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Multiselective Pyramidal Decompositions of

Images: How to exploit wavelets with adaptive

angular selectivity
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Abstract

Many techniques have been devised these last ten years to addan appropriate directionality concept in decomposi-

tions of images from the (affine) transformations of a small set of atomic functions (e.g. directional wavelets, steerable

filters, curvelets, wave atoms). Generally features which are best represented are straight lines (as those defining

contours of objects), smooth curves (e.g. curvelets processing) or oriented textures (e.g. wave atoms). However,

real images present also a set of details less oriented and more isotropic (like corners, spots, texture components,

. . . ). This paper aims at developing one possible adaptive representation for all these image elements ranging from

highly directional ones to fully isotropic ones. This new tool can indeed be tuned relatively to these image features

by decomposing them into a (linear) frame of directional wavelets with variable angular selectivity. Inside such a

decomposition, wavelets inherit some particularities of the (biorthogonal) circular multiresolution framework. This

simple link qualifies our method of multiselectivity analysis. Two applications of the proposed method are given at

the end of the paper, namely, in the fields of image denoising and N -term nonlinear approximation.
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I. INTRODUCTION

Real world images contain very different features, rangingfrom very oriented ones, like straight edges, to more

isotropic objects, like corners and spots. Between these two extreme behaviors, we find, for instance, curves with

variable curvature radius and texture points. During the last ten years, many techniques have been designed for

obtaining good representations of images with oriented features. We may quote, e.g., the work of Antoine, Murenzi,

and Vandergheynst on directional wavelets,[1], [2] that ofSimoncelliet al. on oriented steerable filters,[3], [4] that

of Candès and Donoho on the curvelet representation,[5], [6] and that of Demanet and Ying on wave atoms.[7]

In this paper, we propose a method based on directional wavelet decomposition for representing the various

objects mentioned above adaptively on each point of the image. In order to achieve this result, we will define

particular directional wavelets based on a circular multiresolution analysis, whose main property is to combine

with each other to form directional frames of different angular selectivity (actually, half-continuous frames, that is,

discretized only in scales and angles). A criterion to select the “Best Directional Frame” is then defined.

Finally, we will present in two applications, namely image denoising andτ%-term nonlinear approximation (a

simple variant of theN -term nonlinear approximation[18]), the advantages of thecomposite multiselective frame

over a non-adaptive fixed selectivity method.

II. THE FRAMEWORK

Let us describe animageby a continuous functionf in R
2, i.e. a light intensityfunction in every point~x ∈ R

2

of the image. Iff ∈ L2(R2) = {g(~x) : ‖g‖ =
∫

R2 |g(~x)|2d2~x < ∞} and given an admissible waveletψ ∈
L1(R2) ∩ L2(R2), the continuous wavelet transform[8] off is

Wf (~b, a, θ) = 〈ψ~b,a,θ| f〉 (2.1)

=
1

a2

∫

R2

ψ∗(a−1r−1
θ (~x −~b)) f(~x) d2~x (2.2)

=
1

(2π)2

∫

R2

ψ̂∗(ar−1
θ
~k) f̂(~k) ei~k·~b d2~k, (2.3)

where∗ is the complex conjugation andψ~b,a,θ is anL1(R2)-normalized copy ofψ, translated by~b ∈ R
2, dilated

by a ∈ R+ and rotated byθ ∈ S1 ≃ [0, 2π). In these equations,rθ is the usual2 × 2 rotation matrix, and

the hat denotes the standard Fourier transform onL2(R2), that is, f̂(~k) =
∫

R2 f(~x) e−i~k~x d2~x, with inverse

f(~x) = (2π)−2
∫

R2 f̂(~k) ei~k~x d2~k. We will forget in the sequel the index ofWf and we will write simplyW .

From now on, we take forψ a directionalwavelet,[2], [8] that is, a wavelet whose frequency supportis essentially

contained in a convex cone with apex at the origin. In addition, we assume thatψ is separable in polar coordinates:

ψ̂(~k) = ρ(k)ϕ(κ), (2.4)

where~k ≡ (k, κ), k = |~k|, κ = arg~k, ρ is a function inL2(R, kdk) andϕ is a positive function inL2(S1, dκ).

Notice that ifϕ has a compact support inS1 with a width strictly inferior toπ, the directional waveletψ is said

conical sincesupp ψ̂ is then exactly contained in a convex cone..
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A directional wavelet is characterized by itsangular selectivity(or Angular Resolving Power[8]), that is, its ability

to distinguish features with close orientations. This quantity is by definition inversely proportional to the aperture

of the support cone of̂ψ : the sharper the cone, the higher the angular selectivity. The frequency representation of

our separable waveletψ is given in Figure 1.

kx

ky

ρ(k)

ϕ
(κ

)

supp ψ̂

Su
pp

ort
Con

e

Fig. 1. Frequency representation ofψ

With (2.4), the wavelet transform (2.3) becomes in polar coordinates

W(~b, a, θ) =

∫

R+×S1

ρ∗(ak) ϕ∗
θ(κ) f̂(k, κ) ei kb cos(κ−β) k dk dκ, (2.5)

with ϕθ(κ) = ϕ(κ− θ), b = |~b| andβ = arg~b. The last equation may be rewritten as

W(~b, a, θ) = 〈ϕθ |R~b,a〉S1
, (2.6)

where〈h| g〉
S1

=
∫

S1
h∗(κ) g(κ) dκ is the scalar product on the circleS1 of the 2π-periodic functionsh and g,

and

R~b,a(κ) =

∫

R+

ρ∗(ak) f̂(k, κ) ei kb cos(κ−β) kdk. (2.7)

In other words, the relation (2.6) means that the wavelet coefficients of the imagef can be interpreted as the

projection ofR~b,a on a kind of scaling functionϕθ localized aroundθ ∈ S1.

