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local/non-local wavelet transform.

Assuming that natural images may be sparsely represented with the non-local or hybrid local/non-local

wavelets yields the image model presented in this work. We examine the marginal statistics of coefficients,

and show that they are may be well described by sparse Laplacian probability densities.

In this work we demonstrate the power of the graph wavelet transforms for modeling image content by

applying them for image denoising. We examine two methods for image denoising, the scaled Laplacian

method yielding a simple thresholding rule, and a method based on `1 minimization. The former method is

based on modeling the coefficients with a Laplacian distribution, after a simple rescaling needed to account

for inhomogeneity in the norms of the non-local graph wavelets. With the scaled Laplacian approach, the

coefficients are thresholded and the transform is then inverted to give the denoised image. Even though this

method operates only a simple operation on each coefficient independently, it gives denoising performance

comparable to wavelet methods using much more complicated modeling of the dependencies between coef-

ficients.

The closely related `1 minimization based algorithm is based on the same underlying non-local graph

wavelet transform. Rather than treating each coefficient separately, it proceeds by minimizing a single con-

vex functional containing a quadratic data fidelity term and a weighted `1 prior penalty for the coefficients.

We compute the minimum of this functional using iterative an iterative Forward-Backward splitting proce-

dure based on the proximal methods from convex analysis. We find the `1 procedure to give improvements

over the scaled Laplacian method in perceived image quality, at the expense of additional computational

complexity.

1.1.1 Related Work

The idea of exploiting redundancy present in images due to self-similarity has a long history. Much of the

original work in fractal image compression was based on explicitly representing image self-similarity, for

purposes of efficiently coding the image content [2, 3]. Quite recently, a number of image processing and

denoising methods have sought to exploit image self-similarity through patch-based methods. Of particu-

lar relevance for this work is the non-local means algorithm for image denoising originally introduced by

Buades et al [4].

Many extensions and variations of the original non-local means have been been studied [5, 6, 7]. The

basic non-local means algorithm proceeds by first measuring the similarity between pairs of noisy image
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patches by computing the `2 norms of differences of patches. These are then used to compute weights, such

that the weight corresponding to two similar patches is high (close to unity), while the weight for two very

dissimilar patches is close to zero. Finally, each noisy pixel is replaced by a weighted average of all other

pixels, using the aforementioned weights. If a particular patch is highly similar to many other patches in

the image, then it will be replaced by structure that is averaged over a large number of regions, resulting in

reduction of noise. The weights used in the non-local means algorithm are essentially the same as the edge

weights for the non-local image graph used in the current work.

Another approach to using patch similarity for denoising is the collaborative filtering algorithm intro-

duced by Dabov et al [8]. In this approach, similar patches of the noisy image are stacked vertically to form

a 3-D data volume. A 3-D wavelet transform is applied, then the stacked volumes are denoised by thresh-

olding. The power of this method comes from the interaction of wavelet thresholding with the redundancy

presented across the stacks of similar image patches, resulting in an implicit averaging of similar image

structure across the patches.

The spectral graph wavelet transform used in this work relies on tools from spectral graph theory, specif-

ically the use of eigenvectors of the graph Laplacian operator. Several authors have employed the graph

Laplacian for image processing before. Zhang and Hancock studied image smoothing using the heat kernel

corresponding to the graph laplacian, using a graph whose edge weights depended on the difference of local

neighboring windows [9] . Szlam et. al. investigated similar heat kernel based smoothing in a more general

context, including image denoising examples using non-local image graphs more similar to the current work

[10]. Peyré used non-local graph heat diffusion for denoising, as well as studying thresholding in the basis

of eigenvectors of the non-local graph Laplacian [11].

1.2 Spectral Graph Wavelet Transform

The Spectral Graph Wavelet Transform (SGWT) is a framework for constructing multiscale wavelet trans-

forms defined on the vertices of an arbitrary finite weighted graph. The SGWT is described in detail in [1];

a brief description of it will be given here.

Weighted graphs provide an extremely flexible way of describing a large number of data domains. For

example, vertices in a graph may correspond to individual people in a social network or cities connected

by a transportation network of roads. Wavelet transforms on such weighted graph structures thus have the

potential for broad applicability to many problems beyond the image denoising application considered in this
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work. Other authors have introduced methods for wavelet-like structures on graphs. These include vertex-

domain methods based on n-hop distance [12], lifting schemes [13] and methods restricted to trees [14].

These differ from the SGWT primarily in that they are based in the vertex domain, rather than constructed

using spectral graph theory. Other constructions using spectral graph theory have been developed, notably

the “diffusion wavelets” of Maggioni and Coifman [15]; the primary difference of the SGWT from their

approach is in the simplicity of the SGWT construction, and that the SGWT produces an overcomplete

wavelet frame rather than an orthogonal basis.

We consider an undirected weighted graph G with N vertices. Any scalar valued function f defined on

the vertices of the graph can be associated with a vector in RN , where the coordinate fi is the value of f on

the ith vertex. For any real scale parameter t > 0, the SGWT will define the wavelets ψt,n ∈ RN which are

centered on each of the vertices n. Key properties of these graph wavelets are that they are zero mean, they

are localized around the central vertex n, and they have decreasing support as t decreases.

The SGWT construction is based upon the graph Laplacian operator L, defined as follows. Let W ∈

RN×N be the symmetric adjacency matrix for G, so that wi, j ≥ 0 is the weight of the edge between vertices i

and j. The degree of vertex i is defined as the sum of the weights of all edges incident to i, i.e., di = ∑ j wi, j.

Set the diagonal degree matrix D to have Di,i = di. The graph Laplacian operator is then defined to be

L=D−W.

The operator L should be viewed as the graph analogue of the standard Laplacian operator −∆ for flat

Euclidean domains. In particular, the eigenvectors of L are analogous to the Fourier basis elements eik·x, and

may be used to define the graph Fourier transform. As L is a real symmetric matrix, it has a complete set of

orthonormal eigenvectors χ` ∈RN for `= 0, · · · ,N−1 with associated real eigenvectors λ`. We order these

in nondecreasing order, so that λ0 ≤ λ1 · · · ≤ λN−1. For the graph Laplacian it can be shown the eigenvectors

are non-negative, and that λ0 = 0. Now for any function f ∈ RN , the graph Fourier transform is defined by

f̂ (`) = 〈χ`, f〉= ∑
n

χ
∗
`(n)f(n). (1.1)

We interpret f̂ (`) as the `th graph Fourier coefficient of f . As the χ`’s are orthonormal, it is straightforward

to see that f may be recovered from its Fourier transform by f = ∑` f̂ (`)χ`.

The use of the graph Fourier transform for defining the SGWT may be motivated by examining the

classical continuous wavelet transform in the Fourier domain. On the real line, classical wavelets are gen-

erated by taking a “mother” wavelet ψ(x), and then applying scaling and translation to obtain the wavelet

ψt,a = 1
t ψ((x− a)/t) [16]. For a given function f , the wavelet coefficients at scale t and location a are
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then given by inner products, i.e., Wf (t,a) =
∫ 1

t ψ∗((x−a)/t) f (x)dx. For fixed scale t, this integral may be

rewritten as a convolution evaluated at the point a. Letting ψ̄t(x) = 1
t ψ(−x/t), we see Wf (t,a) = (ψ̄t ? f )(a).

