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Abstract

This paper addresses the problem of localizing people in low and high density crowds with a network

of heterogeneous cameras. The problem is recasted as a linear inverse problem. It relies on deducing

the discretized occupancy vector of people on the ground, from the noisy binary silhouettes observed as

foreground pixels in each camera. This inverse problem is regularized by imposing a sparse occupancy

vector, i.e. made of few non-zero elements, while a particular dictionary of silhouettes linearly maps

these non-empty grid locations to the multiple silhouettes viewed by the cameras network. The proposed

framework is (i) generic to any scene of people, i.e. people are located in low and high density crowds,

(ii) scalable to any number of cameras and already working with a single camera, (iii) unconstraint on

the scene surface to be monitored, and (iv) versatile with respect to the camera’s geometry, e.g. planar

or omnidirectional.

Qualitative and quantitative results are presented on the APIDIS and the PETS 2009 Benchmark

datasets. The proposed algorithm successfully detects people occluding each other given severely de-

graded extracted features, while outperforming state-of-the-art people localization techniques.
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Fig. 1: A scene observed by four planar cameras and one omnidirectional camera (extracted from the APIDIS dataset). The

green contours represents the degraded foreground silhouettes extracted, and the bounding boxes correspond to the output

of our proposed detection algorithm.

People Localization, Sparse Representation, Dictionary, Multi-view, Omnidirectional Cameras, Con-

vex Optimization.

I. INTRODUCTION

Accurate vision-based people detection and tracking has been of interest for the past decades

in applications like sport game analysis, video-surveillance (e.g. behavior analysis, automatic

pedestrian counting).

Isolated people, in an un-cluttered scene, are successfully detected with a single static or

moving camera based on pattern recognition techniques. A set of features such as Haar wavelet

coefficients [1], [2], histogram of oriented gradient [3], [4] or covariance matrices of a set of

features [5], [6], can be extracted from a large number of training samples to train a classifier

with a support vector machine [1], [7], or boosting approaches [8], [5]. Given a fixed camera, a

moving object can also be detected by modeling the background and tracking becomes simply

an object correspondence across frames. Typically, the work of Stauffer and Grimson [9] can

be used to extract the foreground pixels. Each pixel is modeled as a mixture of Gaussians with

an on-line approximation for the update. Then, detected people can be tracked using standard

approaches [10]. A detailed survey on object tracking is proposed by Yilmaz et al. in [11]. Porikli

in [10] presents a survey on object detection and tracking methods given a single fixed camera.

However, those algorithms fail to detect a group of people due to their mutual occlusions. For

instance, in sport games such as basketball, players can strongly occlude each other and have

abrupt changes of behavior. In order to handle the occlusion problem, several cameras should

be fused to correctly detect and track all the people present in the scene.
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In this work, a novel framework is proposed to robustly detect moving people occluding

each other given severely degraded foreground silhouettes from a set of calibrated pseudo-

synchronized cameras (see Figure 1). The only features extracted from the cameras are indeed

the binary masks, or foreground silhouettes, representing the connected pixels belonging to the

foreground of the scene. A single silhouette can correspond to several people due to their dense

spatial distribution. It is usually made of many false positives pixels (e.g. shadows, reflections)

and false negatives ones (i.e. missing foreground pixels).

Our approach relies on an inverse problem formulation regularized by the assumed “sparsity”

of people’s location points on the ground floor. Reconstruction methods based on the Basis

Pursuit DeNoise (BPDN) [12] and the Lasso algorithms [13] are evaluated. The sparsity mea-

sure is reinforced by iteratively re-weighting the `1-norm of the occupancy vector for better

approximating its `0 “norm” (referred to RW-BPDN and RW-Lasso in the paper). A new kind of

“repulsive” sparsity is used to adapt further the Lasso procedure to the occupancy reconstruction

(referred to O-Lasso) outperforming other methods. A dictionary made of atoms representing the

silhouettes viewed by the cameras network is used within the formulation. Finally, we propose

an adaptive process to sample the ground plane in function of both the cameras’ topology and

the scene activity. We locate people’s location points on the ground and propagate the detection

results in each camera view.

