n t sϕ
∈

,ϕ= 〈 〉∑
�

�  (10.5) 

 
Note that aj(n)ϕj,n(t) is a constant function over interval Ij,n of height 

equal to the average value of s(t) over Ij,n. Therefore, for infinite resolution 
j, i.e. when j → ∞, Vj tends to the space 2 ( )L � itself since these averages 
tend to the actual values of s(t). 

We may notice that the density of basis function ϕj,n per unit of time 
changes with the resolution. Indeed, at a given resolution j, ϕj,n and ϕj,n+1 
are separated by a distance 2-j. We will see later that this observation leads 
to the downsampling7 (or upsampling8) operations considered in Section 
10.1.3. 

In this general framework, asking now if the resolution j is sufficient to 
represent with high quality a local signal behaviour is related to determin-
ing the information that is lost when switching from one resolution j + 1 to 
the coarser one j. 

Therefore, we would like to compute the details that have to be added to 
an approximation Ajs to get the approximation at level (j + 1). Trivially, we 
have 

( )1 1j j j j j jA s A s A s A s A s D s+ += + − = +  (10.6) 

 
where Dj s are those details. We may remark that 1j jD s V +∈  but the Vj+1 
space is actually too big to describe well any possible Dj s. In fact Dj s be-
longs to a new space of functions Wj which is the detail space of resolution 
j. It is also referred as subband of resolution j in the literature, and can be 
generated by the orthogonal basis { }/ 2

, ( ) 2 (2 ) :j j
j j n t t n nψ ψΨ = = − ∈ � , 

based on the Haar wavelet: 
 

1 if 0 1/ 2
( ) 1 if 1/ 2 1

0 elsewhere

t
t tψ

− ≤ <⎧
⎪= ≤ <⎨
⎪
⎩

 (10.7) 

 

                                                      
7 That is deleting every other position n 
8 That is inserting zeros between every position n 
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The wavelet function ψ has a vanishing average, i.e. 
( ) ,1 0t dtψ ψ= 〈 〉 =∫� , and is also orthogonal to ϕ, i.e. , 0ψ ϕ〈 〉 = . Both 

functions ϕ and ψ are represented in Fig. 10.4.a and Fig. 10.4.b respec-
tively. 

 

    
(a)       (b) 

 
(c) 

Fig. 10.4 (a) Haar scaling function. (b) Haar wavelet. (c) Example of detail coeffi-
cients from two resolution levels. The signal analyzed is the same as in Fig. 10.3, 

which is drawn in gray on the two top figures 

The piecewise constant shape of ψ is implicitly determined by Eq. 
(10.7) and by the definition of ϕ. In short, for ,j nt I∈ , we know that 



10      A. Descampe, C. De Vleeschouwer, L. Jacques, F. Marqués 

,( ) ( ) ( )j j j nA s t a n tϕ= . The height of this constant function, i.e. 2j/2aj(n), is 
also the average of s(t) over interval Ij,n. By construction, this interval 
merges two adjacent intervals from the higher level of approximation, i.e. 

, 1,2 1,2 1j n j n j nI I I+ += ∪ + . As a consequence, an approximation at level j is 
exactly the mean value of the two corresponding approximations computed 
at level (j+1), and the plateau value of Aj s on Ij,n is exactly at mid-height of 
the two constant pieces of: 

 

1 1 1,2 1 1,2 1( ) (2 ) ( ) (2 1) ( )j j j n j j nA s t a n t a n tϕ ϕ+ + + + + += + +  (10.8) 

 
Therefore, the detail Djs = Aj+1s - Ajs has thus the shape of ψ over Ij,n.  

In Fig. 10.4.c, we give a plot of D1s on the previous numerical signal 
(Fig. 10.3). The two plots on top represent A2s (A2) and A1s (A1). The last 
on the bottom is D1s = A2s – A1s (D2). In the D1s plot, we may observe that 
detail coefficients with high amplitude, i.e. absolute value, are not very 
numerous. They are mainly concentrated around the transient parts of the 
original signal (mainly in interval [5, 10]). This localization effect is a 
manifestation of the zero average of ψ. Whenever s(t) is almost constant 
on a certain interval U ∈ � , if ψj,n is well concentrated on U, the corre-
sponding wavelet coefficient vanishes. 

Without entering into too many details, let us mention that the Haar ba-
sis is just one example, actually the simplest, of orthonormal basis leading 
to a Wavelet Transform definition. All the previous definitions, i.e. scaling 
and wavelet functions, approximation and detail spaces Vj and Wj, can be 
extended in a general formalism named Multiresolution Analysis (Mallat 
1999, Daubechies 1992). In particular, the wavelet and the scaling func-
tions can be designed to reach certain regularity properties (vanishing 
moments, compact support, etc), to address the specific requirements of 
the underlying signal processing or analysis application.  

10.1.3 Wavelet Transform: Definition and Computation 

Now that we know how to switch from one resolution to another, we can 
iterate the decomposition of Eq. (10.6) from resolution level J as follows9

 

                                                      
9 As it will be shown in Section 10.1.4, typically the highest resolution level for 

discrete signals is the original signal itself. 
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, ,

( ) lim ( ) ( ) ( )

( ) ( ) ( ) ( )

j J jj j J

J J n j j n
n j J

s t A s t A s t D s t

a n t d n tϕ ψ

∞

→∞
=

∞

=

= = +

= +

∑

∑ ∑
 (10.9) 

 
The (Haar) wavelet transform of a signal s is the collection of all the de-

tail (or wavelet) coefficients ,( ) ,j j nd n sψ= 〈 〉  plus the approximation coef-
ficients aJ(n). Eq. (10.9) is referred to the inverse WT, taking coefficients 
and rebuilding the original signal s(t).  

The WT implies a new representation of the signal: a temporal or spatial 
description of s has been replaced by a 2-D resolution/position description 
{dj(n), aJ(n)}. Moreover, the locality of the functions ϕ and ψ involves that 
these coefficients are actually a local measurement of s. As a mathematical 
microscope, coefficients dj(n) are thus probing locally the content of the 
signal s with a lens ψ of magnification 2j, i.e. with a size 2-j, and at position 
2-jn. 

About the practical computation of the WT, up to now it was suggested 
that scalar products, i.e. complete integrations on �  (or Riemann sums for 
numeric simulations), between s and basis elements ψj,n or ϕJ,n must be 
computed. There is however a recursive technique to follow based on the 
idea that ϕ and ψ respect each a scaling equation, i.e. there exists filters h 
and g such that   

1,0 ,( ) ( ) ( )j jn
t h nϕ ϕ− = n t∑  (10.10) 

1,0 ,( ) ( ) ( )j jn
t g n n tψ ψ− = ∑  (10.11) 

 
The sequence , 1,0( ) ,j n jh n ϕ ϕ −= 〈 〉 and , 1,0( ) ,j n jg n ψ ψ −= 〈 〉  are named the 

conjugate mirror filters (or CMF) of ϕ and ψ . Interestingly, it may be no-
ticed that the values of h and g are actually independent of the resolution j. 
In other words, the link existing between the scaling functions and the 
wavelets between two consecutive resolutions is always the same. It can be 
shown also that h and g stay the same if we translate in time the functions 
on the left of Eq. (10.10) and Eq. (10.11), i.e. if we develop in the same 
way ϕj-1,m and ψj-1,m for a given integer m. In consequence, as shown be-
low, the knowledge of the sequences h and g dramatically simplifies the 
computation of the WT. 

For the Haar basis, they are quite simple to calculate; the only non-zero 
elements are (0) (1) 1/ 2h h= =  and (0) (1) 1/ 2g g= − = . Note that for 
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general (ϕ, ψ) i.e. outside of the Haar system, we have always 
1( ) ( 1) (1 )ng n h−= − − n  (Daubechies 1992). 

Thanks to these scaling relations, it is easy to prove (Mallat 1999) that 
 

( )1( ) ( 2 ) ( ) (2 )j j
n

a p h n p a n a h p− = − = ∗∑ j  (10.12) 

( )1( ) ( 2 ) ( ) (2 )j j
n

d p g n p a n a g p− = − = ∗∑ j  (10.13) 

 
with ( ) ( )u n u n= −  and * stands for the discrete convolution between two 
sequences. Notice the presence of a factor 2 in the argument of the convo-
lution. As formally described in Section 10.1.2, this represents actually a 
downsampling by a factor 2 of the density of positions when passing from 
resolution j to resolution j-1. 

Therefore, from an “engineer” point of view, a wavelet transform can be 
seen as the recursive application of a filter bank, i.e. the combination of the 
discrete filters h and g, thereby resulting in a low resolution version of the 
signal plus a set of detail subbands.  