It is now very tempting to add a dilation in this scheme. Ifϕ corresponds to the periodization of a function

ν : R → R, we may for instance “dilate”ϕ by dilating ν,[9] that is,

ϕǫ(κ) =
1

ǫ

∑

n∈Z

ν
(κ
ǫ
− n

)
, ǫ ∈ R+. (2.8)
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Let us replace nowϕθ in (2.6) by the family of functionsϕǫ,θ(κ) = ϕǫ(κ− θ), leading to the new coefficients

W(~b, a, ǫ, θ) = 〈ϕǫ,θ|R~b,a〉S1
.

Of course, in this five-dimensional parameter space, the redundancy of the transformation is highly increased,

but, for eachǫ, we have a wavelet

ψ̂ǫ(~k) = ρ(k)ϕǫ(κ), (2.9)

of angular selectivity controlled byǫ. We may expect that isotropic objects in images will be better represented by

coefficientsW(~b, a, ǫ, θ) with largeǫ (small angular selectivity), whereas very directional ones will correspond to a

small ǫ (and high angular selectivity). In the next section, we willshow how a circular multiresolution framework

can clarify these hints.

III. BIORTHOGONAL MULTIRESOLUTION ON THE CIRCLE

We start with the usual biorthogonal multiresolution analysis (MRA) onthe line, that is onL2(R), then, following

Daubechies,[10] we extend the multiresolution framework to the circleC1 ≃ [0, 1) (throughout this paper, we reserve

the notationS1 to the circle identified with the interval[0, 2π)).

A. MRA on the line

As it is well-known, a multiresolution analysis ofL2(R) is an increasing sequence of closed subspaces, interpreted

as approximation spaces,

. . . ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ . . . , (3.1)

with
⋂

l∈Z
Vl = {0} and

⋃
l∈Z

Vl dense inL2(R), and such that

(1) f(x) ∈ Vl ⇔ f(2x) ∈ Vl+1

(2) There exists a functionφ ∈ V0, called ascaling function, with nonvanishing integral, such that the family

{φ(x− k), k ∈ Z} is a Riesz basis ofV0.

It follows that, for eachl ∈ Z, the family of functions{φl,n(t) = 2l/2φ(2lt− n) : n ∈ Z} is a Riesz basis ofVl.

In the orthogonal case, there exists, for each spaceVl (l ∈ Z), a complementary subspaceWl, with scaling and

translation properties similar to those ofVl, such thatVl+1 = Vl ⊕Wl. The central result is thatWl has a Riesz

basis{ξl,n(t) = 2l/2 ξ(2lt− n), n ∈ Z}, and thus{ξl,n(t) = 2l/2 ξ(2lt− n), l, n ∈ Z} is a Riesz basis ofL2(R).

The functionsξl,n are the wavelets.

The inclusionsφ ∈ V0 ⊂ V1 andξ ∈ W0 ⊂ V1 imply the refinement (or scaling) equations

φ(t) =
√

2
∑

n∈Z

h[n]φ(2t− n), (3.2)

ξ(t) =
√

2
∑

n∈Z

g[n]φ(2t− n), (3.3)

for certain sequencesh[n] and g[n] belonging tol2(Z). Denote byh(ω) = 1√
2

∑
n∈Z

h[n]e−inω and g(ω) =

1√
2

∑
n∈Z

g[n]e−inω the corresponding filters.
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We turn now to the biorthogonal case. We take a second multiresolution analysis, with subspaces{Ṽl} and{W̃l},

and generating functions̃φ and ξ̃, respectively, satisfying the biorthogonality relations

Ṽl ⊥Wl and W̃l ⊥ Vl. (3.4)

In other words,̃φ andξ̃ define Riesz bases{φ̃l,n(t) = 2l/2φ̃(2lt−n), n ∈ Z} and{ξ̃l,n(t) = 2l/2ξ̃(2lt−n), n ∈ Z}
of Ṽl andW̃l, respectively, and verify the biorthogonality relations

〈ξl,n′ | φ̃l,n〉 = 0, 〈φl,n| ξ̃l,n′〉 = 0,

〈φl,n′ | φ̃l,n〉 = δn,n′ , 〈ξl′,n′ | ξ̃l,n〉 = δl,l′ δn,n′ ,
(3.5)

for all l, l′, n, n′ ∈ Z. Since the corresponding filters{h̃, g} and{h, g̃} are linked by the relations

g(ω) = e−iω h̃∗(ω + π), g̃(ω) = e−iω h∗(ω + π). (3.6)

the whole biorthogonal multiresolution analysis is determined from the filtersh and h̃.

Given anyf ∈ L2(R) and anyL ∈ Z, the reconstruction formulas read

f =
∑

n∈Z

cL[n] φ̃L,n +

+∞∑

l=L

∑

n∈Z

dl[n] ξ̃l,n (3.7)

=
∑

l∈Z

∑

n∈Z

dl[n] ξ̃l,n, (3.8)

with cl[n] = 〈φl,n| f〉 anddl[n] = 〈ξl,n| f〉 for l, n ∈ Z.

Finally, the refinement equations entail that the coefficients cl anddl satisfy recursion formulas which allow their

fast computation, namely,

cl[n] = I h ∗ cl+1 [2n],

dl[n] = I g ∗ cl+1 [2n], (3.9)

cl+1[n] = h̃ ∗ Ucl [n] + g̃ ∗ Udl [n],

where, for any sequenceq ∈ l2(Z), I q[n] = q[−n] and

Uq[n] =





q[n/2] if n is even,

0 if n is odd,
(3.10)

that is, the operationq 7→ Uq represents oversampling by a factor of 2. We use also the standard convolution∗ of

two sequences defined by

u ∗ v[n] =
∑

m∈Z

u[n−m] v[m]. (3.11)

B. Circular MRA

Consider a multiresolution analysis ofL2(R), such as described in the previous section, with generatingfunctions1

φR(t) andξR(t) well localized in space, in the sense that∃ ǫ > 0 such that|φR(t)|, |ξR(t)| 6 C(1 + |t|)−1−ǫ. The

1In the sequel , we will add the label(·)R to every functions related to a MRA onL2(R).
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periodized version ofφR

l,n is

φl,n(t) =
∑

m∈Z

φR

l,n(t+m) (3.12)

and similarly forξR

l,n, and also for the dual functions̃φR and ξ̃R, leading toξl,n, φ̃l,n and ξ̃l,n.