The proposed approach is (i) generic to any scene of people and sensing modality, (ii) versatile

with respect to heterogeneous cameras network, i.e. able to merge specific camera geometries

such as planar and omnidirectional cameras, (iii) scalable to any number of cameras and already

working with a single camera, (iv) robust to people having similar appearance and to abrupt

change of behavior (as for sport players), and (v) this method does not impose any constraint

on the scene surface to be monitored.

To achieve a complete detection system, we provide also a simple graph-driven tracking

procedure suited to the particular temporal dynamics of people occupancy vectors. This tracking

is based on an iterative method coined Dijkstra Pursuit. It identifies the people tracks by recording

the longest geodesics in a graph connecting the non-zero locations of the occupancy vectors

across time.

The rest of the paper is structured as follows. First, we recall some important previous works

about people detection given multiple cameras. In Section III, our approach is formulated as the
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inverse problem of deducing an occupancy vector from the noisy binary silhouettes observed

as foreground pixels in each camera. We show how this problem can be solved theoretically

by regularization, i.e. by using a sparsity prior on the occupancy grid. In Section IV, the

dictionary involved in the corresponding forward (or generative) model, i.e. the generation

of the observed silhouettes from the occupancy vector, is detailed. Section V explains the

particular simplifications we bring to the theoretical methods of Section III to achieve a solvable

people localization. First, a re-weighting `1-norm is presented. Then, a repulsive spatial sparsity

constraint is considered with a dynamic update. In parallel, in order to reduce the complexity of

the problem, Section VI presents the process used to reduce the dimensionality of the problem, i.e.

in the number of observation and in dimension of the search space. The graph-driven tracking

procedure is detailed in Section VII. Finally, the performance of our approach is evaluated

quantitatively and qualitatively in Section VIII, on synthetic and real data, in comparison with

the state-of-the art techniques.

II. PREVIOUS WORK

In order to deal with a dense spatial distribution of people, and their mutual occlusions, the

output of several cameras are used to detect the objects of interest. Robustness with respect to

the appearance variability between views is achieved by estimating the object coordinates in a

common reference (e.g. ground plane). The unique ’world’ coordinates, i.e. the coordinates of the

object on the ground plane, is linked to the view coordinates by a planar homography. The planar

homography is a 3×3 matrix transformation obtained by matching at least four points from two

different coordinate systems. Most systems compute the homographies at an initial calibration

step [14]. Stauffer and Tieu’s method in [15] rely on tracking data to estimate homography

from one camera to another one (correspondence between trajectories). Note that instead of

projecting each view on a reference ground plane, some works compute planar homographies

between camera views [16], [15], [14]. However, those approaches suffer to solve the occlusion

problem.

After projecting all detected objects into a common reference, Mueller et al. in [14] mark

with the same label the nearest object with the same size and center of gravity. Orwell et al.

in [17] and Caspi et al. in [18] match objects by fusing the estimated trajectories obtained

by each camera. However, special care should be applied when using such methods. A point
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from the object region in the image coordinate is selected to be projected in other coordinates.

Ideally, the foot region should be used. However, some works consider that the center of gravity

of the detected object is a reliable approximation. If objects are very far from the cameras,

then the approximation is correct. Otherwise, such approximation will lead to poor matching

performance. In addition, object segmentation should be perfect. If a person is extracted with

its shadow, again, the matching procedure will be affected.

Kim and Davis in [19] take special care to extract the feet region of the foreground people

by computing the center vertical axes of the people across views. The axes are mapped to the

top-view plane by homography and their intersection point is estimated as the ground point.

However, such approaches do not take full advantage of the multi-view infrastructure, as each

camera detects the objects independently without helping each other.

Relevant works have decided to neither detect and track objects from each camera, but

preferred to gather evidences from all the views and locate in a reference plane. The problem is

reformulated as determining the occupied point in the occupancy grid defined by Elfes in [20].

The occupancy grid can be 2-D [21], or even 3-D [22]. It is usually the ground plane or planes

parallel to the ground. Yang et al. in [23] compute the occupancy grid with a standard visual

hull procedure given an upper and lower bound constraint.

Some works locate people’s head positions instead of their ground plane locations. Zhao and

Nevatia in [24] locate the head locations given a single camera calibration and a head detector.

Eshel and Moses in [25] use a set of cameras to better handle occlusions. Those approaches

require a good observation of the heads or a good foreground extraction at the head level.