 
 

 
 

(a) Decomposition 
 

 
 

(b) Reconstruction 

Fig. 10.5 (a) Decomposition and (b) Reconstruction scheme for approximation 
and detail coefficients computations. Symbols ↑2 and ↓2 represent up-sampling, 
and down-sampling operations respectively. Circles mean convolution with filter 
name inside. 

In the converse sense, approximation coefficients can be rebuilt from 
approximation and detail coefficients at a coarser level with 
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( ) ( )1( ) ( ) ( )j j ja p a h p d g p+ = ∗ + ∗
((  (10.14) 

 
where, for any sequence u, (2 ) ( )u n u n=(  and (2 1) 0u n + =( , i.e. the opera-
tor inserts zero between sequence elements (upsampling operator). 

In short, aj and dj are computed from aj+1, and aj+1 can be rebuilt from aj 
and dj, in each case knowing the CMF filters h and g. This hierarchic com-
puting (summarized schematically in Fig. 10.5) drastically simplifies the 
computation of the WT compared to an approach in which each coefficient 
should be computed based on the convolution of the original signal with 
rescaled filters. 

Biorthogonality 
Let us include a remark on the concept of biorthogonality. The mentioned 
orthogonality between ϕ and ψ may be lifted leading for instance to the 
definition of biorthogonal systems. This requires the addition of two dual 
functions ϕ%  and ψ% . The set { }, , ,ϕ ψ ϕ ψ% % is more flexible and easier to de-
sign than an orthogonal system {ϕ, ψ}. 

In the induced biorthogonal WT, the direct functions ϕ and ψ are used 
to compute the approximation and the detail coefficients aj and dj, while 
the dual functions are related to the reconstruction process. 

On the filter side, we work also with 4 filters { }, , ,h g h g% % . The first two, 

the direct filters h and g, are used in the decomposition process, while the 
dual filters  and h% g%  are involved in the reconstruction. For instance, 
JPEG2000 uses either the Daubechies 9/7 filters, i.e. h and  have 9 and 7 
non-zero elements respectively (see Table 10.1), or the Daubechies 5/3 fil-
ters (named also LeGall 5/3). 

h%

Table 10.1 Examples of CMF filters. Filters g and g% are not represented for 
Daubechies filters since 1 n( ) ( 1) (1 )g n h n−− −% 1 n

 and ( ) ( 1) (1 )g n h n−= − −% . =

 Haar   Daubechies 7/9 

n [ ]h n%  [ ]h n   n [ ]h n%  [ ]h n  

0 2-1/2 -2-1/2  0 0.78848561640637 0.85269867900889 
1 2-1/2 2-1/2  ±1 0.41809227322204 0.37740285561283 

    ±2 -0.04068941760920 -0.11062440441844 

    ±3 -0.06453888262876 -0.02384946501956 

    ±4  -0.03782845554969 
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10.1.4 WT and Discrete Signals: DWT 

In the previous Sections, we have seen that, thanks to a very simple basis, 
a continuous signal can be decomposed in several resolutions of details. In 
practice, signals are provided as a discrete (and finite) sequence of num-
bers, corresponding to a sampling of the original signal s, i.e. with values 
sd(n). 

To extend the above theory from continuous to discrete signals, we sim-
ply assume that sd corresponds to the approximation coefficients10 

,( ) ,J J na n sϕ= 〈 〉  of some hypothetical continuous s at resolution J. Thus, 
pyramidal rules of Section 10.1.3 can be directly applied onto sd(n) = aJ(n). 
This is what defines the discrete WT, or DWT. 

Taking into account the downsampling arising in the computations of 
Eq. (10.12), the whole DWT of a discrete sequence sd of N = 2J elements11 
at a resolution 0 ≤ J0 < J, is thus composed of 2J-1 + 2J-2 +…+ 2J0 = 2J - 2J0 

wavelet coefficients dj (J0 ≤ j < J), and 2J0 approximation coefficients aJ0. 
Therefore, the DWT provides exactly the same number of coefficients, i.e. 
N = 2J, as the number of samples in sd. No redundancy has been introduced 
in the transform. 

For the inverse DWT (iDWT), the rule is thus simply to apply Eq. 
(10.13) to recover aJ(n) = sd(n) from the DWT coefficients. About the 
computation complexity of the DWT and the iDWT, thanks both to the 
downsampling and to the pyramidal computations, all can be performed in 
not more than O(N) operations, i.e. the total number of multiplications-
additions involved increases linearly with the number N of signal samples.  

10.1.5 WT and DWT for Images: 1+1 = 2 

In previous Sections, we were concerned only about wavelet transforms of 
1-D signal. How can we extend it to the manipulations of images, i.e. 2-D 
functions? The recipe that we are going to describe below is quite simple: 
2-D DWT can be obtained by applying 1-D DWT successively to each di-
mension of the image. 

As previously commented, a wavelet transform can be seen as the recur-
sive application of a filter bank, resulting in a low resolution version of the 

                                                      
10 See (Mallat 1999) for further details on that subject.  
11 To be exact, assuming sd limited to N values induces particular boundary 

treatments in the DWT like making the sequence periodic or using different wave-
lets to compute WT coefficients involving boundaries. The interested reader may 
refer to (Daubechies 1992) or (Mallat 1999). 
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signal plus a set of detail subbands. When dealing with images, the compu-
tation of the wavelet transform can be performed by applying the filter 
bank successively in the vertical and horizontal directions, resulting in the 
computation process shown in Fig. 10.6. 

Here, we follow the JPEG2000 terminology, and refer to L to represent 
a low-pass convolution by h (computing a signal approximation), and to H 
to denote a high-pass convolution by g (computing signal details). Step by 
step, in the notations of Section 10.1.3, the initial image I = LL0 is first de-
composed into two vertically down-sampled convolutions 

 

( )) ( (, 2 )y x yh n n= ∗n1(L 0LL   and  )) ( , 2 )y x yg n n= ∗n1( LLH 0  (10.15) 

 
where n = (nx, ny) is the 2-D index, *u stands for the 1-D convolution (as in 
Eq. (10.12) performed in direction u∈{“x”, “y”}, i.e. horizontal or vertical. 

By downsampling effect, L1 and H1 are thus two rectangular images as 
depicted in the second stage in Fig. 10.6. Then, the first level of a WT de-
composition is eventually reached by applying horizontal convolutions to 
the two previous outputs so that, for instance, ( )) (2 , )x x yh n n= ∗n1( 1LL L  

(third stage in Fig. 10.6). Finally, any other level of decomposition n + 1 is 
obtained iteratively by working on the last approximation LLn (fourth 
stage in Fig. 10.6). Notice that when n increases, resolution j decreases. 

As subsampling operations arise in both horizontal and vertical direc-
tions, each subband n contains four times fewer coefficients than at resolu-
tion n + 1, and the NxN pixel values are transformed in NxN coefficients.  

 

 

Fig. 10.6 2-levels Discrete Wavelet Transform: Continuing with the JPEG2000 
terminology, note that the index of the different bands in the JPEG2000 context is 
increasing when the resolution decreases. This is highlighted here since JPEG2000 

indexing is inverting the notation used at the previous Sections. 

It is important to understand here that no compression has been done up 
to this point. The image information has just been reorganized and decor-
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related (see Chapter 8) so as to concentrate the image energy in the upper 
left corner. By doing so, the image has been “prepared” for compression: 
most high-frequency subbands coefficients are indeed close to zero (see 
grey points in Fig. 10.7) and can be therefore efficiently compressed. 

10.2  Background – Context-based modeling of wavelet 
coefficients bit-planes 

This Section defines how the wavelet coefficients corresponding to the 
multiresolution representation of an image, as presented in Section 10.1, 
can be entropy coded, both efficiently and in a way that supports random 
spatial access and progressive decoding capabilities.  

10.2.1 Spatial and bit-depth scalability 

First, let us see how spatial and quality scalability is obtained. In short, 
each subband is split into several rectangular entities, named codeblocks, 
which are compressed independently to preserve random spatial access. To 
offer the capability to decode the image at multiple quality levels, the coef-
ficients in a codeblock are bit-plane encoded, which means that a coeffi-
cient is primarily defined by its most significant bit, and progressively re-
fined by adding bits in decreasing order of significance. The 
decomposition of the image into planes of bits is illustrated in Fig. 10.7. 

