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Abstract

Many techniques have been devised these last ten years tnaajgpropriate directionality concept in decomposi-
tions of images from the (affine) transformations of a smetlla§ atomic functions (e.g. directional wavelets, stelerab
filters, curvelets, wave atoms). Generally features whih lzest represented are straight lines (as those defining
contours of objects), smooth curves (e.g. curvelets psiegp or oriented textures (e.g. wave atoms). However,
real images present also a set of details less oriented amnd iswtropic (like corners, spots, texture components,
...). This paper aims at developing one possible adaptipeesentation for all these image elements ranging from
highly directional ones to fully isotropic ones. This nevolt@an indeed be tuned relatively to these image features
by decomposing them into a (linear) frame of directional @ets with variable angular selectivity. Inside such a
decomposition, wavelets inherit some particularities haf ¢biorthogonal) circular multiresolution framework. i$h
simple link qualifies our method of multiselectivity andl/sTwo applications of the proposed method are given at

the end of the paper, namely, in the fields of image denoisimy/é-term nonlinear approximation.
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. INTRODUCTION

Real world images contain very different features, randimg very oriented ones, like straight edges, to more
isotropic objects, like corners and spots. Between theseetxireme behaviors, we find, for instance, curves with
variable curvature radius and texture points. During trst tan years, many technigques have been designed for
obtaining good representations of images with orientetufea. We may quote, e.g., the work of Antoine, Murenzi,
and Vandergheynst on directional waveléts,[1], [2] thaSohoncelliet al. on oriented steerable filteis|,[3[,! [4] that
of Candes and Donoho on the curvelet representétionfplarid that of Demanet and Ying on wave atofis.[7]

In this paper, we propose a method based on directional eadelcomposition for representing the various
objects mentioned above adaptively on each point of the émbyg order to achieve this result, we will define
particular directional wavelets based on a circular mestution analysis, whose main property is to combine
with each other to form directional frames of different alagselectivity (actually, half-continuous frames, that i
discretized only in scales and angles). A criterion to getlee “Best Directional Frame” is then defined.

Finally, we will present in two applications, namely imagendising andr%-term nonlinear approximation (a
simple variant of theV-term nonlinear approximatidn[l8]), the advantages ofdbmposite multiselective frame

over a non-adaptive fixed selectivity method.

II. THE FRAMEWORK
Let us describe aimageby a continuous functiorf in R?, i.e. alight intensityfunction in every pointt € R?
of the image. Iff € L*(R?) = {g(@) : |lg|l = [z 9(Z)[?d*Z < oo} and given an admissible wavelgt

L'(R?*) N L*(R?), the continuous wavelet transfofm[8] ¢fis

Wf(g7 a, 0) = <1/15,a,9| f> (21)
L v @) f@) 22)

a? Jg2
= # [ 0y ) () 0 &, (2.3)

where* is the complex conjugation arvgﬁll—;_’a_’e is an L' (R?)-normalized copy ofy, translated by;e R?, dilated
by a« € R, and rotated by € S; ~ [0,27). In these equations;y is the usual2 x 2 rotation matrix, and
the hat denotes the standard Fourier transformL8(R?), that is, f(k) = [,. f(Z) e~ikT 427, with inverse
f(@) = (2n)72 [ F(k) "% d2k. We will forget in the sequel the index of; and we will write simplyW.
From now on, we take foy adirectionalwavelet,[2], [8] that is, a wavelet whose frequency supoessentially

contained in a convex cone with apex at the origin. In addjtige assume that is separable in polar coordinates:

b(k) = p(k) (k) (2.4)

wherek = (k, ), k = |k|, k = argk, p is a function inL2(R, kdk) and ¢ is a positive function inL2(Sy, dx).
Notice that if o has a compact support isi;, with a width strictly inferior tor, the directional wavelet is said

conical sincesupp ¢ is then exactly contained in a convex cone..



A directional wavelet is characterized by #sgular selectivityor Angular Resolving Pow§]), that is, its ability
to distinguish features with close orientations. This dimaris by definition inversely proportional to the aperture
of the support cone of : the sharper the cone, the higher the angular selectivitg. flequency representation of

our separable wavelet is given in Figurd L.
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Fig. 1. Frequency representation ©f
With ([2.4), the wavelet transforni (2.3) becomes in polarrdoates
WEa0)= [ 5 (ab) ejle) Flhor) ) bk, (2.5)
R+><Sl

with g (k) = p(k — 6), b= |b| and 3 = argb. The last equation may be rewritten as

W(b,a,0) = (pe| Rz, (2.6)

S17
where (h|g)g = Js, *(x) g(x) dw is the scalar product on the circl® of the 27-periodic functionsh and g,
and

Ry (k) = /R p(ak) f(k, k) 'R0 eosts=0) kdk, 2.7)

In other words, the relatiorf (2.6) means that the wavelefficamnts of the imagef can be interpreted as the
projection ofRaa on a kind of scaling functiorpy localized around € 5.

It is now very tempting to add a dilation in this schemelfcorresponds to the periodization of a function
v : R — R, we may for instance “dilatelp by dilating v,[9] that is,

K

ve(k) = - Z V(— —n), eeR,. (2.8)

€



Let us replace nowy in (2.8) by the family of functions. ¢(x) = ¢.(x — 6), leading to the new coefficients
W(b,a,€,0) = (el Bs ),

Of course, in this five-dimensional parameter space, thandahcy of the transformation is highly increased,

but, for eache, we have a wavelet

e (k) = p(k) pe(r), (2.9)

of angular selectivity controlled by. We may expect that isotropic objects in images will be batpresented by
coefficientsW(R a, €,0) with largee (small angular selectivity), whereas very directional®méll correspond to a
small e (and high angular selectivity). In the next section, we wilbw how a circular multiresolution framework

can clarify these hints.