Now consider taking the Fourier transform over the a variable. By the convolution theorem this becomes

Wf (t,ω) = ˆ̄ψt(ω) f̂ (ω) = ψ̂(tω) f̂ (ω). (1.2)

Thus, the operation of mapping f to its wavelet coefficients Wf (t,a) consists of taking the Fourier transform

of f , multiplying by ψ̂(tω), and applying the inverse Fourier transform. The key point here is that the

operation of scaling by t has been transferred from the original domain to a dilation of the function ψ̂(tω)

in the Fourier domain. This is significant, as a major problem in adapting the classical wavelet transform to

graph domains is the inherent difficulty of defining scaling of a function on an irregular graph.

The SGWT operator for fixed scale t is defined in analogy with the previous discussion. Its specific

form is fixed by the choice of a non-negative wavelet kernel g(x), analogous to the Fourier transformed

wavelet ψ̂∗. This kernel g should behave as a band-pass function, specifically we require g(0) = 0 and

limx→∞ g(x) = 0. For any scale t > 0, the SGWT operator T t
g : RN→RN is defined by T t

g (f) = g(tL)f . Tools

from spectral theory allow definition of taking a real valued function g(t·) of a linear operator L, yielding

a linear operator which for symmetric L may be defined by its action on the eigenvectors. Specifically, we

have g(tL)(χ`)≡ g(tλ`)χ`. By linearity, applying g(tL) to arbitrary f ∈RN can be expressed in terms of the

graph Fourier coefficients, as

T t
g f ≡ g(tL)f = ∑

`

g(tλ`) f̂ (l)χ`. (1.3)

Examining this expression, we see that applying T t
g to f is equivalent to taking the graph Fourier transform

of f , multiplying by the function g(tλ), and then inverting the transform. This is in exact analogy to the

Fourier domain description of the classical wavelet transform implied by equation (1.2).

Equation (1.3) defines the N spectral graph wavelet coefficients of f at scale t. We denote these coeffi-

cients by Wf(t,n), i.e., so that Wf(t,n) = (T t
g f)n. The wavelets themselves may be recovered by localizing

this operator by applying it to a delta impulse. If we set δn ∈ RN to have value 1 at vertex n and zero’s

elsewhere, then the wavelet centered at vertex n is given by ψt,n = T t
g δn. It is straightforward to verify that

this is consistent both with the previous definition of the coefficients and the desire for the coefficients to be

generated by inner products, i.e., that Wf(t,n) = 〈ψt,n, f〉.

The overall stability of the SGWT is improved by including scaling functions to represent the low

frequency content of the signal. This is done by introducing a scaling function kernel h, a low-pass function

6



0 10
0

1

2

λ

Figure 1.1: Scaling function h(λ) (blue curve), wavelet generating kernels g(t jλ), and sum of squares G (black curve), for J = 5

scales, λmax = 10, Klp = 20. Details in Section 1.2.3. Figure adapted from [1].

satisfying h(0) > 0 and h(x)→ 0 as x→ ∞. As with the wavelets, we define the scaling function operator

Th = h(L), scaling functions φn = Thδn, and the scaling function coefficients of f to be given by Thf .

The above theory describes the SGWT for continuous scales t. In practice, we will discretize t to a finite

number of scales t1 > · · · > tJ > 0, as detailed in Section 1.2.3. Once these are fixed, we shall often abuse

notation by referring to the wavelet ψ j,n (or coefficient Wf( j,n)) as shorthand for ψt j,n (or Wf(t j,n)).

We may then consider the overall transform operator T : RN → R(J+1)N formed by concatenating the

scaling function coefficients and each of the J sets of wavelet coefficients. This operator can be shown

to be a frame, with frame bounds A and B that can be estimated knowing h, g and an upper bound on

the spectrum of L. Define G(λ) = h2(λ) +∑
J
j=1 g2(t jλ). It can then be shown that for any f ∈ RN , the

inequalities A‖f‖2 ≤ ‖Tf‖2 ≤ B‖f‖2 hold, where A = minλ∈[0,λN−1] G(λ), and B = maxλ∈[0,λN−1] G(λ).

1.2.1 Fast SGWT via Chebyshev Polynomial Approximation

Direct computation of the SGWT by applying equation (1.3) requires explicit computation of the entire set of

eigenvectors and eigenvalues of L. This approach scales extremely poorly for large graphs, requiring O(N2)

memory and O(N3) computational complexity. Direct computation of the SGWT through diagonalizing L is

feasible only for graphs with fewer than a few thousand vertices. This limitation would completely destroy

the practical applicability of the SGWT for image processing problems, which routinely involve data with

hundreds of thousands of dimensions (i.e., number of pixels).

These concerns motivate development of a fast algorithm for computing the SGWT. The fast algorithm is

based on constructing degree m polynomials p j(x) which approximate the scaled wavelet kernels g(t jx) for

each scale t j. The approximate wavelet coefficients at scale j, denoted W̃f( j,n), are then given by computing

p j(L)f instead of g(t jL)f . An important point is that the approximation need only hold on the spectrum of

L. We take the polynomials p j(x) to be the truncated Chebyshev polynomial expansion for g(t jx), on the
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interval [0,λN−1].

Note that as we may write Lnf = L(· · ·L(Lf) · · ·), one may compute the application of any polynomial

of L to a vector f using only matrix-vector multiplication. It is this fact which makes the polynomial

approximation algorithm for the SGWT efficient in the important case when the L is sparse. Details of

the algorithm are given in [1]. In addition it is shown there that the computational complexity for the fast

SGWT is O(m|E|+Nm(J +1)), where J is the number of wavelet scales, m is the order of the polynomial

approximation, and |E| is the number of nonzero edges in the underlying graph G. In particular, for classes

of graphs where |E| scales linearly with N, such as graphs of bounded maximal degree, the fast SGWT has

computational complexity O(N).

1.2.2 SGWT Inverse

A wide class of signal processing applications, including denoising methods described later in this work,

involve manipulating the coefficients of a signal in a certain transform, and later inverting the transform. For

the SGWT to be useful for more than simply signal analysis, it is important to be able to recover a signal

corresponding to a given set of coefficients.

The SGWT is an overcomplete transform, mapping an input vector f of size N to the N(J+1) coefficients

c=Tf . As is well known, this means that T will have an infinite number of left-inverses B s.t. BTf = f . A

natural choice is to use the pseudoinverse L= (TTT)−1TT , which satisfies the minimum-norm property

Lc= argmin
f∈RN

‖c−Tf‖2 .

For applications which involve manipulation of the wavelet coefficients, it is very likely to need to apply the

inverse to a a set of coefficients which no longer lie directly in the image of T. The above property indicates

that, in this case, the pseudoinverse corresponds to orthogonal projection onto the image of T, followed by

inversion on the image of T.