 

 
 

Fig. 10.7 Encoding of a codeblock on a per bit-plane basis. Codeblocks are usu-
ally 32x32 or 64x64 blocks of wavelet coefficients (here, only 25 coefficients 
have been represented for visual convenience). 
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10.2.2 Efficient entropy coding 

Let us now describe how coefficient bit-planes can be efficiently entropy 
coded. Entropy coding has been introduced in Chapter 8, and consists in 
compacting the sequence of messages generated by a random source, 
based on the knowledge of the statistics of the source. When dealing with 
bit-planes, efficient compression thus relies on accurate estimation of the 
probability distribution associated to the sequence of binary symbols en-
countered while scanning the bit-planes, typically in a most-to-least sig-
nificant and raster scan order (from left to right and from top to bottom). 
For improved estimation, a context-based image modeller has been intro-
duced by JPEG2000 designers. Context-based means that the probability 
of a binary symbol is estimated based on its neighbourhood, also named its 
context.  

In a sense, the context-based modeller partitions the aggregated image 
source into a set of sources characterized by distinct contexts. As we know 
that the aggregation of two sources (with known probability distributions) 
into a single source (modelled by an aggregated distribution) leads to an 
entropy increase, we conclude that the context-based approach increases 
coding efficiency, as long as the statistics associated to each context can be 
accurately estimated. The benefit is only significant when the statistics of 
the distinct sources are sufficiently different. 

Formally, let bi,j denote the binary random variable associated to the jth 
bit of the ith bit-plane, and define Ci,j to be the random state variable asso-
ciated to the context of bi,j, with possible realizations c of Ci,j belonging to 
Γ. Using P(.) to denote the probability distribution of a random variable, 
the entropy of bi,j is 
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and we define the context-based entropy of bi,j as follows: 
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In practice, the probability distributions P(bi,j) and P(bi,j | Ci,j = c) are es-
timated based on histogram computations, i.e. probabilities are approxi-
mated by frequencies of occurrence. Those estimated values can be com-
puted either based on the signal to encode or based on a predefined and 
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representative set of images. In the first case, the frequencies of occurrence 
have to be transmitted as side information, while in the latter case, they are 
a priori known by both the coder and decoder.  

In JPEG2000, the context is computed based on state variables related to 
surrounding coefficients, and to the processed coefficient itself. The most 
important state variable is the significance status of a coefficient. Initially, 
all coefficients are labelled as insignificant and bit-planes are processed 
from the most to the least significant one. A coefficient is said to switch 
from insignificant to significant at the most significant bit-plane for which 
a bit equal to ‘1’ is found for this coefficient. Once significant, the coeffi-
cient keeps this status for all the remaining less significant bit-planes. 
Other variables affecting the context are the kind of subband (LL, HL, LH 
or HH), the sign of the coefficient, and its first refinement status12.  

Intuitively, it is easy to understand that such a context improves the pre-
dictability of encoded binary values. Indeed, in a given bit-plane, if a non-
significant coefficient is surrounded with significant ones, it is more likely 
to become significant (i.e. get a '1' bit) than if it is surrounded with non-
significant coefficients. We will therefore use a higher probability of get-
ting a '1' when encoding bits that belong to coefficients that are in this 
situation.  

Based on the above arguments, we understand that context-based mod-
elling is likely to significantly decrease the entropy of the binary source 
associated to bit-plane scanning. To turn such entropy gain into actual bit 
budget reduction, it is important to implement an efficient entropy coder. 
In JPEG2000, this is done by a MQ-coder, which is a derivative of the 
arithmetic Q-coder (Mitchell and Pennebaker 1988). According to the pro-
vided context, the coder chooses a probability for the bit to encode, among 
predetermined probability values supplied by the JPEG2000 Standard and 
stored in a look-up table13. Using this probability, it encodes the bit and 
progressively generates code-words.  

                                                      
12 This variable is always equal to '0', except at the bit-plane immediately fol-

lowing the bit-plane where the coefficient became significant, where it is set to '1' 
13 For improved coding efficiency, JPEG2000 dynamically updates the prob-

ability distribution associated to each context along the coding process. In this 
way, the context-based modeller adapts to the image content and to the evolution 
of the probability distribution across the bit-planes 
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10.3 Background - Rate-distortion optimal bit allocation 
across wavelet codeblocks 

This Section describes how the single and complete codestream generated 
by the entropy coder can be adapted to meet a given bit-budget constraint, 
while preserving image quality. Such adaptation is typically required when 
storage or transmission resources get scarce.  

In Section 10.2, we have explained that the coefficients of an image 
codeblock are encoded on a bit-plane by bit-plane basis. Hence, bit-budget 
reduction can simply be obtained by dropping the bitstream segments as-
sociated to the least significant codeblock bit-planes. Conversely to en-
tropy coding, which does not cause any loss of information, such dropping 
mechanisms obviously affects image quality. Hence, a fundamental prob-
lem consists in deciding for each codeblock about the number of bit-planes 
to drop, so as to minimize the distortion on the reconstructed image while 
meeting the given bit-budget (storage or rate) constraint. 

The problem of rate-distortion (RD) optimal allocation of a bit budget 
across a set of image blocks characterized by a discrete set of RD trade-
offs14 has been extensively studied in the literature (Shoham and Gersho 
1988, Ortega et al. 1994, Ortega 1996). Under strict bit-budget constraints, 
the problem is hard, and its resolution relies on heuristic methods or dy-
namic programming approaches (Ortega et al. 1994). In contrast, when 
some relaxation of the rate constraint is allowed, Lagrangian optimization 
and convex-hull approximation can be considered to split the global opti-
mization problem in a set of simple block-based local decision problems 
(Shoham and Gersho 1988, Ortega et al. 1994, Ortega 1996). This ap-
proach is described in details in the rest of this Section. In short the con-
vex-hull approximation consists in restricting the eligible transmission op-
tions for each block to the RD points sustaining the lower convex hull of 
the available RD trade-offs of the block15. Global optimization at the im-
age level is then obtained by allocating the available bit-budget among the 
individual codeblock convex-hulls, in decreasing order of distortion reduc-
tion per unit of rate. 

                                                      
14 In the JPEG2000 context, for each codeblock. 
15 The convex hull or convex envelope of a set of points X in a vector space is 

the (boundary of the) minimal convex set containing X 
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10.3.1 Problem definition 

We assume that N known input codeblocks have to be encoded using a 
given set Q of M admissible quantizers, such that the choice of the quan-
tizer j for a codeblock i induces a distortion dij for a cost in bits equal to bij.  

The objective is then to find the allocation x ∈ QN, which assigns a 
quantizer x(i) to codeblock i, such that the total distortion is minimized for 
a given rate constraint. 

In our case, the index j of the quantizer refers to the number of encoded 
bit-planes, 0 ≤ j ≤ M. We also assume an additive distortion metric, for 
which the contribution provided by multiple codeblocks to the entire im-
age distortion is equal to the sum of the distortion computed for each indi-
vidual codeblock.  

In practice, the distortion metrics are computed based on the square er-
ror (SE) of wavelet coefficients, so as to approximate the reconstructed 
image square error (Taubman 2000). Formally, let cb(n) and ĉb(n) respec-
tively denote the two-dimensional sequences of original and approximated 
subband samples in codeblock b. The distortion dij associated to the ap-
proximation of the ith codeblock by its j first bit-planes is then defined by 
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where ci(n) and ĉi

j(n) respectively denote the original and the quantized nth 
coefficient of codeblock i, while wsb denotes the L2-norm of the wavelet 
basis functions for the subband sb to which codeblock b belongs (Taubman 
2000). 

Formally, the rate-distortion optimal bit allocation problem is then for-
mulated as follows: 

 
Optimal rate-constrained bit allocation: For a given target bit-
budget BBT, find x* such that: 
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10.3.2 Lagrangian formulation and approximated solution 

Strictly speaking, the above formulation is known in the literature as a 
Knapsack problem, which can be solved at high computational cost using 
dynamic programming (Kellerer 2004, Wolsey 1998). Hopefully, in most 
communication applications, the bit-budget constraint is somewhat elastic. 
Buffers absorb momentary rate fluctuations, so that the bits that are saved 
(overspent) on the current image just slightly increment (decrement) the 
budget allocated to subsequent images, without really impairing the global 
performance of the communication.  

Hence, we are interested in finding a solution to Eq. (10.19), subject to a 
constraint B' that is reasonably close to BB

⎟

T. This slight difference dramati-
cally simplifies the RD optimal bit allocation problem, because it allows 
the application of the Lagrange-multiplier method. We now state the main 
and fundamental theorem associated with Lagrangian optimization, be-
cause it sustains our subsequent developments. 