I1l. BIORTHOGONAL MULTIRESOLUTION ON THE CIRCLE

We start with the usual biorthogonal multiresolution as@yMRA) onthe ling that is onL?(R), then, following
Daubechied,[10] we extend the multiresolution frameworthe circleC; ~ [0, 1) (throughout this paper, we reserve

the notationS; to the circle identified with the intervd, 2)).

A. MRA on the line

As it is well-known, a multiresolution analysis éf (R) is an increasing sequence of closed subspaces, interpreted
as approximation spaces,

CVaCcVacVicVicVacC..., (3.1)

with N, ¢, Vi = {0} and|J, ., Vi dense inL?(R), and such that

1) f(z) eVie f(22) € Vi

(2) There exists a functiop € V;, called ascaling function with nonvanishing integral, such that the family
{¢(x — k),k € Z} is a Riesz basis of}.

It follows that, for each € Z, the family of functions{¢; ,.(t) = 2//2¢(2't —n) : n € Z} is a Riesz basis oF.

In the orthogonal case, there exists, for each spadq¢ € Z), a complementary subspa®¥, with scaling and
translation properties similar to those ©f, such thatV,.; = V; @ W;. The central result is thdl’; has a Riesz
basis{¢ . (t) = 21/2£(2% — n), n € Z}, and thus{&, ,(t) = 2/2&(2' —n), I,n € Z} is a Riesz basis of.(R).
The functions; ,, are the wavelets.

The inclusionsp € Vy € V; andé € Wy C Vp imply the refinement (or scaling) equations

=V2Y_ hn)¢(2t —n), (3.2)
neZ
=v2)" gln] 62t —n), (3.3)
neZ
for certain sequences[n] and g[n] belonging to/?(Z). Denote byh(w) = %Znez hlnle™™ and g(w) =

% > ez 9lnle” ™ the corresponding filters.



We turn now to the biorthogonal case. We take a second nsdtirdon analysis, with subspac€s;} and{f/lv/l},

and generating functiortg andg, respectively, satisfying the biorthogonality relations
VLW, and W, LV, (3.4)

In other wordsg and¢ define Riesz basey . (t) = 21/2¢(2't—n), n € Z} and{& ., (t) = 21/2£(2't—n), n € Z}

of V; and W}, respectively, and verify the biorthogonality relations

<§l,n/|5l,n> = 0, <¢l,n|gl,n’> = 0,

~ - (3.5)
<¢l,n’| (bl,n) = 6n,n’a <§l’,n’| 5l,n> = 6l,l’ 6n,n’a
for all [,I’,n,n’ € Z. Since the corresponding filte@,g} and{h, g} are linked by the relations
gw)=e “h(Ww+7), Gw)=e “h(w+m). (3.6)

the whole biorthogonal multiresolution analysis is detiewd from the filtersh andh.

Given anyf € L*(R) and anyL € Z, the reconstruction formulas read

+oo
F=Ycllorn+>.>  dinl&n 3.7

nez =L neZ

= Z Z di[n) €., (3.8)

lEZ nEZL
with ¢[n] = (¢1n| f) anddi[n] = (& f) for l,n € Z.
Finally, the refinement equations entail that the coefftsienandd; satisfy recursion formulas which allow their

fast computation, namely,
cn] = T h*cpyq [2n],
di[n] =1 g+ ci41 [2n], (3.9)
ciprln] = h* Ue [n] + § * Udy [n],

where, for any sequencge (?(Z), I ¢[n] = q|—n] and
2] if n is even,
Ugin) = M3 T (3.10)
0 if n is odd,
that is, the operation — Uq represents oversampling by a factor of 2. We use also thelatdrconvolutions of

two sequences defined by

uxvn] = Z u[n — m]v[m]. (3.11)

meZ

B. Circular MRA

Consider a multiresolution analysis bf(R), such as described in the previous section, with generm'rntgiong
#*(t) and &% (¢) well localized in space, in the sense that > 0 such thatj¢®(t)|, [€*(t)| < C(1 + [t|)~17¢. The

in the sequel , we will add the labél)*® to every functions related to a MRA oh?(R).



periodized version o®; ,, is

Gin(t) =D ¢, (t+m) (3.12)

mez
and similarly for¢f,,, and also for the dual functions’ and¢*, leading t0& ., ., and,..

Hence, from the subspacé&$’, W) € L*(R), generated by{(¢},, n € Z} and {¢},,, n € Z}, respectively, we
deduce the subspacés W, € L%(C4), generated by{¢; ,,n € Z} and {&, ., n € Z}, respectively. In the same
way, the dual subspacé%,m induce the periodic subspac&g W,. Itis easy to see that these new spaces are

finite dimensional, since
d’l,n = ¢l,n+2lra gl,n = 5l,n+2lra (313)

forall 1 > 0, n € Z andr € Z. Therefore, dim/; = dim 1, = 2! and the dual spaces have the same dimension.

In addition, from the periodicity of the circle, the scalergmeter! is restricted to positive values. Indeed, if
Yomez M2m] =32, h[2m+1] = % then¢® realizes a partition of the lin€.[10] that i§,, ., ¢"(t—m) =1
for all t € R. Under the same assumption, we have 3I$g ., £*(t — %) = 0.