Hence, from the subspacesV R

l ,W
R

l ∈ L2(R), generated by{φR

l,n, n ∈ Z} and {ξR

l,n, n ∈ Z}, respectively, we

deduce the subspacesVl,Wl ∈ L2(C1), generated by{φl,n, n ∈ Z} and {ξl,n, n ∈ Z}, respectively. In the same

way, the dual subspaces̃Vl, W̃l induce the periodic subspaces̃Vl, W̃l. It is easy to see that these new spaces are

finite dimensional, since

φl,n = φl,n+2lr, ξl,n = ξl,n+2lr, (3.13)

for all l > 0, n ∈ Z andr ∈ Z. Therefore, dimVl = dim Wl = 2l and the dual spaces have the same dimension.

In addition, from the periodicity of the circle, the scale parameterl is restricted to positive values. Indeed, if
∑

m∈Z
h[2m] =

∑
m∈Z

h[2m+1] = 1√
2
, thenφR realizes a partition of the line,[10] that is,

∑
m∈Z

φR(t−m) = 1

for all t ∈ R. Under the same assumption, we have also
∑

m∈Z
ξR(t− m

2 ) = 0.

Therefore,φ0,n = 1 and ξ−1,n = 0 for all n ∈ Z. The spacesV0 andW−1 are thus respectively the set of

the constant functions on[0, 1) and the null function set{0}. In consequence, from now on, we will restrictl to

positive integers.

Notice that the orthogonality (3.5) betweenVl and W̃l (resp. betweeñVl andWl) is inherited from the one

betweenVl andW̃l (resp. betweeñVl andWl),[10] that is,

〈ξl,n| φ̃l,n′〉
C1

= 0, etc., l, l′ ∈ N, 0 6 n < 2l, 0 6 n′ < 2l′ . (3.14)

In conclusion, since the dilations are performed before theperiodization of the nonperiodic functions,φ, ξ, φ̃

and ξ̃ generate a biorthogonal multiresolution analysis with subspacesVl ⊂ Vl+1, Wl ⊂ Wl+1, Ṽl ⊂ Ṽl+1 and

W̃l ⊂ W̃l+1 .

Notice that, forl ∈ N
∗, the scaling rules (3.2) and (3.3) become

φl−1,0(t) =
√

2

2l−1∑

n=0

hl[n]φl,n(t), (3.15)

ξl−1,0(t) =
√

2

2l−1∑

n=0

gl[n]φl,n(t), (3.16)

whereql[n] =
∑

m∈Z
q[n+2lm] is the2l-periodization of the sequenceq[n]. The dual periodic refinement equations

are obtained in the same way.

The reconstruction formula (3.7) now becomes

f = c0[0] +
∑

l∈N

2l−1∑

n=0

dl[n] ξ̃l,n, (3.17)

with cl[n] = 〈φl,n| f〉C1
anddl[n] = 〈ξl,n| f〉C1

. Remark thatc0[0] = 〈f〉
C1

=
∫

C1
f , sinceφ0,0 = 1.
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Finally, the recursion rules (3.9) become

cl−1[n] = I hl ⋆ cl [2n],

dl−1[n] = I gl ⋆ cl [2n], (3.18)

cl+1[n] = h̃l+1 ⋆ Ucl [n] + g̃l+1 ⋆ Udl [n],

where⋆ denotes the circular convolution defined as,

u ⋆ v[n] =

P−1∑

m=0

u[n−m mod P ] v[m], (3.19)

for two sequencesu andv of lengthP .

IV. ANGULAR MULTISELECTIVITY ANALYSIS

The circular multiresolution framework developed in the previous section can be used to define new 2-D wavelets

with multiple, but controlled, angular selectivities.[17] As we see below, their main properties are

• they combine with each other in a pyramidal scheme to form less selective directional wavelets until one

obtains a totally isotropic one;

• they define for eachselectivity levela linear directional frame.

A. Directional Frames

We begin by recalling the definition of a linear directional frame. According to the theory of dyadic (or half-

continuous) frames,[8], [11] the continuous wavelet transform given in (2.1) can be discretized in its parametersa

andθ, while preserving a perfect reconstruction formula.

Indeed, letψ ∈ L1(R2) ∩ L2(R2) be a polar separable wavelet of the form (2.4). Given a dyadicsampling of

the scalesaj = a02
−j (j ∈ Z, a0 ∈ R+) and a regular sampling of the anglesθn = 2π

K n (0 6 n < K, K ∈ N
∗),

assume that theframe propertyis satisfied, that is, there are two positive constantsm,M such that

m 6
∑

j∈Z

K−1∑

n=0

|ρ(ajk)|2 |ϕ(κ− θn)|2 6 M. (4.1)

Then, there exists a (nonunique) dual waveletψ̃ which yields the following reconstruction formula for anyf ∈
L2(R2) :

f(~x) =
∑

j∈Z

K−1∑

n=0

Wj,n ∗ ψ̃aj ,θn
(~x), a.e. onR

2, (4.2)

where∗ stands here for the standard convolution between two functions ofL2(R2).