 
Theorem: For any λ ≥ 0, the solution xλ* to the unconstrained problem: 
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is also the solution to the constrained problem of Eq. (10.17) when 
the constraint: 
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Proof: Let us define ( )1

( ) dN
ix ii
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=

= ∑x and ( )1
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=
= ∑x . By defi-

nition of xλ*, we have D(xλ*) + λB(xλ*) ≤ D(x) + λ B(x)  for all x ∈ 
QN. Equivalently, we have D(xλ*) - D(x) ≤  λ B(x) - λB(xλ*), for all x 
∈ QN . Hence, because λ ≥ 0, for all x ∈ QN such that B(x) ≤ B(xλ*), 
we have D(xλ*) - D(x) ≤  0. That is, xλ* is also the solution to the 
constrained problem when B BT = B(xλ*). □ 
 
This theorem says that to every nonnegative λ, there is a corresponding 

constrained problem whose solution is identical to that of the uncon-
strained problem. As we sweep λ from zero to infinity, sets of solutions 
xλ* and constraints B(xλ*) are created. Our purpose is then to find the solu-
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tion which corresponds to the constraint that is close to the target bit-
budget BBT. 

 
We now explain how to solve the unconstrained problem. For a given λ, 

the solution to Eq. (10.21) is obtained by minimizing each term of the sum 
separately. Hence, for each codeblock i, 

 
( )*( ) arg min d bij ij

j
x i λ = + λ  (10.23) 

 
Minimizing Eq. (10.23) intuitively corresponds to finding the operating 
point of the ith codeblock that is “first hit” by a line of absolute slope λ (see 
the examples in Fig. 10.8). The convex-hull RD points are defined as the 
(dij, bij) pairs that sustain the lower convex-hull of the discrete set of oper-
ating points of the ith codeblock.  

For simplicity, we re-label the MH(i) ≤ M convex-hull points, and denote 
(dik

H, bik
H), k ≤ MH(i) to be their rate-distortion coordinates. When sweep-

ing the λ value from infinity to zero, the solution to Eq. (10.21) goes 
through the convex-hull points from left to right. Specifically, if we define 

( ) ( )( 1) ( 1)( ) d d / b bH H H H
i ik i k i kS k + += − − ik  to be the slope of the convex-hull after 

the kth point, the kth point is optimal when Si(k-1) > λ > Si(k), i.e. as long as 
the parameter λ lies between the slopes of the convex-hull on both sides of 
the kth point.   

 

 

Fig. 10.8 Examples of Lagrangian-based bit allocation. In all graphs, the crosses 
depict possible operating points for a given codeblock. Circled crosses correspond 
to RD convex-hull points, which provide the set of solutions to the unconstrained 
bit allocation problem. (a) and (b) depict the 'first hit' solution for two distinct val-
ues of λ, while (c) plots the lower convex-hull. 
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At the image level, RD optimality is achieved by ensuring that each 
codeblock selects its operating point based on the same rate-distortion 
trade-off, as determined by the λ parameter. Since the λ slope is the same 
for every block, this algorithm is also referred to as a constant slope opti-
mization. As illustrated in Section 10.3.3 and further described in (Ortega 
and Ramchandran 1998), the intuitive explanation of the algorithm is sim-
ple. By considering operating points at constant slope, all blocks are made 
to operate at the same marginal return for an extra bit in rate-distortion 
trade-off. By marginal return, we mean the incremental reduction of distor-
tion obtained in return for an extra bit. Hence, the same marginal return for 
all blocks means that, the distortion reduction resulting from one extra bit 
for any given block is equal to the distortion increase incurred in using one 
less bit for another block (to maintain the same overall budget).  For this 
reason, there is no allocation that is more efficient for that particular 
budget.  

 
Now that we have solved the unconstrained problem, we explain how to 

find the solution whose constraint is close to the targer budget BT. While 
reducing the value of λ, the optimal solution to Eq. (10.21) progressively 
moves along the convex-hull for each codeblock (e.g. going from λ0 to λ1 
in Fig. 10.8), ending up in decoding more and more bit-planes. The proc-
ess naturally covers the entire set of solutions to the unconstrained prob-
lem, in increasing order of bit consumption and image reconstruction qual-
ity. Under a budget constraint BBT, we are interested in the solution that 
maximizes the quality while keeping the bit-budget below the constraint. 

Hence, given a bit-budget and the set of accessible convex-hull RD 
points for each codeblock, overall RD optimality is achieved at the image 
level by decoding the bit-planes corresponding to the convex-hull RD 
points selected in decreasing order of benefit per unit of rate, up to exhaus-
tion of the transmission budget (Shoham and Gersho 1988). The approach 
is described in a JPEG2000 context in (Taubman and Rosenbaum 2003). 

10.3.3 Lagrangian optimization: a non-image based example 

To further illustrate the generality and intuition of Lagrangian optimiza-
tion, we rephrase (Ortega and Ramchandran 1998) and consider an exam-
ple that is outside the scope of image coding. This should hopefully high-
light the general applicability of those solutions to resource allocation 
problems. The example is described as follows. 

Nora is a student dealing with 2 questions during a 2-hour exam. Both 
questions worth 50% of the grade for the course, and we assume Nora is 
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able to project her expected performance on each question based on how 
much time she devotes to them, as depicted in Fig. 10.9. 

 

 

Fig. 10.9 Illustration of Lagrangian optimization. Graphs (a) and (b) depict the 
score-time trade-offs corresponding to 1st and 2nd questions of Nora's exam, re-
spectively. Optimal overall score is obtained when the allocation of an additional 
time unit provides the same score increment for both questions. 

Since the examination time is limited, Nora has to budget her time care-
fully. One option could be to devote half of the time to each question. This 
would amount to operating points A1 and B1 in Fig. 10.9, which results in 
an expected score of 75 (30 + 45). Can Nora make better use of her time? 
The answer lies in the slopes of the (Time, Score) trade-off curves that 
characterize both questions. Operating point A1 has a slope of about 0.5 
point/minute, while operating point B1 has a slope of only 0.1 
point/minute. Clearly, Nora could improve her score by diverting some 
time from the second to the first question. Actually, she should keep on 
stealing time from the second question as long as it provides a larger return 
for the first question than the corresponding loss incurred on the second 
question. At the optimum, the same marginal return (i.e.: score increment) 
would be obtained from any additional time spent on any question. This is 
exactly the operating points A2 and B2 in Fig. 10.9, which live on the same 
slope of the trade-off characteristics, and correspond to a complete alloca-
tion of the 2 hours budget, for an optimal score equal to 80 (38 + 42).  

Here, it is worth emphasizing that the above reasoning relies on the 
convex nature of the time/score characteristics (see Section 10.3.2). We 
now consider a slightly different example to better capture the intuition ly-
ing behind the convex-hull constraint. In this example, one of the two 
questions is composed of a hierarchy of 4 dependent sub-questions. By de-
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pendent, we mean that a sub-question can only be answered if the answers 
to previous sub-questions are known. Fig. 10.10 depicts Nora's expected 
performance to such a hierarchical question, as a function of the time de-
voted to it. Since the points resulting from a correct sub-answer might not 
be in-line with the amount of time required to solve the corresponding sub-
problem, the time/score trade-off might be non-convex. In our example, 
answers to sub-question A, B, C and D respectively worth 10, 10, 15 and 
15 points, but are expected to require 10, 30, 20 and 60 minutes to be an-
swered correctly and completely by Nora.  

 

 

Fig. 10.10 Illustration of convex-hull approximation. Operating points lying be-
tween A and C on the time/score characteristic do not belong to the time/score 
convex-hull, and are thus ineligible solutions for the unconstrained allocation 
problem. 

Solving the unconstrained time allocation problem t*= argmaxt(s + λt) 
when the slope parameter λ sweeps from infinity to zero ends up in scan-
ning the convex-hull (depicted with dots in Fig. 10.10) of the time/score 
characteristic. Hence, the Lagrangian framework will prevent considering 
non convex hull operating points as eligible solutions to the resource allo-
cation problem. In Fig. 10.10, all operating points lying on the time/score 
characteristic between A and C become ineligible solutions to the uncon-
strained optimization problem, whatever the slope parameter is. Intuitively, 
those non-convex points correspond to cases for which time has been spent 
with relatively little return compared to what will be obtained by a longer 
effort. Those non-convex operating points should thus also be omitted by 
the iterative solution described in Section 10.3.2. This is the reason why it 
is crucial to first compute the trade-off characteristic convex-hull before 
running the iterative solution proposed in Section 10.3.2. 
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10.4 MATLAB proof of concept  

This Section demonstrates the theoretical concepts previously introduced 
in this Chapter. A number of experiments are first presented to illustrate 
the multiresolution and decorrelative properties of the wavelet transform. 
In a second part, an image is selected and processed through a simplified 
JPEG2000 scheme. 