Given a set of coefficients c, the pseudoinverse will be given by solving the square matrix equation

(TTT)f = TTc. This system is too large to invert directly, but may be solved iteratively using conjugate

gradients. The computational cost of conjugate gradients is dominated by matrix-vector multiplication by

TTT at each step. As described further in [1], the fast Chebychev approximation scheme described in 1.2.1

may be adapted to compute efficiently the application of either TT or TTT. We use conjugate gradients,

together with the fast Chebyshev approximation scheme, to compute the SGWT inverse.
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1.2.3 SGWT design details

The SGWT framework places very few restrictions on the choice of the wavelet and scaling function kernels.

Motivated by simplicity, we choose g to behave as a monic power near the origin, and to have power law

decay for large x. In between, we set g to be a cubic spline such that g and g′ are continuous. Specifically,

in this work we used

g(x) =


x2 for x < 1,

−5+11x−6x2 + x3 for 1≤ x≤ 2,

x−2 for x > 2.

(1.4)

The wavelet scales t j (with t j > t j+1) are selected to be logarithmically equispaced between the minimum

and maximum scales tJ and t1. These are themselves adapted to the upper bound λmax of the spectrum of

L. The placement of the maximum scale t1 as well as the scaling function kernel h will be determined

by the selection of λmin = λmax/Klp, where Klp is a design parameter of the transform. We then set t1 so

that g(t1x) has power-law decay for x > λmin, and set tJ so that g(tJx) has monic polynomial behaviour

for x < λmax. This is achieved for t1 = 2/λmin and tJ = 2/λmax. For the scaling function kernel we take

h(x) = γ exp(−( x
0.6λmin

)4), where γ is set such that h(0) has the same value as the maximum value of g. This

set of scaling function and wavelet generating kernels, for parameters λmax = 10, Klp = 20, and J = 5, are

shown in Figure 1.1.

1.3 Non-Local Image Graph

The non-local image graph is a weighted graph with number of vertices N equal to the number of pixels

in the original image. This association assumes some labeling of the two-dimensional pixels, they may for

example be labeled in raster-scan order. We will define the edge weights so that the weights will lie between

0 and 1, and will provide a measure of the similarity between image patches.

The number of pixels N for any reasonable sized image will be so large that we cannot reasonably expect

to explicitly diagonalize the corresponding graph Laplacian. As we wish to use the SGWT defined on the

non-local graph, we must produce a graph which is sparse enough to be handled by the fast Chebychev

polynomial approximation scheme.

Given a patch radius K, we let pi ∈ R(2K+1)2
be the (2K +1)× (2K +1) square patch of pixels centered

on pixel i. For pixels within distance K of the image boundary, patches may be defined by extending the
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image outside of its original boundary by reflection. Set di, j = ‖pi−p j‖ to be the norm of the differences

of patches. Following the weighting used in much of the NL-means literature, we set the edge weights for

the (unsparsified) non-local image graph to be wi, j = exp(−di, j/2σ2
p).

We will let Wnl denote the adjacency matrix for the sparsified non-local image graph. Our sparsification

procedure will form Wnl by systematically setting most of the edge weights wi, j to zero. One reasonable

way to do this would be by hard thresholding, i.e., to fix η > 0 and set Wnl
i, j = wi, j if wi, j ≥ η, or zero

otherwise. However, we have observed that hard thresholding results in very large variations in the degrees

of the vertices of the resulting sparsified graph. There is no simple way to control the minimum degree for

the vertices, so it may happen that for a certain value of η some vertices have very large degree while other

vertices may not have any incident edges at all.

Instead, we proceed by keeping a fixed minimum number M of edges incident to each vertex, as follows.

For each patch i, we sort the elements wi, j in decreasing order. In other words, we find j1, j2, · · · , jN so that

wi, j1 ≥ wi, j2 · · · ≥ wi, jN . We wish to keep the edges (i, j1),(i, j2), · · ·(i, jM). For convenience, denote this set

of the M neighbors with largest edge weights by N(i) ≡ { j1, · · · jM}. Note that we exclude the possibility

of retaining i as its own neighbor, i.e., i /∈N(i).

Once these vertex sets N(i) are computed for each 1≤ i≤ N, Wnl is given by

Wnl
i, j =


wi, j if i ∈N( j) or j ∈N(i)

0 otherwise

After this procedure, each vertex of Wnl will have at least M nonzero edges incident to it, and the total

number of nonzero edges will be bounded by 2NM. Note that due to the symmetrization of the matrix, it is

possible for vertices to have more than M incident nonzero edges.

For convenience in the sequel, we denote by D(i) the ordered set of M patch distances {di, j for j∈N(i)}.

As the function exp(− ·
2σp

) determining wi, j from di, j is decreasing, the elements of D(i) consist of the M

smallest patch distances from the patch at vertex i. Note that the sets N(i) and D(i) do not depend on the

variance parameter σp.

The parameter σp is fixed by specifying the desired mean of all of the nonzero elements of Wnl. Given

a target mean µNL ∈ (0,1), σp is set so that

1
#{Wnl

i, j 6= 0}

(
∑
i, j
Wnl

i, j

)
= µNL
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We chose to determine σp this way, rather than simply fixing a numerical value for it, in order to allow

automatic selection of an appropriate σp as the input image and other parameters are changed (such as the

patch size K). In practice the value µNL = 0.75 gives good results.

1.3.1 Acceleration of computation with seeds

Naive computation of the sets N(i) and D(i) could be done simply by looping over i, computing the entire

set of patch distances di, j, sorting them, and retaining the smallest M. This is computationally intensive. In

this section we describe an accelerated algorithm for more efficiently computing these sets. We note that a

number of other authors have explored various strategies for reducing the computational cost of the closely

related non-local means filter. Representative approaches include dimensionality reduction of raw patches

via PCA [17], and structured organization of patches into a cluster tree [18].

Our “seeds acceleration” algorithm proceeds by exploiting the geometry of the patch space R(2k+1)2
to

get lower bounds on distances between patches. These lower bounds will depend on the selection of a set

of seed patches to which all distances will be computed. By using the lower bounds to show on the fly

that certain patch distances will not appear amongst the M smallest, we will cull the need to compute them.

We note that the seeds acceleration algorithm is not an approximate algorithm, and will produce exactly

the same edge and distance sets as the naive algorithm (unless there are ties in the distances, which may be

broken differently).

Let S = {s1, · · · ,sF} be a set of F seeds, with each sk ∈ R(2K+1)2
. We first compute and store the

NF values ξi,k = ‖pi− sk‖. We then employ the triangle inequality, which shows ‖pi− sk‖ ≤
∥∥pi−p j

∥∥+∥∥p j− sk
∥∥, and

∥∥p j− sk
∥∥≤ ∥∥p j−pi

∥∥+‖pi− sk‖. These in turn imply

∣∣(‖pi− sk‖−
∥∥p j− sk

∥∥)∣∣ ≤ ‖pi−p j‖ ≡ di, j (1.5)

Using this inequality for all k ≤ J shows

max
k

(|ξi,k−ξ j,k|) ≤ di, j

Denote this quantity di, j = maxk(|ξi,k−ξ j,k|). Computing di, j for fixed i, j is very fast (complexity O(F)) as

it requires no floating point operations other than absolute value and comparison. Crucially, it is significantly

faster than directly computing di, j.