A particular case (‘linear frame’) arises when

∑

j∈Z

K−1∑

n=0

ρ(ajk)ϕ(κ− θn) = A, A ∈ R
∗
+ . (4.3)
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Then,ψ̃ is simply a Dirac distributionδ(2)(~x) and the reconstruction formula (4.2) reduces to a Littlewood-Paley

decomposition

f(~x) =
1

A

∑

j∈Z

K−1∑

n=0

Wj,n(~x). (4.4)

B. Angular Multiselectivity

As we have seen in Section II, when the waveletψ has the form (2.4), then the resulting 2-D continuous wavelet

transformW(~b, a, θ) of an imagef ∈ L2(R2) is given by the scalar product

W(~b, a, θ) = 〈ϕθ |R~b,a〉S1
. (4.5)

Given a biorthogonal multiresolution analysis of the circle with a scaling functionφ and a waveletξ, we apply

the discretization of Section IV-A and projectR~b,j := R~b,aj
onto the functionsϕl,n(κ) = φl,n

(
κ
2π

)
andηl,n(κ) =

ξl,n
(

κ
2π

)
. This gives rise to the new coefficients

W a
j,l,n(~b) = 〈ϕl,n|R~b,j〉S1

, (4.6)

W d
j,l,n(~b) = 〈ηl,n|R~b,j〉S1

, (4.7)

W i
j (~b) = 〈ϕ0,0|R~b,j〉S1

= 〈 1 |R~b,j〉S1
, (4.8)

for l ∈ N andn ∈ [0, 2l). These amount respectively to the projection of the imagef on translated and dilated

copies of the functionsψ a
l,n, ψ d

l,n andψ i defined in frequency space by

ψ̂ a
l,n(~k) = ρ(k)ϕl,n(κ), (4.9)

ψ̂ d
l,n(~k) = ρ(k) ηl,n(κ), (4.10)

ψ̂ i(~k) = ψ̂ a
0,0(

~k) = ρ(k), (4.11)

where the exponenta stands for angularapproximation, d for angulardetails, and i for isotropic.

The full parametrization of theL1(R2)-normalized wavelets reads

ψa
~b,j,l,n

(~x) = a−2
j ψa

l,n

(~x−~b
aj

)
, (4.12)

and similarly forψd
~b,j,l,n

(~x) andψi
~b,j

.

Besides the scale and translation parametersaj and~b, the rotation of the 2-D wavelets is obviously given by

the parametern ∈ [0, 2l) which precisely translates a function onS1 by an anglen 2π
2l . Since the aperture of the

cones containing these wavelets in frequency space is proportional to 2−l, the angular selectivity ofψ a
l,n andψ d

l,n

is proportional to2l (see Section II). Keeping that in mind, we will call the parameter l the (angular) selectivity

level.

We have thus generated a new family of wavelets,{ψ a
l,n, ψ

d
l,n, ψ

i} ranging from very directional ones to a totally

isotropic one, depending on the value ofl.
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Let us end this section by noticing that, for each selectivity level l ∈ N, the family{ψ a
j,l,n} may easily generate

a linear frame.

Proposition 1: Let aj = a02
−j be a dyadic scale discretization. If

∑
j∈Z

ρ(ajk) = 1 a.e. fork ∈ R+, then, for

any l ∈ N, the family{ψa
j,l,n : j ∈ Z, 0 6 n < 2l } is a linear frame ofL2(R2), i.e., it obeys (4.3) withA = 2l/2.

This is a simple consequence of the fact thatφR realizes a partition of the line, i.e.
∑

m∈Z
φR(t+m) = 1 for all

t ∈ R. Indeed, withu = κ
2π ,

∑

j∈Z

2l−1∑

n=0

ψ̂a
j,l,n(~k) =

∑

j∈Z

2l−1∑

n=0

ρ(ajk)ϕl,0(κ− n 2π
2l ) =

2l−1∑

n=0

φl,0(u− n
2l ) (4.13)

= 2
l
2

∑

m∈Z

2l−1∑

n=0

φR(2lu+ 2lm− n) (4.14)

= 2
l
2 , (4.15)

and (4.3) is satisfied.

C. Recursion Formulas

For anyl ∈ N
∗, ϕ andη verify simple extensions of the scaling rules (3.15) and (3.16) :

ϕl−1,0(κ) =

2l−1∑

n=0

hl[n]ϕl,n(κ), (4.16)

ηl−1,0(κ) =
2l−1∑

n=0

gl[n]ϕl,n(κ). (4.17)

We have also, forl ∈ N,

ϕl+1,n(κ) =

2l−1∑

n′=0

h̃l+1[n− 2n′]ϕl,n(κ) +

2l−1∑

n′=0

g̃l+1[n− 2n′] ηl,n(κ) (4.18)

If we project (4.16), (4.17) and (4.18) ontoR~b,j , we obtain the following relations for the decomposition:

W a
j,l−1,n(~b) =

2l−1∑

n′=0

h∗l [n
′ − 2n]W a

j,l,n′(~b) =
(
h̄l ⋆W a

j,l,·(
~b)

)
2n
, (4.19)

W d
j,l−1,n(~b) =

2l−1∑

n′=0

g∗l [n′ − 2n]W a
j,l,n′(~b) =

(
ḡl ⋆W a

j,l,·(
~b)

)
2n
, (4.20)

where we writeū = I u∗ for any sequenceu.

As for the reconstruction, we get

W a
j,l+1,n(~b) =

2l−1∑

n′=0

h̃∗l+1[n− 2n′]W a
j,l,n′(~b) +

2l−1∑

n′=0

g̃∗l+1[n− 2n′]W d
j,l,n′(~b)

=
(
h̃∗l+1 ⋆ UW a

j,l,·(
~b)

)
n

+
(
g̃∗l+1 ⋆ UW d

j,l,·(
~b)

)
n
. (4.21)

Note that the oversampling operationU as well as the circular convolution⋆ are performed on the angular parameter

of the wavelet coefficients, as in (3.10) and (3.18). The notation ( · )n means simply that we select thenth
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angular element of this convolution. These relations are summarized in Figs. 2 and 3 where the operatorD is

the downsampling operator which turns a sequenceu of length2P into a sequence(Du)[n] = u[2n] of lengthP .

D

D D

D

Wd
j,l−1,n(

~b)

W i
j(
~b)

Wd
j,0,0(

~b)

ḡl

h̄1

ḡ1

Wa
j,l,n(

~b) Wa
j,l−1,n(

~b)h̄l

Fig. 2. Decomposition of the wavelet coefficients accordingto their angular selectivity

U

U U

UWa
j,−1,n(

~b)

Wd
j,−1,n(

~b)

Wa
j,l,n(

~b)W i
j(
~b) h̃∗

lh̃∗
1

g̃∗
1 g̃∗

l

Wd
j,0,0(

~b)

Fig. 3. Reconstruction of the wavelet coefficients according to their angular selectivity

Notice that (4.19), (4.20) and (4.21) are the exact counterpart of the usual recursion relations for wavelet

coefficients.[10] They rely on the fact that, according to (4.16), (4.17), several wavelets of levell merge into

a single wavelet at levell − 1, i.e., with half the angular selectivity.