All along this Section, compressed image quality are estimated based on 
mean squared error (MSE) or peak signal to noise ratio (PSNR) metrics. 
The MSE between an N × M image I and its approximation I%  is equal to 
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In turn, the PSNR is measured in decibels (dB), and is defined by  
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where Dynamic denotes the dynamic range of the image and is equal to 
255 for an 8 bits/pixel image. 

10.4.1 Experiments with the Wavelet Transform 

Four numerical experiments are presented to make the reader more famil-
iar with the practical aspects of the 1-D and 2-D DWT implementations in 
MATLAB. The third and fourth experiments go slightly further this explo-
ration by studying a very simple image compression procedure in the 
wavelet domain. 

Experiment 1: Computing the Haar DWT 
Let us present an example of DWT computation using the MATLAB 
Wavelet Toolbox16. The following sequence of MATLAB commands per-
forms the Haar DWT of our favorite 1-D signal (see Fig. 10.3) from reso-
lution J = 10 to resolution J0 = 5. Detail and approximation coefficients are 
represented with the waveshow() command, and are depicted in Fig. 

                                                      
16 MATLAB© Wavelet Toolbox TM, The MathWorks, Inc. 

http://www.mathworks.com/products/wavelet/

http://www.mathworks.com/products/wavelet/
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10.11. Localization of important coefficients close to transient signal parts 
is now obvious. 

  
%Loading the signal, N=1024=2^10 
load 1d-sig; 
% Performing the DWT, 
J = 10; J0 = 5; 
[W,L] = wavedec(sig, J-J0, 'haar'); 
% Showing it (waveshow.m is part of the CDROM) 
figure; waveshow(sig,W,L) 
 

 

Fig. 10.11 Haar wavelet transform of the 1-D signal presented in Fig. 10.3. 

Using the detail and approximation coefficients, we can also create the hi-
erarchy of different approximation signals from resolution J0 = 5 to J = 10, 
which is the original signal itself. These signals are represented with the 
appshow () command, and are depicted in Fig. 10.12. 

  
%% Showing the ladder of approximations  
%% (appshow.m is part of the CDROM)  
figure; appshow(sig,W,L, 'haar') 
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Fig. 10.12 Hierarchy of approximations obtained with the Haar wavelet transform 
of the 1-D signal presented in Fig. 10.3. 

Experiment 2: Performing 2D-DWT 
The following routine computes the Daubechies 9/7 2-D DWT of the input 
images (see Fig. 10.13), and displays the wavelet coefficients in the same 
way as explained in Fig. 10.6. In waveshow2(), horizontal, vertical and 
diagonal coefficients are shifted around 128 and normalized by their 
maximal absolute value at each resolution. The concept is illustrated in 
Fig. 10.14. Note that for visualization purposes, the pixel values of the 
various subbands have been normalized (i.e.: coefficients with zero value 
are represented with a 128 value). We observe that the most significant co-
efficients appear only in the transient parts, i.e. close to the edges or in the 
textures of the image (e.g. the grass in the bottom of Fig. 10.13.a). 

 
% Loading the image : The Cameraman picture 
% img is a 256x256 size array 
im = double(imread('cameraman.tif')); 
figure; imagesc(im); colormap(gray); axis equal tight; 
set(gca,'clim',[7 253]) 
% 2D DWT Computations with Daubechies 9/7 (== 'bior4.4') 
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% W contains the DWT coefficients in a column shape. 
J = log2(256); J0 = 2; wname = 'bior4.4'; 
[W,S] = wavedec2(im, J-J0, wname); 
% The DWT array 
figure, waveshow2(W,S,'haar'); 

 

  
(a) (b) 

Fig. 10.13 (a) Original Cameraman image (256x256 pixels) and (b) Original Bar-
bara image (512x512 pixels). 

  
(a) (b) 

Fig. 10.14 2-D DWT of (a) Cameraman and (b) Barbara using Daubechies 9/7. 
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Experiment 3: On the compression road. 
We now focus on the “sparseness” of the wavelet coefficients for the rep-
resentation of natural images. The relevance of the WT regarding com-
pression holds in the following concept: very few coefficients concentrate 
the essential of the image information. This can already be perceived in 
Fig. 10.14. Conversely to initial pixel values, detail coefficients with high 
amplitude are not very numerous and are well localized on image edges. 

The following code is the continuation of Experiment 2. Here we com-
press images by keeping only the 10% highest energy wavelet coefficients. 
This is achieved by sorting the wavelet values by decreasing order of mag-
nitude and recording the amplitude of the Kth largest element (with K the 
closest integer to N2/10). Then, all other wavelet coefficients with non zero 
magnitude are set to 0, i.e. their information is lost (see Fig. 10.15). 

 
% Sorting wavelet coefficient amplitude 
sW = sort(abs(W(:)), 'descend'); 
 
% Number of elements to keep 
% Compression of 90% ! 
K = round(256*256/10); 
T = sW(K); 
 
% Thresholding values of W lesser than T 
% i.e. we keep the K strongest 
nW = W; 
nW(abs(nW) < T) = 0; 
 
% Rebuilding the compressed image 
Timg = waverec2(nW, S, wname); 
figure; imagesc(Timg); colormap(gray); axis equal tight; 
set(gca,'clim',[7 253]) 

 

  
(a) (b) 

Fig. 10.15 Reconstruction of the previous images using the 10% of DWT coeffi-
cients with highest energy: (a) Cameraman (PSNR = 32.87 dB) and (b) Barbara 
(PSNR = 31.75 dB) 
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Experiment 4: Quantifying Compression Quality 
Let us now quantify a bit further the quality reached by the compression 
scheme of Experiment 3 in function of both the number of DWT coeffi-
cients kept during the thresholding and the type of wavelet filters used. 

In Fig. 10.16 the quality curve obtained for different percentages of 
wavelet coefficients is drawn (from 5% to 30%) for the Cameraman image 
of Fig. 10.13. We can clearly see that the Daubechies 9/7 filter provides 
the best quality. However, quality is not the only criterion which makes a 
filter better than another. Daubechies (or Legall) 5/3 filters can be ex-
pressed by rational numbers and, therefore, are used for lossless compres-
sion in JPEG2000.  

 

 

Fig. 10.16 Quality curve of compressed images (for the Cameraman image) for 
different percentage of DWT coefficients and for different filters. 

nbpix = 256*256; 
 
% Fixing the percentage of pixels to keep in the compression 
% between 5% and 30% 
K = round(((5:5:30)/100) * nbpix); 
nbK = length(K); 
 
% Cameraman Image decomposed on J levels 
im = double(imread('cameraman.tif')); 
J = log2(256); J0 = 0; 
 
% Quality metrics between two images : MSE and PSNR. 
% Assuming an 8 bits original image 
MSE = @(X,Y) norm(X(:) - Y(:), 2)^2 / nbpix; 
PSNR = @(X,Y) 10*log10( (256-1)^2 / MSE(X,Y) ); 
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wname1 = 'bior4.4'; %% Daubechies 9/7 
wname2 = 'bior3.3'; %% Daubechies/Legall 5/3 
 
[W1,S1] = wavedec2(im, J-J0, wname1); 
[W2,S2] = wavedec2(im, J-J0, wname2); 
 
sW1 = sort(abs(W1(:)), 'descend'); 
sW2 = sort(abs(W2(:)), 'descend'); 
 
for k = 1:nbK, 
   % Setting all the DWT coefficients smaller than the Kth 
magnitude to 
   % zero. 
   % For DB97 
   T1 = sW1(K(k)); 
   nW1 = W1; 
   nW1(abs(nW1) < T1) = 0; 
   Timg1 = waverec2(nW1, S1, wname1); 
 
   % For DB53 
   T2 = sW2(K(k)); 
   nW2 = W2; 
   nW2(abs(nW2) < T2) = 0; 
   Timg2 = waverec2(nW2, S2, wname2); 
 
   % Recording quality 
   curve_97(k) = PSNR(im, Timg1); 
   curve_53(k) = PSNR(im, Timg2); 
end 

10.4.2 A simplified JPEG2000 scheme 

In this Section, we provide a proof of concept of the JPEG2000 image 
compression standard. We start by transforming the input image using 2D-
DWT. We then consider context-based entropy coding of the wavelet coef-
ficient bit-planes, and conclude by performing a rate-distortion optimal al-
location. 

All along this code, a structure img is defined that will contain the re-
quired settings to process the image. These settings include the path to the 
image to be processed (img.path), the number of wavelet decomposi-
tions to apply (img.nwdec), the kind of wavelet filters to use 
(img.wfilt), etc. 

First of all, we load a greyscale image and shift the coefficients from an 
unsigned to a signed representation. 