We now consider computation of all of the index and distance sets N(i) and D(i). The naive algorithm

without using seeds would be Algorithm 1 in Table 1.1.
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Algorithm 1: Naive Algorithm Algorithm 2: Seeds acceleration : Implicit sorting

with heap (H) and pruning by lower bounds

for i ∈ {1, · · · ,N} do

for j ∈ {1, · · · ,N}\{i} do

Compute di, j

L( j)← di, j

end for

Sort the list L in increasing order,

keeping track of indices

N(i)← first M indices

D(i)← first M distance values

end for

Select F seeds S= {sk : 1≤ k ≤ F}

Precompute the {ξi,k : 1≤ i≤ N,1≤ k ≤ F}

for i ∈ {1, · · · ,N} do

H← /0

for j ∈ {1, · · · ,N}\{i} do

if |H|< M then

Compute di, j

H ← H∪{di, j}

else

Compute di, j

if di, j ≤max{H} then

Compute di, j

H ← M smallest values of H∪{di, j}

end if

end if

end for

Sort H in increasing order, keeping track of indices

N(i) ← first M indices

D(i) ← first M distance values

end for

Table 1.1: Naive and seeds accelerated algorithms

This is wasteful, though, as the entire list L is sorted even though only the M smallest elements are

needed. Instead, we can only keep track of the smallest M elements while looping through j. This can be

done efficiently using a heap data structure. We are now in a position to use seeds to prune unnecessary

computation. If the computed lower bound ensures that di, j will be larger than the current heap maximum,

then its computation may be suppressed. This yields the accelerated Algorithm 2 in Table 1.1.

The performance of the accelerated algorithm is highly dependent on the selection of the seed points sk.

For any patch pi, the lower bounds (1.5) on di, j given by seed sk will be more informative the closer sk is

to pi. This implies that a set of seed points will be good if the seeds are near as many patches as possible.
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Lena Barbara Boats House

maxmin
ρ 5.2 % 4.9 % 12.5 % 14.3 %

runtime 89.07 s 87.77 s 111.67 s 121.02 s

random
ρ 6.1 % 6.0 % 13.1 % 14.9 %

runtime 92.71 s 92.31 s 112.12 s 122.44 s

naive runtime 425.16 s 430.84 s 434.08 s 425.87 s

Table 1.2: Performance of seeds acceleration algorithm, averaged over 3 trials for K = 5 and M = 10. Runtimes (in seconds) were

measured on a parallel implementation using 4 Intel Xeon 2.0 GHz cpu cores.

On the other hand, if two seeds are close to each other, the information they provide in their lower bounds

is redundant. This implies the contrasting criterion that the seeds should be far from each other.

Motivated by these two considerations, we introduce a maxmin heuristic for selecting seed points. We

select the first seed s1 to be the patch corresponding to the very middle of the image. We then compute

and store the N values ξi,1 = ‖pi − s1‖. The next seed s2 is picked as the point furthest from s1, i.e.,

s2 = argmaxi ξi,1. At each successive step, the k+1th seed is picked to be the point maximizing the distance

to the set {s1,s2, · · · ,sk}, i.e.,

sk+1 = argmax
i

(
min
k′≤k

ξi,k′

)
.

This procedure is iterated until all F seeds are computed. Note that the precomputed distances ξi,k are

produced during the execution of this heuristic.

We have found the performance of the seed acceleration algorithm using seeds computed the above

maxmin heuristic to be slightly better than using the same number of randomly selected seeds. Even using

randomly selected seeds, however, provides a marked improvement over the naive algorithm.

The performance of the seeds acceleration can be quantified by the ratio ρ of patch distances di, j com-

puted by the accelerated algorithm divided by the number of patch distances computed by the naive algo-

rithm. Alternatively, one may directly examine the reduction in run time. The overall run time will not

be reduced as much as the number of patch distance computations, reflecting the additional overhead of

computing the lower bounds di, j. Given ρ, a quick computational complexity estimation provides that Algo-

rithm 2 runs in O
(
NM(2K +1)2 +(N−M)NF +ρ(N−M)N(2K +1)2

)
. Considering that the proportion-

ality constant are the same in Algorithms 1 and 2, the ratio of computational time is about ρ+ F
(2K+1)2 +

M
N .

Table 1.2 approximately follows this rough estimation.
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In practice, on 256× 256 clean test images with patch radius K = 5, the seeds acceleration algorithm

using 15 seeds allows reduction of run time by a factor of 3-8 compared to the naive algorithm for computing

the sparsified adjacency matrix, as shown in Table 1.2. We note that the performance improvement is very

dependent on the structure of the input image. In particular, when testing on images of random noise,

computation time is not reduced at all! This makes sense as the lower bounds are useful only if seeds are

near where “most” of the image patches are, for random images the patches are too distributed.

1.4 Hybrid local/non-local image graph

As the spectral graph wavelet transform is parametrized by the underlying weighted graph, great flexibility

is available for influencing the wavelets by choosing the design of the graph. While much of the emphasis

of this paper is on construction of the non-local image graph, one may also construct local graph wavelets

simply by using a connectivity graph that includes only local connections vertices. Given both the non-local

adjacency Wnl and a local adjacency Wloc, we may form a hybrid local/non-local graph simply by linearly

interpolation, e.g., Whyb(λ) = λWloc +(1− λ)Wnl. Here λ smoothly parametrizes the degree of locality

present in the graph, so that at λ = 0 the graph is purely non-local, while at λ = 1 it is purely local. The

structure of the SGWT makes it extremely easy to explore the effects of such a hybrid connectivity. As long

as both the local and non-local adjacencies are sufficiently sparse to allow the fast Chebyshev transform to

work efficiently, no other changes need be made to any other parts of the SGWT machinery.

1.4.1 Oriented Local Connectivity

It is well known that for image processing applications, oriented wavelet filters are much more effective than

spatially isotropic filters. This property arises because much of the significant content in images is highly

oriented, such as edges. This observation motivates the design of a local adjacency graph that would give

oriented filters when used with the SGWT. The standard 4-point local connectivity, with equal edge weights

in all directions, gives rise to spectral graph wavelets which are isotropic, and thus unlikely to be highly

efficient as a sparsity basis.

If oriented filters are used, it is natural to have a set of orientations which are evenly distributed on [0,π].

We will generate oriented local graph wavelets by choosing a local connectivity which is itself oriented.

The design of these oriented local connectivities will be determined by requiring that the associated graph

Laplacian approximate a continuous oriented second derivative operator.
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Figure 1.2: (a) 8 nearest neighbor connectivity. The complete graph is produced by reproducing these edges across the entire

image. (b) Spectral graph wavelets computed using local oriented adjacencies Wloc
θ,δ. Shown are scaling functions and wavelets

from selected scales for transform with J = 20 wavelet scales, S = 3 orientations,using δ = 0.44. Top row, θ = 0, middle row,

θ = π/3, bottom row, θ = 2π/3. Left column, scaling function; middle column, j = 10, right column, j = 20.