Therefore,¢y,, = 1 and¢_,,, = 0 for all n € Z. The spaced;, and W_; are thus respectively the set of
the constant functions of, 1) and the null function sef0}. In consequence, from now on, we will restricto
positive integers.

Notice that the orthogonality (3.5) betweéfn and W, (resp. betweerl, and W;) is inherited from the one
betweenV; and W, (resp. betweerV; and W,),[10] that is,

<§l7n|$l,n/>cl =0, etc, LI'eN,0<n<2, 0<n <2 (3.14)

In conclusion, since the dilations are performed beforeplegodization of the nonperiodic functions, &, 5

andggenerate a biorthogonal multiresolution analysis withspaeesl; C V1, W, € Wi, Vi C ‘7z+1 and

Wl C Wlﬂ .
Notice that, forl € N*, the scaling ruled (312) anf (8.3) become
21
d-1,0(t) = V2 Z hu[n] ¢in( (3.15)
21—1
Go10(t) =V2 Z gin] din( (3.16)

wheregq[n] = Y, ., aln+2'm] is the2'-periodization of the sequengé:]. The dual periodic refinement equations
are obtained in the same way.

The reconstruction formuld (3.7) now becomes

2t—1

ol0]+ > di[n] &, (3.17)

leN n=0
with ¢[n] = (é1,n] f>c1 andd;[n] = (&, f>cl' Remark that[0] = <f>c1 = fcl f, sincegpp = 1.



Finally, the recursion rule$ (3.9) become
ci—1[n] = T hyx ¢ [2n],
di_1[n] = I g% ¢ [2n], (3.18)
cip1[n] = hugr * Uy [n] + Giga * Udy [n],

wherex denotes the circular convolution defined as,
P-—1
uxvn] = Z u[n —m mod P]v[m], (3.19)
m=0

for two sequences andwv of length P.

IV. ANGULAR MULTISELECTIVITY ANALYSIS

The circular multiresolution framework developed in theypous section can be used to define new 2-D wavelets

with multiple, but controlled, angular selectivities.J1&s we see below, their main properties are

« they combine with each other in a pyramidal scheme to form kedective directional wavelets until one
obtains a totally isotropic one;

« they define for eackelectivity leveh linear directional frame.

A. Directional Frames

We begin by recalling the definition of a linear directionedrhe. According to the theory of dyadic (or half-
continuous) frame$ 8] [11] the continuous wavelet tfama given in [2.1) can be discretized in its parameters
and#, while preserving a perfect reconstruction formula.

Indeed, lety) € L'(R?) N L?(R?) be a polar separable wavelet of the folm2.4). Given a dysaopling of
the scalesi; = ap2™7 (j € Z, ap € R;) and a regular sampling of the anglés = %’n (0<n< K, K € N¥),
assume that thame propertyis satisfied, that is, there are two positive constamt®! such that

K—-1
m < YN lo(ak)P e — 6. < M. (4.)
JEZ n=0
Then, there exists a (nonunique) dual wav&]?ewhich yields the following reconstruction formula for arfye
L?(R?) :
K—-1 _
F@ =" Win*ta,0,(&), ae. onk? (4.2)
JEZ n=0
wherex stands here for the standard convolution between two fomstof L2 (R?).
A particular case (‘linear frame’) arises when

K-1
DN plajk)e(s—60,)=A, AeR} . (4.3)

JEZ n=0



Then,J is simply a Dirac distributio’®) () and the reconstruction formula_(#.2) reduces to a LittletvBaley

decomposition

1 K—-1
F@) = SN Win@). (4.4)

JEZ n=0

B. Angular Multiselectivity

As we have seen in Secti@d I, when the waveldias the form[{2]4), then the resulting 2-D continuous wavele

transformW(l;,a,G) of an imagef € L?(R?) is given by the scalar product

Wb, a,0) = (s| R;,) (4.5)

e
Given a biorthogonal multiresolution analysis of the @relith a scaling functiony and a wavelet, we apply
the discretization of Sectidn TVJA and projeBIEJ = REW onto the functionsp; ,, (k) = ¢z,n(%) andn (k) =
&.n(2%). This gives rise to the new coefficients

-

Wjill.,n(b) = <§Ol,n| R57j>51 ’ (46)
W) = (il B ) 4.7)
W) = (pool Ry ;)s, = (1] Rg)s. (4.8)

for I € N andn € [0,2'). These amount respectively to the projection of the im#gen translated and dilated

copies of the functiong”, , wl‘fn and+' defined in frequency space by

b (B) = p(k) @1 (k) (4.9)
b (k) = p(k) i (), (4.10)
bi(k) = 0do(k) = p(k), (4.11)

where the exponent stands for angulaapproximation d for angulardetails andi for isotropic

The full parametrization of thé ! (R?)-normalized wavelets reads

Z—b

= . —2
djg,j,l,n(x)_aj Q/Jla,n( a

- ), (4.12)
J
and similarly forwgyj_’lyn(:f) and ¢%,j'

Besides the scale and translation parametgrand b, the rotation of the 2-D wavelets is obviously given by
the parameten < [0,2!) which precisely translates a function ¢l by an angIenQQ—’{. Since the aperture of the
cones containing these wavelets in frequency space is giopal to 2~, the angular selectivity of,”, and U’fn
is proportional to2! (see Sectiofill). Keeping that in mind, we will call the paeger! the (angular) selectivity
level

We have thus generated a new family of waveléts; , z(,im '} ranging from very directional ones to a totally

isotropic one, depending on the valuelof
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Let us end this section by noticing that, for each selegtiiavel | € N, the family {¢?