 
X = imread(img.path); 
X = double(X); 
img.bdepth = ceil(log2(max(X(:)+1))); 
[img.h img.w] = size(X); 
X = X - pow2(img.bdepth-1); % DC-level shifting 
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Discrete Wavelet Transform 
The JPEG2000 standard defines 2 different filters, namely the 5/3 and the 
9/7 transforms. The former is used in JPEG2000 when lossless coding is 
required. The latter, with a slightly higher decorrelating power, is used for 
lossy coding. 

The norms of the synthesis filters17 are denoted by wnorm_53 and 
wnorm_97. They will be used to approximate square errors in the pixel 
domain based on the ones in the wavelet domain. According to the pa-
rameter wfilt defining the wavelet transform to be used, we apply the 5/3 
or 9/7 transform. The function wavedec2 from the Wavelet Toolbox is 
used. 

 
if img.wfilt==0 
    [C,S] = wavedec2(X,img.nwdec,lo_53_D,hi_53_D);  
elseif img.wfilt==1 
    [C,S] = wavedec2(X,img.nwdec,lo_97_D,hi_97_D); 
else 
    error('wavelet filter not recognized'); 
end 

Context-based modeling of coefficients bit-planes 
After the DWT, the JPEG2000 algorithm performs bit-plane context-based 
entropy coding of each subband. This Section computes the incremental 
bit-budget and distortion reduction resulting from the addition of bit-planes 
to refine DWT coefficients. Thereby, it provides the inputs required by the 
rate-distortion optimal bit allocation mechanisms envisioned in the next 
Section. Moreover, this Section illustrates the advantage of context-based 
modelling by comparing two measures of the entropy associated with the 
binary representation of the wavelet coefficients. In the first case, the bi-
nary symbols are assumed to be generated by an i.i.d. sequence of random 
variables, and the probability distribution of each binary random variable 
is estimated based on the frequency of occurrence of 1’s and 0’s symbols. 
In the second case, we use the conditional probabilities associated with 
each binary symbol, knowing its context. The reduction of entropy be-
tween the first and second case corresponds to the benefit obtained from 
the chosen context model. 

It should be noted that to avoid a too long Section, we do not actually 
implement the entropy coder. Only the performance of such coder is 
evaluated, through estimation of the source entropy. This estimation en-

                                                      
17 The norm of a filter corresponds to the sum of the squared coefficients of the 

filter. It can be seen as the average amplitude change that will occur when filtering 
the signal.
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ables to compute the output rate that would be obtained for a given distor-
tion level. 

Before being entropy-coded, wavelet coefficients are quantized and 
mapped on a certain amount of bits. To do so, we first separate the sign 
and magnitude of the wavelet coefficients. They will indeed be encoded 
separately. 

 
Csign = sign(C); 
Cmagn = abs(C); 
 

Then, coefficients are quantized: this quantization is different from the 
one that will implicitly occur later by dropping some of the least signifi-
cant bit-planes, done by dividing them by a pre-defined quantization step-
size. In our case, the quantization stepsize chosen follows the rule used in 
the OpenJPEG library18 and depends on the kind of subband and on the 
norm of the synthesis filter. The following code corresponds to the quanti-
zation stepsize for the LL subband. 

 
if img.wfilt==0 
    img.res(1).sb(1).qstep = 1; 
elseif img.wfilt==1 
    img.res(1).sb(1).qstep = 1/wnorm_97(1,img.nwdec+1); 
end 

 
Eventually, quantized coefficients are mapped onto a certain amount of 

bits (fixed-point representation). In this simple experiment, we simply 
keep the integer part of the coefficients that we represent using 16 bits. For 
the LL subband, this is done through the following code (Am corresponds 
to the magnitude of the wavelet coefficients from the LL subband):  

 
img.res(1).sb(1).coeff = 
uint16(floor(Am/img.res(1).sb(1).qstep)); 

 
The code for the other subbands is similar and is therefore not repro-

duced here. As we can see, all quantized coefficients are stored in the IMG 
structure, resolution per resolution, and subband per subband.  

In JPEG2000, wavelet coefficients are processed bit-plane by bit-plane 
and not coefficient by coefficient. Now that the coefficients are quantized 
and mapped onto a fixed number of bits, we can truly observe the scalabil-
ity offered by such bit-plane representation. To illustrate this, we choose a 
subband, let's say the HL subband of last resolution, and display its k most 

                                                      
18 Open-source JPEG2000 codec from the TELE lab, UCL, Belgium: 

http://www.openjpeg.org

http://www.openjpeg.org/
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significant bit-planes for k =1,.., K where K is the number of significant 
bit-planes for this subband: 

 
sbcoeff = img.res(end).sb(1).coeff; 
sbsign = img.res(end).sb(1).sign; 
K = ceil(log2(max(double(sbcoeff(:)+1)))); 

 
It should be noted that K is not necessarily equal to the maximum num-

ber of bit-planes (16 in our experiment). Indeed, in most subbands and es-
pecially in those corresponding to the high frequencies, 16 bits will be far 
too much to represent the coefficients values. Consequently, many of the 
most significant bit-planes will often remain to zero. In practice, when en-
coding a subband, rather than encoding these all-zero bit-planes, we skip 
them until the first ‘1’ bit is encountered. The number of skipped bit-
planes will then simply be stored in a header of the compressed bitstream. 

The truncation of the coefficients is done by applying successively a 
“AND” mask and an “OR” mask to the wavelet coefficients. The first one 
sets the required number of least significant bits to ‘0’. The second one 
moves the truncated coefficient value to the middle of the truncation step 
by setting the most significant truncated bit to ‘1’.  

 
mask_AND = bitshift(uint16(65535),nbp_discard);  
mask_OR = bitshift(uint16(1),nbp_discard-1); 
… 
m_trunc = bitor(bitand(sbcoeff,mask_AND),mask_OR); 

 

    
1st MSB 2nd MSB 3rd MSB 4th MSB 

    
5th MSB 6th MSB 7th MSB 8th MSB 

Fig. 10.17 Progressive refinement of wavelet coefficients through inclusion of an 
increasing number of bit-planes (MSB: most significant bit). 
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As we see in Fig. 10.17, wavelet coefficients are progressively refined, 
as the bit-planes (from the most to the least significant one) are included in 
the coefficient estimation. 

We now compute the probability distribution of the binary representa-
tion of our image. This distribution will then be exploited to compute the 
related entropy. 

As explained above, we will compare two kinds of distribution. The first 
one is based on the frequency of occurrence of ‘1’ and ‘0’ symbols over 
the whole image. In the second case, the conditional probabilities of binary 
random variables are estimated, knowing their context. The relevance of 
such an approach has been intuitively justified in Section 10.2.2. 

Practically, the context of a bit corresponds to a set of state variables re-
lated to (i) the coefficient to whom the bit belongs, and (ii) its neighbour-
ing coefficients. In this experiment, two state variables were used. 

 
1. The significant status of a coefficient. Let us remind that a coeffi-

cient is said to become significant in a given bit-plane if a '1' bit is 
encountered for the first time for this coefficient (all other more 
significant bits were '0's). 

2. The first refinement status of a coefficient. Among already signifi-
cant coefficients, we will distinguish those that became significant 
in the previous (more significant) bit-plane. 

 
In this proof-of-concept, we have considered twelve different contexts. 

They are presented in the preamble of function get_context and 
are actually a subset of the contexts used in the JPEG2000 standard (which 
uses 19 different contexts). Nine out of the twelve contexts are used to 
code not yet significant coefficients, while the three last ones are used for 
already significant coefficients. The sign of each coefficient is introduced 
“as is” in the codestream and is not entropy-coded.  

Let us first initialize the number of contexts and the Context Distribu-
tion Table (CDT). This vector stores the probability of having a '1' for each 
context. The last element of the vector is used to store the global probabil-
ity of getting a '1' on the whole image. 

 
global nctxt; 
nctxt = 12; 
CDT = zeros(nctxt+1,1); 

 
As explained in Section 10.2.1, before being entropy-coded, subbands 

are divided in small entities called codeblocks. Each codeblock will then 
be entropy-coded separately, starting from the most significant bit-plane to 
the least significant one. 
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In the code, several for loops are embedded so that each subband from 
each resolution level is processed and divided in such codeblocks.  

 
for resno=1:numel(img.res) 
    for sbno=1:numel(img.res(resno).sb) 
        … 
        for y0=1:img.cbh:size(coeff,1) 
            for x0=1:img.cbw:size(coeff,2) 

 
Then, each codeblock is analyzed. First, as explained above, the number 

of all-zero most significant bit-planes is computed (NBPS field of each 
codeblock).  

 
cb.nbps = ceil(log2(max(double(cb.coeff(:)+1)))); 

 
Now, each codeblock is analyzed through the analyze_cb function.  
 