We describe the target continuous operator in terms of both a dominant orientation parameter θ, and

a second parameter δ ∈ [0,1] specifying the degree of anisotropy, or “orientedness”. For any angle θ, let

the perfectly oriented oriented second derivative in the θ direction be D2
θ
, so that (D2

θ
f )(x,y) ≡ d2

dε2 f (x+

εcosθ,y+εsinθ)|ε=0 for any (x,y) in the plane. For any δ < 1, the target operator D(θ,δ) will include some

fraction of the second derivative in the perpendicular direction. Specifically, we define

D(θ,δ) = 1+δ

2 D2
θ +

1−δ

2 D2
θ+π/2.

This operator can be expressed in terms of partial derivatives in the standard coordinate directions. A

straightforward calculation shows

D(θ,δ) f = 1
2(1+δcos2θ) fxx + (δsin2θ) fxy + 1

2(1−δcos2θ) fyy. (1.6)

We choose the local connectivity Wloc
θ,δ to be the 8-point connectivity with weights such that the graph

Laplacian approximates D(θ,δ). The local connectivity will be completely specified by the values of the

weights of any vertex to its 8 nearest neighbors. For convenience, these may be labeled d1,d2, · · · ,d8, as

shown in Figure 1.2 (a). As we are considering undirected graphs, we must have equality of edge weights
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for edges in opposite directions, e.g., d1 = d8, d2 = d7, d3 = d6, d4 = d5. We may consider the first four

weights as components of the vector d ∈ R4.

We may match the discrete graph Laplacian implied by the choice of d to the continuous operator D(θ,δ)

by looking at the local Taylor expansion. We now consider f to be a continuous function which is sampled

on the image pixel lattice. Let fi for 0≤ i≤ 8 denote the value of f at the vertices shown in Figure 1.2, and

let xi and yi be the integer offsets for vertex i, i.e., (x1,y1) = (−1,1), (x2,y2) = (0,1), etc. If ∆ is the grid

spacing, using the Taylor expansion to second order shows

fi− f0 = ∆(xi fx + yi fy) + 1
2 ∆

2 (x2
i fxx + 2xiyi fxy + y2

i fyy) + o(∆3).

By above, applying the graph Laplacian to f at the center vertex provides

∑
i

di( fi− f0) = ∆
2( fxx ∑

i

1
2 dix2

i + fxy ∑
i

dixiyi + fyy ∑
i

1
2 diy2

i )+o(∆3). (1.7)

We may take the grid spacing to be unity, i.e., ∆ = 1. Equating the coefficients of fxx, fxy and fyy in (1.6)

and (1.7) yields 
d1 +d3 +d4 = 1

2(1+δcos2θ)

−d1 +d3 = 1
2 δsin2θ

d1 +d2 +d3 = 1
2(1−δcos2θ)

⇔ Md = v(θ,δ), (1.8)

where we set M=
( 1 0 1 1
−1 0 1 0

1 1 1 0

)
and v = (1/2,0,1/2)T + δ

2(cosθ/2,sinθ/2,−cosθ/2)T . This is an underde-

termined linear system for the four free components of d. A simple procedure for calculating d would be

to use least-squares. However, the graph weights must be non-negative. Including this constraint yields a

convex optimization program for d :

d∗(θ,δ) = argmin
d

‖d‖2 subject to Md= v(θ,δ), and di ≥ 0 (1.9)

For δ close to 1, the program (1.9) fails to be feasible for angles θ away from aligned with the coordinate

axes. We have found that the program is feasible for all θ whenever δ< δ̃≈ 0.44. We solve the program (1.9)

numerically using the MATLAB cvx toolbox [19]. Using these values of d(θ,δ) to construct the weighted

graph for the entire image yields the local connectivity Wloc
θ,δ.

For completeness, we show several images of the spectral graph wavelets computed using Wloc
θ,δ in

Figure 1.2(b). The important point of these local oriented wavelets is not necessarily that we expect them

to be highly effective for image representation on their own, but rather that they allow the introduction of

oriented filter character in a manner compatible with the SGWT construction.
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1.4.2 Unions of Hybrid Local/Non-Local SGWT frames

The SGWT generates a frame of wavelets and scaling functions from a single adjacency matrix. Using a

hybrid adjacency with an oriented local connectivity would give a single frame where all of the wavelets

had the same directionality. Using such a frame for image restoration tasks is likely to introduce a bias

towards orientations in this specific direction. We would prefer a wavelet transform that samples orienta-

tions uniformly on [0,π]. A straightforward way to do this is to form the union of multiple SGWT frames

corresponding to hybrid adjacencies with uniformly sampled orientations. Let Tθ,δ : RN → RN(J+1) be the

SGWT operator generated using the hybrid adjacency matrix Whyb
θ,δ ≡ λWloc

θ,δ +(1− λ)Wnl. Denote by S

the number of orientation directions to sample, and set θk =
k−1
Sπ

for 1 ≤ k ≤ S. We then define the overall

wavelet transform operator T : RN → RNS(J+1) by Tf = ((Tθ1,δf)T ,(Tθ2,δf)T , · · · ,(TθS,δf)T )T .

While in principle separate scaling function and wavelet kernels h and g could be used for the separate

component SGWT frames, we use the same kernels as well as the same sampled scales t j for each of the S

sub-frames. As the selection of scales is determined by the spectrum of the graph Laplacian (as described

in Section 1.2), choosing the scales uniformly only makes sense if the maximal eigenvalues of the S graph

Laplacians formed from each of the Whyb
θk,δ

are similar. In practice we find this to be the case. We note finally

that the union of frames transformation is itself a frame. If each of the component frames satisfy the frame

bounds A and B, then the union of frames transformation will have frame bounds SA and SB.

We remark that the hybridization with λ may also be described directly with the graph Laplacian op-

erators, i.e. we may write Lhyb
θk,δ

= λLloc
θk,δ

+(1−λ)Lnl. One issue with this parametrization with λ is that,

depending on the parameters of the graph construction, the operator norm of Lnl may be very different in

magnitude than that of the Lloc
θk,δ

’s. This implies, for example, that taking δ = 0.5 will not really give an equal

mixing of local and nonlocal character. For convenience, we introduce the parameter λ′. We wish the effec-

tive nonlocal contribution to be proportional to λ′, and the effective local contribution to be proportional to

1−λ′. We enforce this by determining λ so that

(1−λ)‖Lnl‖= (1−λ
′)C

λ‖Lloc‖= λ
′C

for some constant C. In the above we have suppressed the dependence on the angle θk for ‖Lloc‖, in practice

we find there to be little dependence on k and we may just take ‖Lloc‖ = maxk ‖Lloc
θk,δ
‖. Solving the above
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original s.f., θ = 0 j = 3, θ = 0 j = 6, θ = 0 s.f., θ = π j = 3, θ = π j = 6, θ = π

Figure 1.3: Images of the graph wavelets with hybrid local/non-local adjacency, for boats image. Shown are scaling functions and

wavelets from selected scales for transform with J = 20 wavelet scales, S = 2 orientations,using δ = 0.5, for two different wavelet

centers. Red dots on original image indicate wavelet center locations.

set of equations gives

λ =
‖Lnl‖

(1−λ′

λ′ )‖Lloc‖+‖Lnl‖

Finally, for convenience of notation we note the following. Coefficients of the graph wavelet transforms

formed from a single SGWT frame may be indexed by scale parameter j and location index n, while co-

efficients of the hybrid local/non-local wavelet transforms require an additional orientation index k. In the

sequel, we will often replace the scale and orientation indices by a single multi-index β associated to one

choice of (t j,θk). This allows us to refer to the wavelet ψβ,n and coefficient xβ,n at (scale and/or orientation)

band β, position n, independent of the specific form of the transform.