D. Choice of the Wavelet

We must now choose a wavelet for our multiselectivity analysis. We select forφR and ξR the B-splinescaling

function and wavelet, respectively.[12] In particular, weuse the results of Cohen-Daubechies-Feauveau[13] (CDF)

on the compactly supported, spline biorthogonal wavelet bases with several vanishing moments. We propose to use

the filtersh and h̃, with 3 and 7 vanishing moments, respectively (see Table I).This ensures that the resultingψ a
l,n

(given below) is a conical wavelet with quadratic regularity on the edges of its conical frequency support.

Given an initial selectivity levelL ∈ N, we defineψ a
L,n andψ d

L,n in frequency as

ψ̂ a
L,n(~k) = φR(log2 k)ϕL,n(κ), (4.22)

ψ̂ d
L,n(~k) = φR(log2 k) ηL,n(κ), (4.23)

with n ∈ [0, 2L), ϕL,n(κ) = φL,n( κ
2π ), ηL,n(κ) = ξL,n( κ

2π ), andφ and ξ the periodization ofφR and ξR. This

yieldsK = 2L differently oriented wavelets.

Remark that, choosingρ(k) = φR(log2 k), as in (4.22), implies that
∑

j∈Z
ρ(ajk) =

∑
j∈Z

φR(log2 a0k − j) = 1,

since
∑

m∈Z
φR(t −m) = 1. From Proposition 1, the wavelets{ψa

j,l,n} constructed from (4.22) thus constitute a

linear frame for eachl ∈ N.
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n h[n] eh[n]

0, 1 0.53033008588991 0.95164212189718

−1, 2 0.17677669529664 −0.02649924094535

−2, 3 −0.30115912592284

−3, 4 0.03133297870736

−4, 5 0.07466398507402

−5, 6 −0.01683176542131

−6, 7 −0.00906325830378

−7, 8 0.00302108610126

TABLE I

CDF DIRECT AND DUAL FILTERS OF3 AND 7 VANISHING MOMENTS.

kx

ky

kx

ky

kx

ky

kx

ky

kx

ky

kx

ky

L = 0 L = 2 L = 3

Fig. 4. Waveletsψ̂ a

L,n
(~k) (top row) andψ̂d

L,n
(~k) (bottom) for several value ofL and forn = 0.

The resulting functionψ̂ a,d
L,n are presented in the frequency domain on Figure 4 for severalvalue of L and

for n = 0. Notice that the aperture of the supporting cones is actually decreasing with the increasing ofL. As

explained before, the aperture2αL of the cone supportinĝψ a
L,n andψ̂d

L,n is proportional to2−L, which means that

the angular selectivity of these wavelets growths withL. This behaviour is illustrated more clearly in Figure 5 for

the CDF−(3, 7) framework. SincesuppφR = [−3/2, 3/2], αL is not defined for0 6 L < 2 (i.e. suppϕ = S1),

andαL = 3π 2−L for L > 2, so that the waveletsψ a
L,n are conical[8] (i.e.αL < π/2) for L > 3.
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kx

ky

3π/4

kx

ky

3π/8

Fig. 5. ψ̂ a
2,0(~k) with α2 = 3π/4 (left). ψ̂ a

3,0(~k) with α3 = 3π/8; this is a conical wavelet (right).

V. BEST FRAME SELECTION

Starting from a selectivity levelL ∈ N, we have seen in Section IV-D that we can generate inductively L + 1

frames withψ a
l,n (l ∈ [0, L]), characterized by an angular selectivity2l.

In particular, for each levell ∈ [0, L], Proposition 1 shows that the waveletsψ a
j,l,n generate a frame of constant

A = 2l/2 which, according to (4.4), may be used to reconstruct the original image. In addition, as expressed in the

following proposition, we can mix the different frames inside the same reconstruction formula.

Proposition 2: If ρ respect the same condition than in Prop.1, for all functionl̃ : (~x, j) ∈ R
2×Z 7→ l̃(~x, j) ∈ N,

a functionf ∈ L2(R2) can be decomposed by

f(~x) =
∑

j∈Z

2l̃−1∑

n=0

2−
l̃
2 W a

j,l̃,n
(~x). (5.1)

This is a simple consequence of
∑

j∈Z
W i

j (~x) = f and

2l−1∑

n=0

2−
l
2 W a

j,l,n(~x) =
2l′−1∑

n=0

2−
l′

2 W a
j,l′,n(~x) = W i

j (~x), (5.2)

for any l, l′ ∈ N.

The precious property unveiled by this last proposition provides us a new degree of freedom to adaptively describe

images. Indeed, at each point~b ∈ R
2 and each scalej ∈ Z, we may search the “best frame”, that is, the selectivity

level l(~b, j) characterizing best the content off .

Therefore, we decide simply to choose the frame which offersthe best match between the image and the wavelets,

that is,

ℓ(~b, j) = arg max
l∈[0,L]

max
n∈[0,2l)

|〈ψ a
~b,j,l,n

| f〉|
‖ψ a

~b,j,l,n
‖ . (5.3)

The reconstruction procedure will be then defined by

f(~x) =
∑

j∈Z

2ℓ−1∑

n=0

2−ℓ/2 W a
j,ℓ,n(~x), ℓ = ℓ(~x, j), (5.4)

since, for fixedj, the inner sum onn equalsW i
j (~x), exactly as in (4.4).
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(a)

0

1

2

3

4

5

(b)

Fig. 6. Value ofℓ(~x, 4) on a toy example forL = 5.

On Figure 6(b), the computation ofℓ is presented forj = J − 1 = 4 (see next section for details on the scale

discretization) andL = 5 on a toy image containing a set of simple geometric objects (Fig. 6(a)). Values ofℓ are

displayed only in areas where|W i
4(~x)| >

1
10 |max~x W

i
4 (~x)|.