[cb.ctxt,cb.disto] = analyze_cb(cb); 

 
This function will process each bit-plane starting from the first most 

significant non-zero bit-plane and return two variables:  

(1) a matrix ctxt that gives two values for each context and each bit-
plane : (i) the total number of bits and (ii) the number of '1' bits, 

(2) a vector disto that computes, for each bit-plane BP, the square er-
ror between the original codeblock and the codeblock whose least 
significant bit-planes are truncated, starting from and including 
bit-plane BP. 

 
This disto vector will be used to decide where to truncate the code-

block when performing the R-D allocation. However, it has to be adapted 
to reflect the square error in the pixel domain. To do so, the values of the 
disto vector (that correspond to the square errors between original and 
truncated wavelet coefficients) are multiplied by two factors. The first one 
is the squared stepsize that was used for the quantization that took place af-
ter the wavelet transform. By doing so, we actually perform an inverse 
quantization to get the square errors back in the dynamic range obtained 
just after the wavelet transform. Then, these “dequantized” square errors 
are multiplied by the norm of the corresponding synthesis filter. As ex-
plained at the beginning of Section 10.4.2, this last operation gives the cor-
responding square errors in the pixel domain, which are the ones of interest 
as we want precisely to approximate the distortion reduction in this do-
main. 
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if img.wfilt==0 
    cb.disto=cb.disto.*((img.res(resno).sb(sbno).qstep)^2*... 
               (wnorm_53(cb.sbtype,img.nwdec+2-resno))^2); 
elseif img.wfilt==1 
    cb.disto=cb.disto.*((img.res(resno).sb(sbno).qstep)^2*... 
               (wnorm_97(cb.sbtype,img.nwdec+2-resno))^2); 
end 

 
Once matrix ctxt has been computed for each codeblock, we can easily 

compute a Context Distribution Table (CDT) that will be used for entropy 
coding. The CDT stores for each of the 12 contexts the probability to get a 
'1' bit according to the processed image. A 13th value stores the global 
probability to get a '1' bit, independently from the neighbourhood of the 
coefficient. These values are presented in Fig. 10.18. 

 

 

Fig. 10.18 Comparison of conditional probability of getting a ‘1’, knowing the 
context of the bit, with the global probability, independent from the context. 

The CDT is then saved so that it can be re-used when encoding other im-
ages. 

 
save(CDTpath,'CDT'); 

 
Once the CDT has been computed, we can use it to estimate the entropy 

of each codeblock. If img.useownCDT = 0, we do not use the CDT 
computed on the processed image but the one specified in img.CDT2use. 
It should be noted that using a context distribution computed on an image 
whose content is very different from the one of the processed image does 
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not change the performances drastically. This can be explained by the fact 
that the context mainly characterizes local image features, which reduces 
their dependency on the global appearance and statistics of the image. 
Moreover, in our proof-of-concept example, the conditional distributions 
are computed on all bit-planes of all subbands, which further reduces the 
dependency of those distributions on the global image features. In 
JPEG2000 however, the distribution is re-initialized for each codeblock 
and is dynamically adapted while encoding the bit-planes. In this case, the 
entropy coder uses a more adapted distribution and is therefore more effi-
cient. 

Practically, for each subband, we progressively fill in a matrix RD: 
img.res(resno).sb(sbno).RD(cbno,bpno,i) where  i =1 for the 
rate values and i = 2 for the distortion values. Each pair of values (i =1,2) 
in the matrix RD gives therefore the amount of bits that are needed to en-
code a given bit-plane from a given codeblock in the processed subband 
(R), and the distortion reduction that this bit-plane brings when decoding 
the image (D). As all codeblocks do not have the same number of signifi-
cant bit-planes in a subband, dimension 2 of matrix RD (counting the bit-
planes) is taken equal to the maximum number of significant bit-planes 
among the codeblocks from the subband. Note that resno=1 for the 
smallest resolution and bpno=1 for the most significant bit-plane. 

 
if img.useownCDT==0 
    CDT=load(img.CDT2use); 
    … 
end 

 
Nested in loops on resolutions, subbands, codeblocks and bit-planes, 

two simple functions are applied to fill in the RD matrix. 
 

[rc rnc]=get_rate(ctxt,coeff,bpno,CDT); 
RD(cbno,offset+bpno,1)=rc; 
RD(cbno,offset+bpno,2)=get_disto(disto,bpno); 

 
The get_rate function computes the entropy of each bit-plane based 

on the given CDT. It returns the rate rc that would be obtained after a con-
text-based entropy coding and the rate rnc that would be obtained after a 
non-context-based entropy coding (i.e. with a global probability distribu-
tion on the whole image). To do so, it simply uses the entropy, which gives 
 

−n0(c)log2 p 0 | c( )( )− n1(c)log2 p 1 | c( )( )( )
c=1

nctxt

∑  (10.26) 
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where nctxt is the total number of context (12 in our case), n0(c) and n1(c) 
are the number of ‘0’ symbols and ‘1’ symbols with context c, respec-
tively. This simply translates in MATLAB code as:  

 
entropy = sum(-(log2(CDT(1:end-1))).*ctxt(:,2) ... 

  -(log2((1-CDT(1:end-1)))).*(ctxt(:,1)-ctxt(:,2))); 

 
The get_disto function computes the difference between square er-

rors obtained with successive bit-planes. 
 

if bpno<numel(disto) 
    D = disto(bpno)-disto(bpno+1); 
else 
    D = disto(end); 
end 

 
The matrix RD of each subband will then be used in the next Section to 

find for each codeblock the best truncation point, that is, the one that will 
minimize the distortion for a given global bit budget.  

Here we simply use an intermediary matrix R_res to store and compare 
the global compression performance obtained with and without context. 
Fig. 10.19 shows the compression ratio obtained for each resolution level. 
The total number of uncompressed bits taken into account to compute 
these values is the number of bits truly processed by the entropy coder, i.e. 
wavelet coefficients excluding the non-significant bit-planes. Fig. 10.20 
computes the global compression ratio, comparing the original number of 
bits in the pixel domain, with the rate obtained after the entropy coding 
step. As expected, the context-based approach is more efficient than the 
other one, as it more accurately estimates the probability of getting a ‘1’ or 
a '0' depending on the coefficient location. In particular, in Fig. 10.19, we 
see that the non-context-based entropy coding actually expands the LL 
subband rather than compresses it. This is because the global probability 
distribution used in this case is very different from the one really observed 
for this resolution level. On the contrary, when using contexts, and even if 
those contexts do not take the resolution level into account, the entropy 
coder still achieves compression on the low frequencies. 
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Fig. 10.19 Bar-graph plotting the compression ratio obtained for each resolution 
level, with and without contexts. 

 

Fig. 10.20 Bar-graph presenting the global lossless compression efficiency. 
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Rate-Distortion optimal allocation 
In this section, we demonstrate the benefit of rate-distortion optimal bit al-
location. We consider an image whose wavelet coefficients have been split 
into codeblocks, and compare a naive and RD optimal bit allocation. The 
set of coefficients of a codeblock are encoded bit-plane by bit-plane, to de-
fine bpno (dij, bij) pairs, corresponding to the bpno rate-distortion trade-
offs resulting from the approximation of the coefficients of the ith code-
block by its jth most significant bit-planes, with 0 ≤ j < bpno. The envi-
sioned naive bit allocation strategy simply assigns a constant number of 
bit-planes to all image codeblocks. In contrast, the RD optimal strategy 
first computes the convex-hull RD points and selects them in decreasing 
order of distortion reduction per cost unit. 

As previously presented, img.res(resno).sb(sbno).RD(i,j,k) 
denotes a structure that conveys, for all image resolution and image sub-
band, the incremental reduction of distortion and the increase of bits corre-
sponding to the addition of the jth bit-plane to the definition of codeblock i. 
Index k is used to differentiate the cost in bits (k = 1) from the decrease in 
distortion (k = 2). 

To implement the RD optimal bit allocation method, the hull structure 
HS is defined to collect the convex-hull RD points of every codeblock in 
the image. For each convex-hull RD point, the HS structure records the de-
crease of distortion per bit unit provided by the bit-planes corresponding to 
the convex-hull RD point. It also records the codeblock resolution, sub-
band, index, and number of bit-planes corresponding to the convex-hull 
RD point. 