1.4.3 Image Graph Wavelets

As an illustrative example of what the resulting hybrid local/non-local image graph wavelets look like,

we display several in Figure 1.3 computed for the well known “boats” test image. These wavelets were

computed using the same parameters as are later used in our denoising applications. A relatively small value

of λ′ = 0.15 was used, so they are mostly non-local spiced with a small pinch of local character. Note that

the wavelets really are non-local - this is especially evident with the scaling functions which show support

on parts of the image very distant from the wavelet center. It is also evident that the support for both the

scaling functions and wavelets consists of image regions that are similar in structure to the center patch.

Note for the top row where the center patch is on the ground how the support of the scaling functions are
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mostly ground and similar blank sky, while for the bottom row the supports consist of regions with strong

horizontal structure similar to the patch center. It can also be verified that for increasing j (corresponding

to decreasing scale t j), the wavelets are increasingly localized. For even smaller scales (not pictured), this

localization proceeds further.

1.5 Scaled Laplacian Model

Coefficients of natural signals in common localized bases (e.g., (bi)orthogonal wavelets, wavelet frames,

steerable wavelets, curvelets, . . . ) typically exhibit sparse behavior. This has commonly been modeled by

using peaked, heavy-tailed distributions as prior models for coefficients. A canonical example of this is

the Laplacian distribution p(x) = 1
2s exp(−|x|s ). Laplacian models have been very commonly used in the

literature to describe the marginal statistics of wavelet coefficients of images, e.g., [20, 21, 22].

Typically, the parameter s is allowed to depend on the wavelet scale. Including this is necessary to

allow the variance of the signal coefficients to depend on scale. This effect arises from the power spectral

properties of the original image signal (typically showing larger power at low frequencies) . It may also arise

from normalization of the wavelets themselves, as for many overcomplete wavelet transforms the norms of

the wavelets may depend on the wavelet scale.

Unlike classical wavelet transforms which are translation invariant at each scale (i.e., all wavelets at a

particular subband are translates of a single waveform), the spectral graph wavelets centered at different

vertices, for a particular wavelet scale t, do not all have the same norm. As the coefficients cβ,n =
〈
ψβ,n, f

〉
are linear in the norm of each wavelet, it is problematic to model the coefficients at one scale with a single

Laplacian density. Allowing the Laplacian parameter s to vary independently at each vertex location n would

give a model with too many free parameters that we would not be able to fit.

These considerations motivate the scaled Laplacian model, where we model each coefficient as Lapla-

cian with a parameter that is proportional to the wavelet norm. This proportionality constant is allowed to

depend on the wavelet band β, giving one free parameter for the model at each wavelet band. The model is

pβ,n(x) =
1

2α jσβ,n
exp
(
−|x|

αβσβ,n

)
where σβ,n =

∥∥ψβ,n
∥∥ is the norm of the wavelet at band β and vertex n.

This model implies that at each band, the marginal distribution of the coefficients rescaled by 1/σβ,n

should have a Laplacian distribution. Support for the appropriateness of the scaled Laplacian model can be
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Figure 1.4: Log-histograms of rescaled graph wavelet coefficients, from from the purely non-local transform with 6 wavelet scales,

for clean “boats” image. From top left to bottom right are wavelet scales j=1 through j=6. Solid red lines show best Laplacian fit.

found by examining the marginal distributions of rescaled coefficients. We find these marginal distributions

are qualitatively well fit by a Laplacian, as shown in Figure 1.4. These are shown for the purely non-local

graph wavelet transform, but we observe very similar results for the hybrid local/non-local transforms.

1.6 Applications to Image Denoising

As an illustration of the power of the non-local and hybrid graph wavelets for modeling image content, we

study the problem of removing noise from natural images. In this work we consider additive Gaussian white

noise. We fix our notation as follows. We let x,y and n denote the (unknown) clean image, noisy image and

noise respectively. This is consistent with the additive noise model y= x+n, where n is a zero-mean white

Gaussian noise with variance σ2
I in the pixel domain. Our denoising algorithms are described in wavelet

space. Let T be the graph wavelet operator, which will be either the SGWT with non-local Laplacian, or

a union of SGWT frames for the hybrid local/non-local adjacencies described in 1.4.2. We will use the

notation c, d, and e to refer to the wavelet coefficients of the clean image, noisy image and noise process,

respectively, so that c= Tx, d= Ty and e= Tn.
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1.6.1 Construction of non-local image graph from noisy image

For a realistic image denoising problem, we cannot measure the true non-local image graph as computing

it would require the availability of the clean image data. The question of how to estimate the non-local

image graph is a key concern for our method, as well as for many other works using non-local methods, as

the effectiveness of the overall non-local image denoising procedure is highly dependent on the quality of

the estimate underlying non-local graph. This presents a chicken-and-egg problem, as denoising the image

demands a good quality non-local graph, but computing the graph depends on good estimates of the clean

image patches.

We have found that directly applying the denoising procedures described in this section using the non-

local graph computed directly from noisy image patches leads to very poor denoising performance. This

necessitates the development of some method for robustly estimating the non-local graph in the presence

of noise. While we have not satisfactorily solved this problem, we still wish to demonstrate the potential

of the non-local graph wavelet methods for capturing image structure. In this work, we sidestep this issue

by using some different image denoising method, dubbed the “predenoiser”, to first estimate the image.

We then compute the non-local image graph from this “predenoised” image. Once the non-local image

graph is computed, the predenoised image is discarded and we then proceed purely with our graph wavelet

techniques. In this work, we use the Gaussian Scale Mixture model of Portilla et. al. [23] to perform the

predenoising.

While incorporating predenoising yields a highly effective overall denoising algorithm, it introduces

some question of how much the performance is depending on the effectiveness of the estimation of the

non-local graph. To address this, we also examine denoising under the condition where the non-local graph

is given by an “oracle”, i.e., computed from the original clean image. While this does not yield a true

denoising methodology, as it requires access to the original clean image, it does provide an upper bound on

the performance of the overall method.

1.6.2 Scaled Laplacian Thresholding

Our first denoising algorithm will consist of taking the forward graph wavelet transform, applying a spatially

varying soft thresholding operation to the wavelet coefficients, and then inverting the transform. We derive

the soft thresholding rule as a Bayesian MAP estimator, assuming the signal coefficients follow the scaled

Laplacian model described in 1.5.
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Given an input noisy image, we must first estimate the parameters αβ at each wavelet band β. Below

we describe a simple estimator for αβ given a set of noisy coefficients dβ,n arising from an image corrupted

with additive Gaussian noise of known variance σI .

In the wavelet domain, the noise model is dβ,n = cβ,n +eβ,n, where the noise coefficient eβ,n =
〈
ψβ,n,n

〉
.

Assuming signal and noise are independent we have

E[d2
β,n] = E[c2

β,n] + E[e2
β,n] = 2α

2
β
σ

2
β,n + σ

2
I σ

2
β,n.