Khan and Shah in [26] pay attention to extract the feet region of the foreground people.

Each point of the foreground likelihood (foreground silhouettes) from all views is mapped to

the ground plane given a planar homography. Multiplying the mapped points segments the pixel

corresponding to the feet of the people. Their approach can not be applied to an object viewed

by one camera. In addition, a poor foreground segmentation - people detected with their shadow

or missing foreground pixels - affects the performance of their system. To handle such noisy

segmentation, they apply their approach to multiple planes parallel to the reference plane in [27].

Delannay et al. in [28] use the same approach, i.e. they also project the foreground likelihood

on multiple planes parallel to the ground. They combine such process with a heuristic step to

handle the non-linearity induced by occlusion. However, wrapping the foreground silhouettes on
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Fig. 2: People localization with a single camera. Left side: contour (in white) of the foreground silhouette extracted by the

camera. Right hand-side: Located people by our proposed algorithm given the silhouette extracted.

reference planes do not allow to locate grouped of people specially when a single camera is

used such as in Figure 2.

More recently, Reddy et al. in [29] use compressed sensing to detect and track people in

a multi-view setup. They use the sparsity of the observations, i.e. the foreground silhouettes

extracted from the cameras. However, their sparsity constraint depends on the distance of the

objects to the cameras. Objects close to the cameras will unfortunately generate large foreground

silhouettes with poor sparsity. To accurately estimate the position of the objects on the ground

plane multiple cameras are needed. No dictionary is used to model the presence of a person.

Also, the complexity cost of their algorithm depends on the number of ground plane points, the

grid size, to be evaluated.

Fleuret et al. in [21] take advantage of the multi-view infrastructure to accurately track people

across multiple cameras given degraded foreground silhouettes. They develop a mathematical

framework to estimate the probabilities of occupancy of the ground plane at each time frame with

dynamic programming to track people over time. They approximate the occupancy probabilities

as the marginals of a product law minimizing the Kullback-Leibler divergence from the true

conditional posterior distribution (referred to as Fixed Point Probability Field algorithm). They

are able to detect people occluding each other given noisy observation. We will consider their

work as the state-of-the-art and compare it with our proposed algorithm in Section VIII since both

approaches have a generative model and try to minimize the difference between a synthetic image

and the observed image. However, their mathematical framework does not explicitly consider
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Fig. 3: To each point p(i) corresponds a silhouette modeling the presence of a person in a camera view

the sparsity of the desired solution leading to potentially high false positives rate. In addition,

the computation cost of their algorithm depends on the number of ground plane points to be

evaluated, leading to a limited area to be monitored.

We propose a framework to cope with the limitations of previous works. It scales to any

number of cameras. A single camera can also be used whereas previous multi-view approaches

could not be applied to group of people viewed by a single camera. We do not have any constraint

on the surface to monitor. Omnidirectional cameras can also be integrated to the system. We used

severely degraded foreground silhouettes representing realistic scenarios. Foreground silhouettes

are made of many false negative and positive pixels. Finally, we explicitly consider the sparsity

present in the desired solution during the detection process similar to other sparsity-based

algorithms used for localization [30], [31], [32]. The strength of the proposed approach is

quantitatively and qualitatively presented in Section VIII.

III. CONVENTIONS AND PROBLEM FORMULATION

The objective of this paper is to deduce the ground plane points occupied by the people present

in the scene given the foreground silhouettes provided by a set of C calibrated cameras (planar

or omnidirectional).

To simplify notations, we will often refer to two-dimensional objects, e.g. the grid of occupancy

or a given camera view, as 1-D vectors, i.e. the vectors obtained for instance by the concatenation

of the columns of these 2-D objects. This will allow us to model easily the construction and the
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(a) Camera Views

(b) Degraded foreground silhouettes y

(c) ŷ = Q(Dx)

Fig. 4: Illustration of the atoms modeling the given foreground silhouettes. The grid is only for visual purposes.

action of some important linear operators such as the Multi-Silhouettes Dictionary described in

Section IV.

Up to the selection of an appropriate background subtracting method, we assume that at a

given time, each camera is the source of a binary silhouette image yc ∈ {0, 1}Mc , where Mc ∈ N
is the number of pixels (resolution) of each camera indexed by 1 ≤ c ≤ C. Stacking all these

vectors gives the Multi-Silhouette Vector (MSV)

y = (yT
1 , · · · , yT

C)T ∈ {0, 1}M ,

with M =
∑C

c=1 Mi.