As we can see,ℓ follows closely and locally the directional aspect of the analysed objects. Indeed, the selectivity

level ℓ is increasing with the curvature radius of the three disks ontheir edges. The three singularities (spots) on

the bottom are however linked with the 0 level, i.e. the isotropic level. The last object, the straight line, produces

the maximum level as expected.

VI. DISCRETIZATION

In practice, images are discretized on a regular grid of pixels, i.e., an imagef is defined on samplesfd[~p] = f(~p),

where~p = (p, q) ∈ Z
2. By the Shannon theorem, the Fourier transform offd is the2π-periodization off̂ , both in

kx andky directions. In other words,f is completely determined from the values offd if f is band-limited, that

is, if f ∈ Bπ = {g ∈ L2(R2) : ĝ(~k) = 0 if ~k /∈ Bπ} with Bπ = [−π, π) × [−π, π). In this particular context, the

linear frame condition (4.3) must hold only at points~k ∈ Bπ.

However, sinceaj = a02
−j, ρ(ajk) is moving to high frequencies whenj increases, and there is a maximal

value J > 0 for j. Hence, in our choice of wavelet, since the quadratic splineφ is centered on the origin and

has a support equal to[− 3
2 ,

3
2 ], ρ(k) = φ(log2 k) will be centered onk = 1 with supp ρ = [2−3/2, 23/2]. So,

with a0 = π−1 2J+1/2, ρj(k) = ρ(ajk) is centered forj = J − 1 on π
2 inside the support[π

8 , π], ensuring that

ψ a
~b,j,l,n

∈ Bπ for j < J . Let us now gather together wavelets withj > J in Bπ by defining

ψ̂ high
l,n (~k) = χBπ

(~k)ϕl,n(κ)

∞∑

j=J

φ(log2 ajk) (6.1)

= χBπ
(~k)ϕl,n(κ)

∞∑

j=J

φ(j + log2 a0k), (6.2)
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where high stands forhigh frequency components andχBπ
(~k) is the characteristic function ofBπ equals 1 if

~k ∈ Bπ and 0 elsewhere.

Since the discretized image is also limited in space, say of size N×N pixels, we define also the isotropiclow

frequency function to gather wavelets which are larger thanthe original imagef , that is

ψ̂ low(~k) =

−1∑

j=−∞

φ(log2 ajk). (6.3)

This two-dimensionalscaling functionis in fact fully determined byJ : ψ̂low is contained inside a disk of

radiusπ 2−J . By inspection ofψlow andψj,l,n in the spatial domain, one sees that imposing roughlyJ smaller

than log2N/8 garantees that these functions are essentially smaller than the image and sufficiently discretized in

frequency.

Finally, for anyL ∈ N, the family

{ψ high
~p,L,n, 2L/2ψ low

~p , ψ a
~p,j,L,n : ~p ∈ Z

2, j ∈ [0, J − 1], n ∈ [0, 2L)} (6.4)

is a linear frame of constantA = 2L/2 in Bπ.

With W low = (ψlow ∗ f) andWhigh
l,n = (ψhigh

l,n ∗ f), the reconstruction formula reads

f(~p) = W low(~p) +

J−1∑

j=0

2L−1∑

n=0

2−L/2 W a
j,L,n(~p) +

2L−1∑

n=0

2−L/2 W high
L,n (~p). (6.5)

In a multiselective context, this becomes

f(~p) = W low(~p) +

J−1∑

j=0

2ℓ−1∑

n=0

2−
ℓ
2 W a

j,ℓ,n(~p) +

2ℓ−1∑

n=0

2−ℓ/2 W high
ℓ,n (~p), (6.6)

with ℓ = ℓ(~p, j) defined in (5.3).

VII. IMAGE DENOISING

As a first application, we propose in this section to observe how the multiselective scheme is able to clean noisy

images. We do not pretend to obtain the best denoising algorithm. Our aim is rather to compare, in a linear frame

or Littlewood-Paley decomposition context, a fixed selectivity denoising, using directional wavelet with the same

selectivity level, with an adaptive multiselective denoising.

We will start by describing the whole process for the fixed selectivity method using a soft-thresholding of wavelet

coefficients[14] before the image reconstruction.

This procedure will be then extended to the composite frame associated with the multiselective scheme.

A. Fixed Selectivity Method

Let f ∈ Bπ be an image corrupted by a Gaussian white noise of vanishing mean and varianceσ2, that is,

fσ(~x) = f(~x) + σn(~x), (7.1)

wherefσ is the noisy image andn ∼
i.i.d.

N(0, 1).
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We want to estimatef from fσ. In our method, we will always comparef and itsestimatorfe with the Peak

Signal to Noise Ratio(PSNR) determined by PSNR= 20 log10 256/σe, assuming the quantification off has 256

gray levels.σ2
e is the estimated noise variance, that is,E[(f−fe)2] 2. The higher the PSNR, the better our estimator

fe.

A common procedure to determinefe (see, for instance, Refs. [15], [4], [14]) is to decompose the image in

a basis of functions, to threshold the computed coefficientsat some specific levels, and finally to reconstruct an

estimated image from the latter. Since the pure imagef is rather concentred in a limited number of coefficients,

and the noise spread uniformly on all coefficients, this thresholding has for effect to separate the noise artifacts

from the real signal features in each “band” of the transformation.

We propose here to apply this framework with the following algorithm:

• Fix J and the selectivity levelL ∈ N.

• Given the noisy imagefσ (7.1), compute the coefficients

W high
L,n (~p),W low(~p) and W a

j,L,n(~p)

for n ∈ [0, 2L), ~p ∈ Z
2 andj ∈ [0, J − 1].