2.} may easily generate

a linear frame.
Proposition 1: Let a; = ap2™7 be a dyadic scale discretization.it‘jGZ pla;k) =1 a.e. fork € Ry, then, for

any! € N, the family {42, :j€7Z,0<n <2'}is a linear frame ofL?(R?), i.e., it obeys[(413) withA = 2!/2,

Jilin
This is a simple consequence of the fact thatealizes a partition of the line, .6 _, ¢"(t +m) = 1 for all

t € R. Indeed, withu = -,

21 21 21
SN B) =) plajk)ero(k —nZE) =Y drolu— %) (4.13)
JEZ n=0 JE€EZ n=0 n=0
21
— 93 Z Z & (2'u + 2'm — n) (4.14)
meZ n=0
=23, (4.15)

and [4.3) is satisfied.

C. Recursion Formulas

For anyl € N*, ¢ andn verify simple extensions of the scaling rulés (3.15) dnd@B-

2t—1
P1-1,0( Z huln] @.n (s (4.16)
2171
m-10(k) =Y giln] ern(k). (4.17)
n=0
We have also, fof € N,
2l 1 2l 1
Prein(k) = > husaln =20 oun(R) + Y Gialn — 20 min (k) (4.18)
n’=0 n’=0

If we project [4.16),[(4.17) and (4.118) onf®; ;, we obtain the following relations for the decomposition:

2t—1
jl 1 n Z hl - ] l n’ ( ) = (hl *Wji?‘l,-(b))gn’ (419)
. 2171
W10 = gi [0 —20) W2 0 (0) = (G0 W) (D)0 (4.20)
n’=0

where we writex = I v* for any sequence.

As for the reconstruction, we get

2t—1 2t—1
j?l-ﬁ-l,n(b) = Z h?+1[n —2n J l n’ Z 91+1 W],l n(b)
n’=0
= (A xUWR(B)), + (G50 *UWS (D)), . (4.21)

Note that the oversampling operatibnhas well as the circular convolutionare performed on the angular parameter
of the wavelet coefficients, as i (3]10) arid (3.18). The timta(-),, means simply that we select the"
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angular element of this convolution. These relations armarsarized in Figs[12 andl 3 where the operaioris

the downsampling operator which turns a sequencé length2P into a sequencé€Du)[n| = u[2n] of length P.

208 (Do W, (B) - (D} Wi
(@) ] (@)
W;‘j,lfl,n(b) Wgc'l,o,o(_')

Fig. 2. Decomposition of the wavelet coefficients accordingheir angular selectivity

-

Wio(6)

Fig. 3. Reconstruction of the wavelet coefficients accardim their angular selectivity

q
Wi 1n(0) U]

—Ln

Notice that [[4.19),[(4.20) and_(4]21) are the exact couatérpf the usual recursion relations for wavelet
coefficients[[10] They rely on the fact that, according fol@, [4.17), several wavelets of levelmerge into

a single wavelet at levdl— 1, i.e., with half the angular selectivity.

D. Choice of the Wavelet

We must now choose a wavelet for our multiselectivity analyg/e select forp™ and £* the B-spline scaling
function and wavelet, respectively.[12] In particular, wse the results of Cohen-Daubechies-Feauveau[13] (CDF)
on the compactly supported, spline biorthogonal wavelsebavith several vanishing moments. We propose to use
the filtersh andh, with 3 and 7 vanishing moments, respectively (see Tabl€his ensures that the resulting’,
(given below) is a conical wavelet with quadratic reguiadh the edges of its conical frequency support.

Given an initial selectivity level € N, we define)? , and+f  in frequency as

Vf n(F) = ¢ (108, k) or.n (k). (4.22)
Vi (F) = ¢ (logs k) 11 (k). (4.23)
with n € [0,25), orn(k) = drn(L), non(k) = ELn(£%), and¢ and ¢ the periodization of* and &*. This
yields K = 2% differently oriented wavelets.
Remark that, choosing(k) = ¢*(log, k), as in [4.2R), implies thaX_ ., p(a;k) = >,z " (logy ack — j) =1,
since}’, o, ¢°(t —m) = 1. From Proposition]1, the wavele{s)§, .} constructed from[(4.22) thus constitute a

linear frame for each € N.
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n h[n) hn]

0,1 0.53033008588991 0.95164212189718
—1,2 0.17677669529664 —0.02649924094535
—-2,3 —0.30115912592284
—3,4 0.03133297870736
—4,5 0.07466398507402
—5,6 —0.01683176542131
—6,7 —0.00906325830378
-7,8 0.00302108610126

TABLE |

CDF DIRECT AND DUAL FILTERS OF3 AND 7 VANISHING MOMENTS.

Fig. 4. Waveleta/?g,n(l_c') (top row) andz[:dL,n(E) (bottom) for several value of and forn = 0.

The resulting function);, are presented in the frequency domain on Fidlre 4 for sewalak of L and

for n = 0. Notice that the aperture of the supporting cones is agtuigtreasing with the increasing éf As
explained before, the apertute;, of the cone supportingfrgn andz&%yn is proportional t2~%, which means that
the angular selectivity of these wavelets growths withThis behaviour is illustrated more clearly in Figlide 5 for
the CDF-(3,7) framework. Sincesupp ¢* = [—3/2,3/2], o is not defined for0 < L < 2 (i.e. suppy = 51),

anday = 372~ L for L > 2, so that the waveletg , are conical[8] (i.ear < m/2) for L > 3.
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Fig. 5. g (k) with a = 37 /4 (left). ¥, () with as = 37/8; this is a conical wavelet (right).