Summing over n and rearranging gives

α
2
β
=

1
2∑n σ2

β,n

(
∑
n
E[d2

β,n]−σ
2
I ∑

n
σ

2
β,n

)
.

Replacing ∑nE[d2
β,n] by the plug-in estimate ∑n d2

β,n gives a formula for αβ. Note that for actual data it is

possible for this method to estimate a negative value for α2
β
, in this case we set αβ = 0.

The scaled Laplacian thresholding rule is derived by assuming the independence of wavelet coefficients

of both the signal and noise at different spatial locations. Under this independence assumption we may

consider the posterior probability of the desired coefficient given the observed coefficient,

p(cβ,n | dβ,n) = p(dβ,n | cβ,n) p(cβ,n) / p(dβ,n)

separately for each location n and band β. The noise present in cβ,n is zero mean Gaussian with variance

σ2
I σ2

β,n, while the desired signal is zero mean Laplacian with parameter αβσβ,n. These together imply that

p(cβ,n | dβ,n) = C exp
(
− 1

2σ2
I σ2

β,n
(dβ,n− cβ,n)

2− |cβ,n|
αβσβ,n

)
,

where C > 0 does not depend on cβ,n. Computing the argmax of p(cβ,n | dβ,n) is given by

cMAP
β,n (dβ,n) = argmin

x
(dβ,n− x)2 +

2σ2
I

αβ
σβ,n|x|. (1.10)

Solving this shows cMAP
β,n = Sτβ,n(dβ,n) with τβ,n =

σ2
I

αβ
σβ,n; where Sτ(y) = (|y|−τ)+ sign(y) is the well known

soft-thresholding operator, with (λ)+ = 1
2(λ+ |λ|) for λ∈R. Once the estimated coefficients cMAP are com-

puted, the denoised image is recovered by applying the inverse wavelet transform, described in Section 1.2.

Application of the scaled Laplacian model requires knowledge of the norms σβ,n of the wavelet coef-

ficients. This poses a somewhat challenging problem given the structure of how the SGWT is computed,

as the wavelets are not explicitly formed in memory. While the wavelet norms may be computed naively
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by applying the SGWT to delta impulses, and looping over all image locations, this procedure would be

extremely slow. Instead, we estimate the σβ,n by computing the variances of the wavelet coefficients of

pseudorandomly generated white noise. Let e(k) = Tn(k), where n(k) is a sample of zero mean unit white

Gaussian noise in the image domain. We estimate σβ,n by

σ
∗
β,n =

1
K

K

∑
k=1

e(k)
β,n

The numerical results presented in this work used P = 100 samples.

1.6.3 Weighted `1 Minimization

While the scaled Laplacian thresholding may be cleanly motivated by statistical modeling, it is limited in

that each wavelet coefficient is processed independently of all the others. As a related alternative denoising

algorithm, we develop a variational weighted `1 minimization procedure which allows for coupling between

different wavelet coefficients. The coefficients of the estimated image are recovered as the minimum of a

convex functional consisting of the sum of a quadratic error term in the image domain and a weighted `1

penalty on the wavelet coefficients.

This weighted `1 functional is obtained from considering the minimization problems from (1.10). For-

mally, these NB uncoupled minimizations are the solution to

argmin
c

∑
β,n
(dβ,n− cβ,n)

2 + ∑
β,n

2τβ,n |cβ,n|.

The first term in the above expression is the sum of squares of the portion of the wavelet coefficients

assigned to the noise process. We arrive at our `1 program by replacing this term by the sum of squares

of the estimated noise in the image domain, where the recovered image is given by TTc. Specifically, this

yields

c∗ = argmin
c

‖y−TTc‖2 + ‖c‖τ,1, (1.11)

where ‖c‖τ,1 = ∑β,n 2τβ,n|cβ,n| stands for the τ-weighted `1-norm of the coefficients c. After solving this

minimization problem, the denoised image is given by x∗ = TTc∗.

The objective function in (1.11) is convex in c, and thus admits a unique minimum. We compute the

minimum using the Forward-Backward (FB) splitting algorithm described by Combettes and Wajs [24]. We

note that the resulting procedure is very closely related to Iterative Soft Thresholding (IST) [25, 26, 27]. For

completeness, we give a brief description below.
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We apply the FB algorithm writing the objective function f (c) in (1.11) as the sum f = f1 + f2, where

both f1(c) ≡ ‖c‖τ,1 and f2(c) ≡ ‖y−TTc‖2 are convex, and f2 is differentiable. The FB splitting is a

general iterative method for solving convex optimization problems of this type. This algorithm uses the

proximal operator [28], which takes a general convex function ϕ and returns a new function proxϕ defined by

proxϕ z = argminx ϕ(x)+ 1
2‖x−z‖2. The FB splitting computes a series of iterates which use the component

functions f1 and f2 only through computation of ∇ f2 and prox f1
. Given the algorithm parameters γ fb and

λfb, the FB splitting computes

cn+1 = cn +λ
fb(proxγ fb f1

[
cn− γ

fb
∇ f2(cn)

]
−cn

)
.

It is proven in [24] that for λfb ∈ [0,1] the above iterates cn converge to the minimum of f (c), subject to

some technical conditions relating the Lipschitz norm of f2 and the maximum allowable value of γ fb.

The essential reason the FB algorithm is applicable to our objective functions is that the computation of

proxγ fb f1
reduces to simple soft thresholding in each component. A straightforward calculation shows that

(
proxγ fb f1

c
)

β,n = Sγ fbτβ,n
(cβ,n).

For the examples presented in this work, we used the parameters γ fb = 0.1 and λfb = 0.8. We ran the FB

algorithm for 20 iterations, which was enough to observe empirical convergence of the objective function.

1.6.4 Denoising results

We have performed a number of numerical experiments in order to demonstrate the efficacy of the graph

wavelet methods for both image denoising and deconvolution problems. We also explore the change in

performance of our denoising methods when the local orientation component of the hybrid local/non-local

is removed. Our test images were all 256×256 pixels in size, with greyscale values ranging between 0 and

255. In all our experiments, reconstructed image qualities have been assessed by the Peak Signal-to-Noise

Ratio (PSNR) defined as

PSNR(x,x∗) = 10 log10
2552

N−1‖x− x∗‖2 ,

where x ∈ RN and x∗ ∈ RN stand for the original and the reconstructed image.