• Softly threshold the wavelet coefficients according the following rules:

W̃ a
j,L,n(~p) = T [µσj,L,n] · W a

j,L,n(~p), (7.2)

W̃ high
L,n (~p) = T [µσhigh

L,n ] · W high
L,n (~p), (7.3)

whereT [t] is thesoft thresholdingoperator of thresholdt > 0 defined by

T [t] · u =





(|u| − t) signu , if |u| > t,

0 , otherwise.
(7.4)

• Reconstructfe with W̃ high
L,n ,W low andW̃ a

j,L,n according to (6.5).

The particular parametersσhigh
L,n and σj,L,n appearing above stand for the standard deviations of, respectively,

the high-frequency coefficients and the wavelet coefficients when the input image consists only of the noise, i.e.,

f = σn. Since the noise has no preferred direction, it is clear thatσj,L,n does not depend on the angular indexn.

In fact, since wavelet coefficients are simple linear transformation off , as a consequence of the Wiener-Khintchine

theorem (see, for instance, Ref. [16]), wavelet coefficients of σn have also a zero-mean Gaussian distribution with

σj,L,n = σ‖ψ a
j,L,n‖ = a−1

j σ ‖ψ a
L,0‖, (7.5)

σhigh
L,n = σ‖ψ high

L,n ‖. (7.6)

In other words, thresholding wavelet coefficients which arebelow (a multiple of) these values amounts to keep

values with high probabilities to be due tof and not to noise. In the sequel,σhigh
L,n , which is not independent ofn

from the restriction ofψ̂ high
L,n to Bπ (6.1), has been approximated byσhigh

L,n ≃ a−1
J σ ‖ψ a

L,0‖ = 2 σJ−1,L,0.

2We assume thatE[(f − fe)] = 0, that is,E[fe] correctly estimates the expectation value off with no bias.
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The last parameterµ, controlling the thresholding strength relatively to these standard deviations, has been

empirically set to2 to obtain interesting PSNR betweenf andfe.

B. Multiselective Method

For the multiselective method, the thresholding process has to take into account the selectivity level.

It is easy to prove that, for our choice of wavelet (see Section IV-D), σj,l,n is constant as soon as the support

of ϕl,n(κ) is strictly included to[0, 2π). This is a simple consequence of theL2 normalization ofφR generatingϕ

by periodization.

However, even if this behavior is independent of the scalej, we may conjecture that the pure image is less

and less directional whenj decreases. We follow in fact the work of E. Candès and D. Donoho[5], [6] on the

multiscale geometric study ofC2-edges in images. At small scales, these are well described by very elongated

atoms, while at large scales, more isotropic functions are more adapted. In addition, in comparison to the noise, at

a fixed0 6 j < J , points~b with high ℓ(~b, j) must be more numerous since many substructures inside real images

define curved and straight edges.

This is confirmed by the results of Figure 7. The percentage ofpoints~b with valueℓ(~b, j) = l for 0 6 l 6 4 and

0 6 j < J = 5 has been determined for two images : theLena picture (Fig. 8(a)) and a purely noisy image, i.e.

our previousn(~x). The observation of Figures 7(a) and 7(b) shows us that theLena picture has globally a higher

percentage of points with high selectivity level for anyj than the noise image. In addition, for smallj, both images

display percentages more spreaded on smallerl.

The noise image has also many more points associated tol = 0 for all j. The ratio of the percentages of the

noise image and of theLena picture (Fig. 7(c)) confirms this effect for small values ofl too with particularly

high ratios in high frequencies (largej). To conclude this analysis, noise seems to favour small selectivity levels

comparing to real images, and this trend is stronger in high frequencies.

Therefore, in our previous thresholding procedure, we propose to add a new thresholding factor taking into

account our statement:

• Fix J and the highest selectivity levelL ∈ N.

• Given the noisy imagefσ of (7.1), compute the coefficients

W high
l,n (~p),W low(~p) and W a

j,l,n(~p),

for l ∈ [0, L], n ∈ [0, 2L), ~p ∈ Z
2 andj ∈ [0, J − 1].

• Determineℓ(~b, j) from (5.3).

• Softly threshold the wavelet coefficients according the following rules:

W̃ a
j,ℓ,n(~p) = T [µ γj,ℓ σj,l,n] · W a

j,ℓ,n(~p), (7.7)

W̃ high

ℓ,n (~p) = T [µ γ−1,ℓ σ
high
l,n ] · W high

ℓ,n (~p), (7.8)
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Fig. 7. (a) Percentage of points~b in theLena picture (Fig. 9(a)) with valueℓ(~b, j) = l for 0 6 l 6 4 and0 6 j < J = 5. (b) Same measure

but for purely noisy imagen. (c) Ratio of noise and Lena images percentages.

with γj,l given by

γj,l = λ
2j L−l

L , (7.9)

whereλ > 1 is a parameter which tunes the thresholding operation on lowselectivity levels.

• Reconstructfe with W̃ high
ℓ,n ,W low andW̃ a

j,ℓ,n according to (6.6).

Notice that the computation ofℓ(~p, j) is performed on the noisy coefficients, but it is fully equivalent to evaluate

it on the thresholded coefficients. Indeed, Sinceℓ(~p, j) corresponds to the selectivity level for which one orientation

maximizes all the ratios of (5.3) for alll andn, two situations may arise if wavelet coefficients are thresholded.

First, after this thresholding, all the ratios are zero and the value ofℓ has no effect on the reconstruction since it

simply disappears. Second, at least one coefficient is different of zero in (5.3), and since thresholding preserves the

order of ratios above the threshold,ℓ is unchanged compared to its computation in the non-thresholded situation.

C. Results

We have tested our denoising method on two256× 256 images with 256 gray levels: the familiarLena picture

(Fig. 8(a)) and thecameraman image (Fig. 10(a)). In both cases, we have added an artificialGaussian noise of
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(a) (b) (c)

(d)

Fig. 8. Denoising of theLena picture. (a) Original image; (b) Noisy image (PSNR 20dB); (c) Fixed selectivity denoising withL = 5 (32

orientations),J = 3, andµ = 2 (PSNR 27.72dB); (d) Multiselective denoising withL = 5, J = 2, µ = 2, andλ = 1.05 (PSNR 28.08dB).

standard deviationσ = 256/10, giving PSNRs of 20dB relatively to the original images. Forthe two denoisings,

we have chosen the parametersL = 5, J = 3 andµ = 2.