V. BEST FRAME SELECTION

Starting from a selectivity level € N, we have seen in Secti¢n TVD that we can generate indugtilel 1
frames withy, (I € [0, L]), characterized by an angular selectivify

In particular, for each level € [0, L], Propositior 1L shows that the wavelets, , generate a frame of constant
A = 2!/2 which, according to[{4]4), may be used to reconstruct thgiral image. In addition, as expressed in the
following proposition, we can mix the different frames usithe same reconstruction formula.

Proposition 2: If p respect the same condition than in Pidp.1, for all function 7, j) € R2xZ — I(Z,j) € N,
a function f € L?(R?) can be decomposed by

2l

f@ =YY iy (@), (5.1)

JEZ n=0
This is a simple consequence pf; _, W/(Z) = f and
21 2! 1

ST Ewa L@ = Y 27T W L@ = W@, (5.2)
n=0 n=0
for anyl,l’ € N.

The precious property unveiled by this last propositiorvjgtes us a new degree of freedom to adaptively describe
images. Indeed, at each poE_ﬁE R? and each scalg € Z, we may search the “best frame”, that is, the selectivity
level Z(E,j) characterizing best the content ff

Therefore, we decide simply to choose the frame which offexdest match between the image and the wavelets,

that is, (
. g, Pl
((b,j) = argmax max ——t——. (5.3)
oLy nelo2) e
The reconstruction procedure will be then defined by

201
F@ =3 > 27 PWL@), =1.)), (5.4)

JEZ n=0

since, for fixedj, the inner sum om equaIsti(:E), exactly as in[(414).
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15
@ =4
M 3
M2
B
Mo

@ (b)

Fig. 6. Value of{(Z,4) on a toy example fol, = 5.

On Figure[6(0), the computation dfis presented fofj = J — 1 = 4 (see next section for details on the scale
discretization) and. = 5 on a toy image containing a set of simple geometric objedts [@{a)). Values of’ are
displayed only in areas whet®/} ()| > 1| maxz W,/ (Z)|.

As we can seg, follows closely and locally the directional aspect of thalgsed objects. Indeed, the selectivity
level ¢ is increasing with the curvature radius of the three diskshair edges. The three singularities (spots) on
the bottom are however linked with the 0 level, i.e. the igpit level. The last object, the straight line, produces

the maximum level as expected.

VI. DISCRETIZATION

In practice, images are discretized on a regular grid oflpjxe., an imag¢ is defined on sampleg [p] = f(p),
wherep = (p, q) € Z2. By the Shannon theorem, the Fourier transfornypfs the 2r-periodization off, both in
k. andk, directions. In other wordsf is completely determined from the values ff if f is band-limited, that
is, if f € By ={geL%R?) : §(k)=0if k ¢ B,} with B, = [—7,7) x [—, 7). In this particular context, the
linear frame condition (413) must hold only at poirﬁg B;.

However, sincen; = ag277, p(ajk) is moving to high frequencies whenincreases, and there is a maximal
value J > 0 for j. Hence, in our choice of wavelet, since the quadratic spfins centered on the origin and
has a support equal to-2, 2], p(k) = ¢(log, k) will be centered ork = 1 with suppp = [27%/2,23/2]. So,
with ag = 7127412, p.(k) = p(a;k) is centered forj = J — 1 on Z inside the supportZ, 7], ensuring that
wz?a.,j,z,n € B, for j < J. Let us now gather together wavelets wijtt: J in B, by defining

o0

b E) = xB. (k) eun(r) Y ¢(logs ajk) (6.1)
J

<.
Il

NE

= x5, () ora(r) Y 6(j +log, aok), (6.2)

J

<.
Il
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where high stands forhigh frequency components angs.. (E) is the characteristic function aB, equals 1 if
k € B, and 0 elsewhere.

Since the discretized image is also limited in space, sayzef 8 x N pixels, we define also the isotropiow
frequency function to gather wavelets which are Iarger tthenoriginal imagef, that is

DoV (k) Z o(logy ajk (6.3)
j=—o0

This two-dimensionakcaling functionis in fact fully determined byJ : )'°¥ is contained inside a disk of
radiusw 2~7. By inspection ofy!*" and 1, ,, in the spatial domain, one sees that imposing roughlymaller
thanlog, N/8 garantees that these functions are essentially smallerttreaimage and sufficiently discretized in
frequency.

Finally, for any L € N, the family
(g 25200, 1, PEZ?, jE10,7 1], ne[0,25)} (6.4)

is a linear frame of constamt = 2%/2 in B,.

With Wow = (% « f) and Wh‘gh (M&h 4 ), the reconstruction formula reads

l,n

J—12F—1

f(j Wlow ﬁ)+z Z 92— L/2 77 mﬁ)_'_ Z 29— L/2 hlgh(pa). (65)

j=0 n=0

In a multiselective context, this becomes

J—12°-1 2¢-1
FE =W @)+ D 2 W) + > W), (6.6)
j=0 n=0

with £ = £(p, j) defined in [(5.B).