The extreme flexibility of the methods used in this work give rise to a number of parameters for detailing

the specifics of both the SGWT and the graph construction. For convenience, we list them here. For all of

our denoising examples, we have used the SGWT with J = 20 scales, with Klp = 200 and polynomial order
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Noisy GSM8 SL† `1-min† SL `1-min NLM SL∗ `1-min∗

barbara

σ = 20 22.12 30.78 29.74 29.48 30.70 30.75 30.07 31.42 31.47

σ = 40 16.10 27.31 26.38 26.18 27.37 27.46 25.46 28.62 28.85

σ = 80 10.08 23.89 23.05 23.14 24.08 24.11 20.02 25.93 26.36

boat

σ = 20 22.12 30.11 28.82 28.86 29.54 29.68 29.14 30.27 30.36

σ = 40 16.10 26.68 25.39 25.65 26.28 26.41 24.90 27.36 27.82

σ = 80 10.08 23.58 22.63 22.91 23.36 23.24 19.42 24.98 25.54

lena

σ = 20 22.12 31.39 30.22 29.43 31.14 31.13 30.38 31.80 31.77

σ = 40 16.10 27.69 26.38 26.20 27.69 27.71 25.49 28.74 28.91

σ = 80 10.08 24.27 23.00 23.23 24.43 24.35 19.93 26.00 26.29

house

σ = 20 22.12 32.25 30.71 30.50 32.01 31.97 30.09 31.72 31.99

σ = 40 16.10 29.08 27.97 27.57 28.91 28.77 24.97 29.28 29.53

σ = 80 10.08 25.85 24.73 24.73 25.82 25.62 19.57 26.83 27.25

Table 1.3: Performance of proposed denoising algorithm and variants, reported by PSNR for 4 standard 256×256 test images. In

above, GSM8 : 8-band GSM method of Portilla et. al., used for predenoising; SL† and `1-min†: variants of SL and `1-min where

non-local graph computed without predenoising; SL: Scaled Laplacian thresholding; `1-min : weighted `1 minimization; NLM :

non-local means using same non-local graph as SL and `1-min ; SL∗ and `1-min∗: oracle variants. In bold, the highest PSNR per

row. Underlined, the best PSNR amongst the non-oracle methods.

m = 80 for the fast SGWT transform. The nonlocal image graph was constructed using 11× 11 patches

(i.e., patch radius K = 5), M = 10, and µNL = 0.75. For the hybrid local/non-local graph, we used S = 2

orientation directions, with δ = 0.5, and normalized hybridization parameter λ′ = 0.15.

Results for the Scaled Laplacian thresholding (SL) and weighted `1 minimization (`1-min) algorithms

on four standard test images are shown in Table (1.3). Three different levels of noise were tested, with

standard deviation σ = 20, 40 and 80. The variants using the oracle to compute the nonlocal graph, as well

as variants not using predenoising (i.e., computing the nonlocal graph directly from the noisy image) are

also shown. We include comparison against the 8-band GSM used for predenoising, as well as the result of

non-local means applied using the same non-local graph used in the SL and `1-min cases.

We first note that the PSNR performance of both the SL and `1-min methods are competitive with the

8-band GSM, providing higher performance in a few cases, but typically within 0.2 dB. While the similarity

in denoising performance may seem to suggest that the graph wavelet methods are simply reproducing the
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(a) Original (b) 16.10 dB (c) GSM8, 27.31 dB

(d) SL, 27.39 dB (e) `1-min, 27.45 dB (f) NLM, 25.46 dB

(g) SL∗, 28.65 dB (h) `1-min∗, 28.85 dB (i) NLM∗, 26.29 dB

zoom of (a)

zoom of (c)

zoom of (e)

Figure 1.5: Denoising results. Non-local Means∗ is for Non-local Means with oracle graph.

predenoised image, the results presented really do represent a distinct methodology. This can be seen by

examining images of the results, in particular the visual quality of the GSM predenoiser and the `1-min

method are different. In Figure 1.5, carefully comparing images (c) and (e) shows the presence of unsightly

ripple artifacts in the GSM image that are smooth in the `1-min image, such as near the table edges.

Clearly the good performance of the graph wavelet methods does depend on calculating a good estimate

of the non-local graph. As shown in Table 1.3, the SL and `1-min methods calculated using the nonlocal

graph computed directly from the noisy image show poorer performance, typically losing over 1dB. In
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σ = 20 σ = 40 σ = 80

`1-min 0.133 0.117 0.116

oracle `1-min -0.164 -0.159 -0.067

Table 1.4: PSNR(λ′ = 0.15) - PSNR(λ′ = 0), averaged over 16 test images under different noise conditions.

contrast, the oracle methods which use the perfect nonlocal graph show extremely good performance. This

is especially noticeable for the high noise (σ = 80) case, exceeding the GSM method by more that 2 dB.

While the PSNR performance of the SL and `1-min methods using predenoising are very similar, their

visual qualities are different. The SL method results seem oversmoothed compared to the `1-min results,

which preserve sharper edges and generally appear to have more high frequency content. Interestingly, the

PSNR of the `1-min method is consistently better than SL for the oracle case, indicating that the `1-min

method is more sensitive to the quality of the non-local graph.

The non-local graph used in our methods has weights that are computed the same way as the weights

used in the non-local means method for image denoising. Both the non-local graph wavelet methods and

non-local means can be described using the same underlying non-local graph structure. It is thus interesting

to compare against the results of non-local means denoising, using exactly the same non-local graph. Given

the adjacency matrix W, the non-local means proceeds by replacing each pixel of the noisy image by the

weighted average of its graph neighbors. Recall that W is defined with zeros on the diagonal; the non-local

means denoising result is

x∗NLM( j) =
y( j)+∑i wi, jy(i)

1+∑i wi, j
(1.12)

We show the result of this non-local means in figure 1.5, and note that the performance of the graph wavelet

methods is much better. It should be noted that the non-local means results shown here are not the best

results that can be obtained with the non-local means algorithm. The graph construction here has been

optimized to give good results for the graph wavelet methods, we have observed that different choices for

the graph sparsification and µNL can improve the non-local means performance. However, the dramatic

difference in performance when using the same graph emphasizes that the graph wavelet methods are really

doing something beyond simple non-local means.

In order to assess the usefulness of introducing orientation through the local/non-local hybridization

described in Section 1.4, we have studied the change in performance when the local oriented adjacency is

removed (i.e., setting λ′ = 0). Results averaged over a larger set of 16 test images are shown in Table 1.4.
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Including the oriented local component provides a moderate improvement on average when the non-local

graph is computed via predenoising. Interestingly, including the local component actually degrades perfor-

mance when the oracle graph is used. This suggests that the usefulness of the local component is to provide

some regularization of the imperfectly estimated non-local graph. For the oracle case, as the non-local graph

is perfectly estimated, the local component is not needed.

1.7 Conclusions

We have introduced a novel image model based on describing the wavelet coefficients under a new non-

local image graph wavelet transform. The underlying non-local image graph has vertices associated with

the image pixels, and edge weights which measure the similarity of different image patches. We constructed

an overcomplete frame of wavelets on this graph using the spectral graph wavelet transform, and showed

that the nonlocal graph wavelet coefficients of images are well modeled by a scaled Laplacian probability

model. We also detailed a way for building local oriented wavelets with the spectral graph wavelet transform,

enabling the construction of hybrid local/non-local graph wavelets.

As a demonstration of the power of the image graph wavelets, we have developed two related methods

for image denoising based on the scaled Laplacian model. A straightforward Bayesian MAP inference in

the wavelet domain leads to the scaled Laplacian thresholding method. The second weighted `1 method

uses the scaled Laplacian prior as part of a global convex objective function, leading to improved recovery

of higher frequency image features.

There are many opportunities for future work using the non-local image graph wavelets. At present,

we are actively investigating the use of non-local image graph wavelets for other image processing prob-

lems. Both image deconvolution and image super-resolution problems may be cast in a convex variational

framework as the `1-min method. An additional important question is how to improve the estimation of the

non-local graph, hopefully to avoid the somewhat awkward use of the predenoising method.
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