 
% Loop on codeblocks of resolution i and subband j. 
for k=1:size(img.res(i).sb(j).RD,1)  
% Number of bitplanes for the codeblock. 

 nbbp_cb = size(img.res(i).sb(j).RD(k,:,:), 2);  
 % Number of bitplanes corresponding to the last  
 % operating point found on the convex-hull. 
 lhbp=0;                           
 % To enter in the while loop. 
 gain_max=1;                       
 while (lhbp<nbbp_cb && gain_max>0) 
  nhbp=lhbp; 
  gain_max=0; 
  for bp=(lhbp+1):nbbp_cb 
   gain=sum( img.res(i).sb(j).RD(k,(lhbp+1):bp,2) )  
     / sum( img.res(i).sb(j).RD(k,(lhbp+1):bp,1) ); 
   if gain > gain_max 
     gain_max=gain; 
     nhbp=bp; 
   end 
  end 
  nbHS=nbHS+1; 
  deltaR = sum( img.res(i).sb(j).RD(k,(lhbp+1):nhbp,1) ); 
  deltaD = sum( img.res(i).sb(j).RD(k,(lhbp+1):nhbp,2) ); 
  HS(nbHS,:)=[gain_max,i,j,k,nhbp, deltaR, deltaD]; 
  lhbp=nhbp; 
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 end % End while loop. 
end % End for loop. 

 
Once the HS structure has been defined, the RD optimal allocation strat-

egy simply consists in selecting the convex-hull RD points in decreasing 
order of distortion reduction per cost unit. Hence, the HS structure is sorted 
to control the bit-planes allocation strategy for a target-rate R_T as follows: 

 
ascendingHS = sortrows(HS); 
indHS = size(HS,1); 
 
Rtmp = 0; 
while (Rtmp < R_T && indHS>0) 
       Rtmp = Rtmp + ascendingHS(indHS,6); 
       Dtmp = Dtmp - ascendingHS(indHS,7);                   
       img.res(ascendingHS(indHS,2)).sb(ascendingHS(indHS,3)) 
         .nbrplanes(ascendingHS(indHS,4)) = 
ascendingHS(indHS,5);         
       indHS = indHS - 1; 
end 

 
 
In this MATLAB code sample, Rtmp and Dtmp respectively define the 

global image bit-budget and distortion, while the variable 
img.res(i).sb(j).nbrplanes(k) records the number of bit-planes 
allocated to the kth codeblock of the jth subband of the ith resolution. 

On the MATLAB CDrom, the global image RD trade-offs obtained 
when naively allocating a constant number of bit-planes to each codeblock 
are compared with the RD points obtained when RD optimal allocation 
targets the same bit-budgets as the ones obtained for naive allocation. In 
Fig. 10.21, we present a comparison of the RD points achieved using both 
allocation strategies. 

MATLAB code is also provided to reconstruct the image based on the 
number of bit-planes allocated to each codeblock. It permits to compare 
both allocation methods from a perceptual point of view. Reconstructed 
images using naive and optimum bit allocation strategies are presented in 
Fig. 10.22 and Fig. 10.23, respectively. It is clear that the visual quality of 
the optimum bit allocation version largely outperforms that of the naive al-
location for both cases19. 

 

                                                      
19 Recall that Cameraman size is 256x256 while Barbara size is 512x512; 

hence, the so different target rates 
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Fig. 10.21 Rate-Distortion curves comparing the naïve and the optimal bit alloca-
tion strategies. 

 
 
 

  
(a) (b) 

Fig. 10.22 Reconstructed version, using naïve bit allocation, of the image (a) 
Cameraman at 9.4 kbits (PSNR = 26.06 dB) and (b) Barbara at 65.56 kbits 
(PSNR = 20.59 dB). 
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(a) (b) 

Fig. 10.23 Reconstructed version, using optimal bit allocation, of the image (a) 
Cameraman at 9.4 kbits (PSNR = 30.67 dB) and (b) Barbara at 66.00 kbits 
(PSNR = 25.86). 

10.5 Going further: From concepts to compliant 
JPEG2000 codestreams  

To complete this Chapter, Fig. 10.24 presents the entire pipeline to gener-
ate a JPEG2000-compliant codestream.  
 

 

Fig. 10.24 The JPEG2000 coding steps: Pixels are first transformed in wavelet co-
efficients. Then, the various subbands from each resolution level are divided into 
codeblocks that are independently entropy-coded. Eventually, entropy-coded data 
are distributed in packets that compose the final JPEG2000 codestream. 
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We recognize the wavelet transform, the bit-plane quantization, the con-
text modelling, and the rate allocation mechanisms described above. For 
completeness, we now survey the additional stages involved in the pipe-
line. 

Three operations can performed during the initial pre-processing step. 
First of all, the image can be split into rectangular blocks called tiles, 
which will be compressed independently. This is particularly useful for 
applications with limited memory resources. Then, if pixels are repre-
sented by unsigned values, they are shifted to get the corresponding signed 
values. Eventually, in case of an image made of several components, an in-
ter-component decorrelation can be applied. Typically, the RGB to YCbCr 
transformation is exploited to increase the subsequent compression effi-
ciency by reducing the correlation between components. 

Regarding arithmetic coding, as explained in Section 10.2, the MQ-
coder (Mitchell and Pennebaker 1988) encodes the bits according to the 
probability distribution estimated by the modeller, and progressively gen-
erates codestream segments. It is worth mentioning here that JPEG2000 
further refines the way bits are scanned within a bit-plane, so as to first en-
code the bits for which a large benefit in quality is expected per unit of 
rate. This process is based on the observation of already encoded bit-
planes, and the algorithm used to select the bits that will be encoded first is 
named Embedded Block Coding with Optimized Truncation (EBCOT) 
(Taubman 2000) by the JPEG2000 community. 

Note that when decoding an image, the context modelling part only pro-
vides the context to the arithmetic coding part, and waits for the decoded 
bit. This bit is computed by the MQ-decoder that progressively consumes 
the compressed bitstream. 

The last step involves packetization and bitstream organization. Once 
all bit-planes have been encoded, rate-distortion optimal allocation is con-
sidered for a set of increasing target bit-budgets, or equivalently for a de-
creasing sequence of λ parameters. As explained in Section 10.3, the se-
quence of corresponding RD optimal allocations progressively adds bit-
planes to the image codeblocks.  

In JPEG2000, the incremental contributions added from one target rate 
to another (or from one Lagrangian parameter to another) are grouped in 
the so-called quality layers. Several quality layers are thus defined for an 
image, corresponding to distinct rate-distortion trade-offs. 

Once the rate allocation step has distributed the incremental contribu-
tions from all codeblocks over the specified quality layers, the compressed 
data is divided in packets. A packet contains the information related to a 
certain quality layer from a certain resolution, in a certain spatial location 
of one of the image components. A spatial location is called a precinct and 
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corresponds to the set of codeblocks from all subbands of a given resolu-
tion, and covering a given spatial area (see Fig. 10.25). Packets, along with 
additional headers, form the final JPEG2000 codestream. 

 

 

Fig. 10.25 Precinct and codeblocks subdivisions: A precinct includes all code-
blocks belonging to a given resolution level and covering a given spatial area. For 
example, in the highest resolution, the first precinct is made of 12 codeblocks, 4 
from each subband. The size (i.e. the number of pixels) of the area covered by a 
precinct can vary from one resolution level to another. This is the case in the fig-
ure where this area size has been adapted in each resolution level so as to have the 
same number of precincts (6) in each level. 

10.6 Conclusion 

Although quite elaborated in its functional capabilities, the JPEG2000 im-
age compression standard relies on the combination of rather simple basic 
principles: discrete wavelet transform, context-based entropy coding, and 
rate-distortion optimal allocation mechanisms. This combination leads to a 
flexible and powerful image compression standard that is mainly used in 
professional markets requiring a high quality level and a solid intrinsic 
scalability.  

Various software implementations of the JPEG2000 standard are avail-
able. Among them, we should cite the OpenJPEG library (open-source C-
library, http://www.openjpeg.org), the Jasper project (open-source C-
library, http://www.ece.uvic.ca/~mdadams/jasper), Kakadu (C++ commer-
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cial library, http://www.kakadusoftware.com), and JJ2000 (freely available 
java implementation, http://jj2000.epfl.ch/).  

For completeness, it is also worth mentioning that several extensions 
have been defined in addition to the JPEG2000 core coding system. 
Among them, we can cite a specific communication protocol that enables 
efficient and flexible remote access to JPEG2000 content (JPIP, Taubman 
and Prandolini 2003, Prandolini 2004), additional error protection tech-
niques that increases the robustness of JPEG2000 transmissions in wireless 
environment (JPWL), tools that allow applications to generate and ex-
change secure JPEG2000 codestreams (JPSec), extensions to address 3D 
and floating point data (JP3D), etc. We invite the interested reader to visit 
www.jpeg.org/jpeg2000 for more information on this topic. 
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