VII. IMAGE DENOISING

As a first application, we propose in this section to obsem& the multiselective scheme is able to clean noisy
images. We do not pretend to obtain the best denoising #hgoriOur aim is rather to compare, in a linear frame
or Littlewood-Paley decomposition context, a fixed selgtidenoising, using directional wavelet with the same
selectivity level, with an adaptive multiselective derugs

We will start by describing the whole process for the fixee:stity method using a soft-thresholding of wavelet
coefficientd[14] before the image reconstruction.

This procedure will be then extended to the composite frasse@ated with the multiselective scheme.

A. Fixed Selectivity Method

Let f € B, be an image corrupted by a Gaussian white noise of vanish@anrand variance?, that is,

fo(f) = f(f) + O’?’L(.’Z"), (7.1)

where f,, is the noisy image and ~ N(0,1).
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We want to estimatg from f,. In our method, we will always comparg and itsestimator f, with the Peak
Signal to Noise RatigPSNR) determined by PSNR 20 log;, 256/0., assuming the quantification ¢gf has 256
gray levelso? is the estimated noise variance, thatig( f — f.)?][4. The higher the PSNR, the better our estimator
fe.

A common procedure to determing (see, for instance, Refd. [15],1[4],_[14]) is to decompose ithage in
a basis of functions, to threshold the computed coefficiahtsome specific levels, and finally to reconstruct an
estimated image from the latter. Since the pure im#gds rather concentred in a limited number of coefficients,
and the noise spread uniformly on all coefficients, this shoéding has for effect to separate the noise artifacts
from the real signal features in each “band” of the transiom.

We propose here to apply this framework with the followingaalthm:

« Fix J and the selectivity level € N.

« Given the noisy image¢, (Z.J), compute the coefficients
WL (), W' (5) and W)y, (5)

for n € [0,2%), p€ Z? andj € [0,J — 1].

« Softly threshold the wavelet coefficients according théofeing rules:

Wi n(P) = Tluoj Ll - Wi (), (7.2)

WS () = Tl - Wis" (7). (7:3)
whereT[t] is the soft thresholdingoperator of threshold > 0 defined by
u| —t) signw, if |u| >t,

Tl u = (lul — 1) sig |ul (7.4)
0, otherwise.

« Reconstructf. with W, 8" W'o¥ and W2, according to[(655).

The particular parametersfih ando; 1, appearing above stand for the standard deviations of, cégply,
the high-frequency coefficients and the wavelet coeffisiemien the input image consists only of the noise, i.e.,
f = on. Since the noise has no preferred direction, it is clear 4hat,, does not depend on the angular index
In fact, since wavelet coefficients are simple linear trarmsftion of f, as a consequence of the Wiener-Khintchine

theorem (see, for instance, Ref. [16]), wavelet coeffi@eiton have also a zero-mean Gaussian distribution with

oirm = ollvlall = a;tolvfll, (7.5)

high high
ULl,i = O-||z/JL,1’rg7. B (7.6)

In other words, thresholding wavelet coefficients which laeéow (a multiple of) these values amounts to keep
values with high probabilities to be due foand not to noise. In the sequeigiih, which is not independent of

from the restriction of;"®" to B, (.), has been approximated by'" ~ a7 ' o |2 ol = 201,10

2We assume thaB[(f — f.)] = 0, that is, E[fe] correctly estimates the expectation valuefofvith no bias.
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The last parameter, controlling the thresholding strength relatively to thestandard deviations, has been

empirically set to2 to obtain interesting PSNR betwegnand f..

B. Multiselective Method

For the multiselective method, the thresholding processtbdake into account the selectivity level.

It is easy to prove that, for our choice of wavelet (see SadBéD), o, is constant as soon as the support
of w1 (k) is strictly included to[0, 27). This is a simple consequence of thé normalization of¢* generatingy
by periodization.

However, even if this behavior is independent of the sgaleve may conjecture that the pure image is less
and less directional whep decreases. We follow in fact the work of E. Candés and D. Doff], [6] on the
multiscale geometric study af?-edges in images. At small scales, these are well descrigegety elongated
atoms, while at large scales, more isotropic functions aveenadapted. In addition, in comparison to the noise, at
a fixed0 < j < J, pointsl? with high é(l;,j) must be more numerous since many substructures insidemegkeis
define curved and straight edges.

This is confirmed by the results of Figure 7. The percentaqmbftsl;with vaIueé(Z;,j) =lfor0<i<4and
0 < j < J =5 has been determined for two images : thena picture (Fig[8(d)) and a purely noisy image, i.e.
our previousn(Z). The observation of Figurés 7(a) and 7(b) shows us that &érea picture has globally a higher
percentage of points with high selectivity level for ahthan the noise image. In addition, for smallboth images
display percentages more spreaded on smaller

The noise image has also many more points associatéd=to for all j. The ratio of the percentages of the
noise image and of theena picture (Fig.[7(d)) confirms this effect for small values lofoo with particularly
high ratios in high frequencies (larg@. To conclude this analysis, noise seems to favour smadcteity levels
comparing to real images, and this trend is stronger in higbuencies.

Therefore, in our previous thresholding procedure, we psepto add a new thresholding factor taking into

account our statement:

« Fix J and the highest selectivity levél € N.

« Given the noisy imagd, of (Z.1), compute the coefficients

WLEN(B), W' () and Wi, (7).

for 1 €[0,L], n € [0,2L), e Z* andj € [0, ] — 1].
Determine/(b, j) from (5.3).