Lena results : For λ = 1.05, the multiselective scheme gives a slightly better PSNR (28.08dB, Figures 8(d) and

9(d)) than that of the fixed selectivity method (27.72dB, Figures 8(c) and 9(c)). However, we may remark, for

instance, that more isotropic features, such as Lena’s right nostril or the tip of her nose, are better preserved in the

multiselective procedure. The smooth areas, like the rightcheek or the forehead, have less reconstruction artifacts.

Cameraman results : For λ = 1.04, the multiselective PSNR (26.46dB, Fig.10(d)) is again better than that of the

fixed selectivity (26.32dB, Fig.10(c)). Isotropic features like the cameraman’s right eye and right ear, or the camera

fixings, are also better defined. Artifacts decrease in the black area of the cameraman’s coat.
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(a) (b) (c)

(d)

Fig. 9. Zooms on images of Figure 8. (a) Zoom on original image; (b) Noisy image; (c) Fixed selectivity denoising withL = 5 (32 orientations),

J = 3, andµ = 2 (PSNR 27.72dB); (d) Multiselective denoising withL = 5, J = 2, µ = 2, andλ = 1.05 (PSNR 28.08dB).

VIII. NONLINEAR APPROXIMATIONS

For our second application, we focus now onnonlinear approximationsof images. In short, this technique

consists in decomposing an image and rebuilding it only froma certain number of its “highest” coefficients. After

briefly reviewing the general definitions of this method, we will show how the multiselective scheme obtains better

approximated images than the fixed selective method by saving up coefficients on less directional image features.

A. Definitions

For a frameF = {ψζ ∈ L2(R2)} whereζ stands for the parameters of the wavelets, we define theN -term

nonlinear approximation of a functionf ∈ L2(R2) by

fN =

N∑

k=1

〈ψζk
| f〉 ψ̃ζk

, (8.1)
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(a) (b) (c)

(d)

Fig. 10. Denoising of thecameraman picture. (a) Original image; (b) Noisy image (PSNR 20dB); (c) Fixed selectivity denoising withL = 5

(32 orientations),J = 3, andµ = 2 (PSNR 26.32dB); (d) Multiselective denoising withL = 5, J = 3, µ = 2, andλ = 1.04 (PSNR 26.46dB).

whereF̃ = {ψ̃ζ ∈ L2(R2)} is the dual frame ofF . Parametersζk are a reordering of the indicesζ such that

mζk
:= ‖ψζk

‖−1 |〈ψζk
| f〉| > mζk+1

, ∀k ∈ N.

The valuemζ is called themagnitudeof the coefficient〈ψζ | f〉.
Unlike the case of orthogonal bases,[18] it is not guaranteed for frames thatfN is the bestN -term nonlinear

approximation. We will assume however that the errorΘf [N ] = ‖f − fN‖ is globally decreasing withN .

Our main objective is now to use nonlinear approximations tocompare the fixed selectivity and the multiselective

methods.3 However, these two frames do not share the same number of elements. In consequence, we define the

τ%-term nonlinear approximation (withτ ∈ [0, 100]) as the approximation obtained withN = ⌊ τ
100M⌋ of the best

terms, withM representing the total number of elements in the frame. We will work also scale by scale in the

τ%-term counting in order to highlight the directional effects of the two procedures.
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Fig. 11. Sunflower field picture, original image

B. Results

To evaluate the fixed selectivity and the multiselective methods, we analyse the image of a sunflower field (Fig. 11).

This picture presents directional objects, like the sticksand the leaves of the plants, as well more isotropic features

like the dark center of the flowers. In addition, due to the angle of view of the camera, these elements appear at

various scales, depending on their distance to the objective.

Figures 12(a) and 12(b) show nonlinear approximations obtained for 1% of the total number of terms in the

fixed and adaptative methods respectively. In each case, we useL = 4 (16 orientations) withJ = 5 number of

scales. The corresponding qualities of the approximations, expressed in PSNR, are equal to 13.84dB and 14.27dB.

We can observe that, without losing the main directional objects, the adaptative method displays most of the dark

centers of the flowers, while they are completely absent in the fixed selectivity method. This effect can be tested

at higher percentages. For instance, for10%-term approximations, the fixed selectivity gives a PSNR of 16.72 dB

(Fig. 12(c)), while the adaptative one yields a quality of 18.22 dB (Fig. 12(d)). The explanation to this phenomenon

comes from the number of coefficients needed to render an object. To take an example, if a feature at point~x and

scaleaj corresponds to a selectivity levelℓ(~x, j) = L− 1, the multiselective scheme saves up2L − 2L−1 = 2L−1

coefficients, compared to a fixed selectivity decompositionof levelL, which are then used to describe other features.

IX. CONCLUSION

We have presented a new (Littlewood-Paley) decomposition of real images, based on the concept of angular

multiselectivity. The idea is that the angular selectivityof the wavelet should be adapted to the degree of isotropy

of the analyzed point. Highly directional wavelets are needed for reproducing correctly sharply oriented features,

but may constitute a hindrance at points around which the image is roughly isotropic. Thus, as always in wavelet

3Assuming we can “count” the positions because of the discretization occuring for bandlimited functionsf ∈ Bπ
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(a) (b) (c)

(d)

Fig. 12. τ%-term nonlinear approximations. (a) and (b) 1%-term approximation, respectively for fixed selectivity (13.84 dB) and multiselective

scheme (14.27 dB). (c) and (d) 10%-term approximation, respectively for fixed selectivity (16.72 dB) and multiselective scheme (18.22 dB)

analysis, the emphasis is on thelocal character of the procedure: The analysis tool must be adapted in a dynamical

way to the local features of the image, and orientation is therelevant characteristic in the present context.

Finally, as a test of the new concept, we have shown in two applications, namely image denoising andτ%-term

nonlinear approximation, that the multiselective scheme presents a clear improvement compared to a nonadaptive

fixed selectivity method.
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