The continuous ground plane is discretized in a 2-D grid of N sub-areas (or cells). The

presence (or occupancy) of people on the ground is therefore represented by the binary vector

x ∈ {0, 1}N , coined occupancy vector, with xi = 1 meaning that the ith cell is occupied by

somebody. The index i of each component xi of x is actually linked to a particular position

p(i) ∈ R2 on the ground plane in the center of one cell. For simplicity, we assume that one and

only one observed person is exactly supported by one subarea of this grid.
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Notice that, as explained in Section VI, the 2-D grid underlying the occupancy vector is

actually not regular. It is adaptively built in function of the cameras’ topology and the scene

activity. This adaptive sampling process is described in Section VI-B.

Assuming that a person is represented by an invariant volume, it is clear that any configuration

of x will correspond to a particular configuration of silhouettes in y. For instance, if x contains

only one non-zero component, all yc observing the object will contain one silhouette (i.e. a

connected area of non-zero pixels) with size and location related to the particular projective

geometry combining the scene and the cameras (see Figure 3).

Our inverse problem is thus to find x from y assuming that x is a sparse vector, i.e. it is

composed of few non-zero components compared to N . However, the difficulty in the resolution

of this problem arises from its non-linearity, i.e. the vector y is binary and it does not contain any

information about possible occlusion between persons. In addition, the background subtracting

methods leading to the silhouette definition are severely degraded (e.g. light reflection, shadows,

and noise).

To bypass these two difficulties, we propose to handle them both as a noise on some linear

observation obtained by a generative (forward) model described hereafter.

IV. FORWARD MODEL AND MULTI-SILHOUETTE DICTIONARY

Our forward model that associates to the occupancy vector x ∈ RN a certain configuration of

occluding silhouettes in the cameras is the quantization of a linear operator. More precisely, we

obtain it from the one bit quantization of a dictionary D ∈ RM×N multiplied by x.

The Multi-Silhouette (MS) dictionary D is one of the key ingredient of our approach. It is made

of atoms modeling the presence of a single person at a given location. By construction, it maps

non-empty locations of the occupancy vector to a linear approximation of the multiple silhouettes

viewed by the cameras network. In other words, each atom approximates the silhouette generated

by a single person in all the camera views. The columns of D, i.e. the atoms, live thus in the

same space as the observed Multi-Silhouette Vector (MSV), i.e. in a space of M =
∑C

c=1 Mc

dimensions.

Mathematically, the Forward Model generating silhouettes is thus the application of D on the

occupancy vector x, i.e. D x. Of course, by linearity, the components of D x are not binary. They

are higher than one each time two or more silhouettes occlude. A more faithful, but non-linear,
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forward model, is therefore achieved by applying a quantization operator Q : RN → {0, 1}N on

D x, with (Q[v])i = 1 if vi 6= 0 and 0 else. We will develop further the use of these two forward

models in Section V.

The dictionary D ∈ {0, 1}M×N can also be seen as the merging of all the sub-dictionaries

Dc ∈ {0, 1}Mc×N made of the index restriction of the atoms of D to the pixel range of each

camera c for 1 ≤ c ≤ C. Therefore,

D = (DT
1 , DT

2 , . . . , DT
C)T (1)

meaning implicitly that there is no theoretical constraint on the number or on the type of camera

used, e.g. planar or omnidirectional.

Practically, the atoms of each Dc are generated (i) thanks to the homographies mapping points

in the 3-D scene to their 2-D coordinates in the planar view, and (ii) thanks to the approximation

of the silhouettes by simple shapes (e.g. rectangular or elliptical shapes). Indeed, to cope with the

various poses and shapes a person can generate in a camera view, a half-cylinder-half-spherical

shape is used to approximate the silhouette of a person in the views (see Figure 3). Figure 4

illustrates an example of severely degraded foreground silhouettes (made of shadows, people’s

reflection, missed regions) and the silhouettes used to model their presence in the set of planar

and omnidirectional cameras.