« Softly threshold the wavelet coefficients according théofeing rules:

Wi (@) = Tl 000] - W 2005, (7.7)

— high i i
Wom () = Tluv-1,00"" - W (), (7.8)
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Fig. 7. (a) Percentage of poini{sin the Lena picture (Fig[9(d)) with valuef(g,j) =lfor0 <l <4and0 < j < J=5.(b) Same measure
but for purely noisy image:. (c) Ratio of noise and Lena images percentages.

with v;; given by
53 L=l

Yi=Ax ", (7.9)

where\ > 1 is a parameter which tunes the thresholding operation onskectivity levels.
« Reconstructf, with VNVZI?;gh,WIOW and Nj"j‘m according to[(616).
Notice that the computation @fp, j) is performed on the noisy coefficients, but it is fully equérg to evaluate
it on the thresholded coefficients. Indeed, Sifig& j) corresponds to the selectivity level for which one orieiotat
maximizes all the ratios of (5.3) for allandn, two situations may arise if wavelet coefficients are thodddd.
First, after this thresholding, all the ratios are zero amel talue of¢ has no effect on the reconstruction since it
simply disappears. Second, at least one coefficient isrdiffeof zero in[(5.8), and since thresholding preserves the

order of ratios above the thresholis unchanged compared to its computation in the non-thidstaituation.

C. Results

We have tested our denoising method on 886 x 256 images with 256 gray levels: the familiaena picture
(Fig.[8(@)) and thecaner aman image (Fig[ I0(a)). In both cases, we have added an artif@daissian noise of
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(d)

Fig. 8. Denoising of the_ena picture. (a) Original image; (b) Noisy image (PSNR 20dB); Fixed selectivity denoising witl. = 5 (32
orientations),J = 3, andu = 2 (PSNR 27.72dB); (d) Multiselective denoising with= 5, J = 2, p = 2, and X = 1.05 (PSNR 28.08dB).

standard deviatiom = 256/10, giving PSNRs of 20dB relatively to the original images. Foe two denoisings,

we have chosen the parametérs=5, J =3 andu = 2.

Lena results : For A = 1.05, the multiselective scheme gives a slightly better PSNRO@#B, Figure$ 8(¢l) and
[0(d)) than that of the fixed selectivity method (27.72dB,ures[8(d) and 9(F)). However, we may remark, for
instance, that more isotropic features, such as Lena’s$ nigtril or the tip of her nose, are better preserved in the

multiselective procedure. The smooth areas, like the Ggkek or the forehead, have less reconstruction artifacts.

Cameraman results : For A = 1.04, the multiselective PSNR (26.46dB, [fig.10(d)) is agairtdrethan that of the
fixed selectivity (26.32dB, Fig.I0({c)). Isotropic featsilke the cameraman’s right eye and right ear, or the camera

fixings, are also better defined. Artifacts decrease in thekbarea of the cameraman’s coat.
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(d)

Fig. 9. Zooms on images of Figuré 8. (a) Zoom on original imdlgeNoisy image; (c) Fixed selectivity denoising with= 5 (32 orientations),
J =3, andu = 2 (PSNR 27.72dB); (d) Multiselective denoising with= 5, J = 2, p = 2, and\ = 1.05 (PSNR 28.08dB).

VIIl. NONLINEAR APPROXIMATIONS

For our second application, we focus now oanlinear approximation®f images. In short, this technique
consists in decomposing an image and rebuilding it only feooertain number of its “highest” coefficients. After
briefly reviewing the general definitions of this method, wi# show how the multiselective scheme obtains better

approximated images than the fixed selective method by gayincoefficients on less directional image features.

A. Definitions

For a frameF = {y. € L*(R?)} where(¢ stands for the parameters of the wavelets, we defineMterm

nonlinear approximation of a functiofic L?(R?) by
N

o= (Wl ) v (8.1)

k=1
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(d)

Fig. 10. Denoising of theaner anan picture. (a) Original image; (b) Noisy image (PSNR 20dB); Kexed selectivity denoising witl, = 5
(32 orientations),J = 3, andp = 2 (PSNR 26.32dB); (d) Multiselective denoising with= 5, J = 3, u = 2, and\ = 1.04 (PSNR 26.46dB).

where F = {4 € L2(R2)} is the dual frame ofF. Parameters, are a reordering of the indic&ssuch that

me, = ”ka”il |<¢Ck| f>| = MCpot1s Vk e N.

The valuem, is called themagnitudeof the coefficient(y| f).

Unlike the case of orthogonal bases|[18] it is not guarahtee frames thatfy is the bestN-term nonlinear
approximation. We will assume however that the e@fN] = || f — fn] is globally decreasing withV.

Our main objective is now to use nonlinear approximationsatmpare the fixed selectivity and the multiselective
methodg However, these two frames do not share the same number oéetenin consequence, we define the
7%-term nonlinear approximation (with € [0, 100]) as the approximation obtained wifi = | 75 M | of the best
terms, with M representing the total number of elements in the frame. Wewoirk also scale by scale in the

7%-term counting in order to highlight the directional effeaif the two procedures.
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Fig. 11. Sunflower field picture, original image

B. Results

To evaluate the fixed selectivity and the multiselectivelmds, we analyse the image of a sunflower field (Eig. 11).
This picture presents directional objects, like the stiakd the leaves of the plants, as well more isotropic features
like the dark center of the flowers. In addition, due to thelamj view of the camera, these elements appear at
various scales, depending on their distance to the obgectiv

Figures[12(3) anfl 12(b) show nonlinear approximationsioédafor 1% of the total number of terms in the
fixed and adaptative methods respectively. In each case,se&é u= 4 (16 orientations) with/ = 5 number of
scales. The corresponding qualities of the approximatiexgressed in PSNR, are equal to 13.84dB and 14.27dB.
We can observe that, without losing the main directionakots, the adaptative method displays most of the dark
centers of the flowers, while they are completely absent énfitked selectivity method. This effect can be tested
at higher percentages. For instance, f6fo-term approximations, the fixed selectivity gives a PSNR @f72dB
(Fig.[I2(c)), while the adaptative one yields a quality of228dB (Fig[12(d)). The explanation to this phenomenon
comes from the number of coefficients needed to render arctofje take an example, if a feature at poihand
scalea; corresponds to a selectivity levé(Z, j) = L — 1, the multiselective scheme saves 2p— 2L-1 = 2£-1

coefficients, compared to a fixed selectivity decompositiblevel L, which are then used to describe other features.

IX. CONCLUSION

We have presented a new (Littlewood-Paley) decompositforea images, based on the concept of angular
multiselectivity. The idea is that the angular selectivifythe wavelet should be adapted to the degree of isotropy
of the analyzed point. Highly directional wavelets are regkébr reproducing correctly sharply oriented features,

but may constitute a hindrance at points around which they@ma roughly isotropic. Thus, as always in wavelet

3Assuming we can “count” the positions because of the digetin occuring for bandlimited functiong € B
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(d)

Fig. 12. 7%-term nonlinear approximations. (a) and (b) 1%-term apipnakon, respectively for fixed selectivity (13.84 dB) andiltiselective
scheme (14.27 dB). (c) and (d) 10%-term approximation,eespely for fixed selectivity (16.72 dB) and multiseleetischeme (18.22 dB)

analysis, the emphasis is on tleeal character of the procedure: The analysis tool must be adapte dynamical
way to the local features of the image, and orientation isréhevant characteristic in the present context.

Finally, as a test of the new concept, we have shown in twoiegtfins, namely image denoising anh-term
nonlinear approximation, that the multiselective schemesgnts a clear improvement compared to a nonadaptive

fixed selectivity method.

REFERENCES

[1] J-P. Antoine, R. Murenzi, and P. Vandergheynst, Twosetisional wavelet analysis in image processing, J. Imag. Syst. Tecl. (1996)
152-165.

[2] J-P. Antoine, R. Murenzi, and P. Vandergheynst, Dimwi wavelets revisited: Cauchy wavelets and symmetryctietein patternsAppl.
Comput. Harmon. Analb (199) 314-345.

[3] A. Karasaridis and E. Simoncelli, A filter design techudgfor steerable pyramid image transforms)ritil Conf. Acoustics Speech and
Signal Processing(Atlanta GA), May 1996.

[4] E. P. Simoncelli, Bayesian denoising of visual imageshe wavelet domain, iBayesian Inference in Wavelet Based Mod€lsMuller
and B. Vidakovic, eds., 291-308, Springer-Verlag, New Ydr@99.

[5] E. Candes and D. Donoho. Curvelets: A surprisingly effecnonadaptive representation for objects with edgesCunve and Surface
Fitting, Nashville, TN, 1999. eds. L. L. Schumaker et al., Vanderbitiversity.



(6]
(7]
(8]

El
[10]
[11]
[12]
[13]

[14]
[15]
[16]
[17]
(18]

24

E. Candes, L. Demanet, D. Donoho and L. Ying. Fast Discf@tirvelet Transforms. SIAM Multiscale Model. Simul., topagr.

L. Demanet, L. Ying. Wave atoms and sparsity of osciliptpatterns. to appear, June 2006

J-P. Antoine, R. Murenzi, P. Vandergheynst, and S.T, Alvo-dimensional Wavelets and Their Relativ€ambridge University Press,
Cambridge (UK), 2004.

M. Holschneider, Wavelet analysis on the circle,Math. Phys31, 39-44, 1990.

|. DaubechiesTen Lectures on WaveletSIAM, Philadelphia, PA, 1992.

B. Torrésani,Analyse continue par ondeletiemterEditions/CNRSEditions, Paris, 1995.

M. Unser, A. Aldroubi, and M. Eden, B-Spline signal pessing: Part I—TheoryEEE Trans. Signal Procesdl (1993) 821-833.

A. Cohen, I. Daubechies, and J. Feauveau, Biorthogbaaes of compactly supported wavelé@ammun. Pure Appl. Math5 (1992)
485-560.

D. L. Donoho, De-noising by soft-thresholdinEEE Trans. Information Theorgl (1995) 613-627.

J. Starck, E. Candes, and D. Donoho, The curvelet toamsfor image denoisinglEEE Trans. Image Procesil (2002) 670-684.

S. Haykin, Communication Systeméth ed, New York, NY: Wiley, 2000.

Laurent JacquesOndelettes, Repéres et Couronne Solattese, Université catholique de Louvain, Louvain-lesMe, Belgique, 2004.
S. Mallat, A Wavelet Tour of Signal Processingcademic Press., 1998.



	INTRODUCTION
	THE FRAMEWORK
	BIORTHOGONAL MULTIRESOLUTION ON THE CIRCLE
	MRA on the line
	Circular MRA

	ANGULAR MULTISELECTIVITY ANALYSIS
	Directional Frames
	Angular Multiselectivity 
	Recursion Formulas
	Choice of the Wavelet

	BEST FRAME SELECTION
	DISCRETIZATION
	IMAGE DENOISING
	Fixed Selectivity Method
	Multiselective Method
	Results

	NONLINEAR APPROXIMATIONS
	Definitions
	Results

	CONCLUSION
	References