Note that the shape used to generate the atoms does not affect the computation complexity of

the approach since the dictionary is computed off-line. We do not need to use rectangular shape

as in [21] to take advantage of integral images.

V. OCCUPANCY RECONSTRUCTIONS

A. Ideal formulations

The ill-posed problem of reconstructing the occupancy vector x from the observed data y can

be regularized by the a priori sparsity of x.

A first approach is to use the following theoretical optimization problem, i.e. `0-Regularized

problem:

arg min
x∈{0,1}N

‖x‖0 s.t. ‖y −Q(Dx)‖2
2 < ε (2)

where ‖x‖0 = #{i : xi 6= 0}, ε is the desired residual error and the quantization Q is defined

in Section IV.
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Fig. 5: Illustration of the adaptive sampling process. Top row: sample points given a regularly spaced grid. Bottom row: proposed

non-regular grid

Such formulation does not require to know the sparsity of the vector x but needs an upper

bound on the residual error for the fidelity term. Since the degradations on the foreground

likelihood are not predictable, another alternative is to bound the sparsity, i.e. reformulate the

reconstruction method as the `0-Regularized following problem that can be compared to the

Lasso problem [13]:

arg min
x∈{0,1}N

‖y −Q(Dx)‖2
2 s.t. ‖x‖0 < εp (3)

where εp is the maximum number of people to be detected.

In Section VIII, we quantitatively measure the strength of both reconstruction methods.

These optimizations are non-convex and also NP-hard [33], i.e. the numerical complexity is

combinatorial in the dimension of the space. This is due to the use of the `0 sparsity term and to

the discrete nature of the binary space {0, 1}N . We need therefore to simplify these formulations,

which we do in the next sections.

B. Linearized and Re-Weighted Optimizations

To linearize (2) and (3), we first remove the quantization operator Q from their fidelity terms.

This amounts to consider possible object occlusions has an additional noise on the measured

silhouettes, increasing therefore the value of ε and εp. Second, the vector x is now considered
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in RN
+ and not in the binary space {0, 1}N , while the reconstructed vector will be subsequently

one-bit quantized to form the binary occupancy vector x. An adaptive threshold T is used driven

by the maximum value of x. Typically, one-fourth of its value is used as a threshold (T = 0.25).

Interestingly, in the minimizations (2) and (3), the `0-norm can be approximated with an

iterative re-weighted `1-norm. The weights used for the next iteration are computed from the

value of the current solution as introduced by Candès et al. in [34].

Explicitly, (2) leads to the Re-Weighted Basis Pursuit DeNoise (RW-BPDN) program, i.e

x(l+1) = arg min
u∈RN

+

‖W (l)u‖1 s.t. ‖y −Du‖2 < ε, (4)

while (3) provides the Re-Weighted Lasso (RW-Lasso), i.e.

x(l+1) = arg min
u∈RN

+

‖y −Du‖2
2 s.t. ‖W (l)u‖1 < εp, (5)

where, for both equations, the diagonal weighting matrix is defined at each iteration l > 0 by

W
(l)
ii = (|x(l)

i | + η)−1, for 1 ≤ i ≤ N , with W 0 = Id and the corresponding previous solution

x(l). The parameter η is added to assure stability and guarantees that a zero-valued component

in x does not strictly prohibit a nonzero estimate at the next iteration. We set η = 10−7.

Practically, as explained in Appendices A and B, at each iteration of the re-weighted process,

(4) and (5) are solved by monotone operator splitting and proximal methods [35], [36].

C. Occupancy Lasso (O-Lasso)

In this section, we specialize further the Re-Weighted Lasso procedure (5) to the particu-

larities of our occupancy reconstruction. As explained below, this involves the addition of two

processings in the reweighting loop.

1) Repulsive Spatial Sparsity (RSS): Although the re-weighted `1-norm provides a sparse

solution close to the one that would have been obtained with the true `0 “norm”, it does not

enforce a certain form of spatial sparsity desired in our application. Indeed, taking a simple

example, the linearity of our formulation allows two (or more) neighboring points in x to have

non-zero values so that the generated silhouette Dx fits a single person with a shape slightly

larger than what is prescribed in the dictionary model.

We want however to avoid such situation and allow the occupancy reconstruction to spend

more effort on the reconstruction of other isolated persons in x. We impose therefore that two
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TABLE I: Greedy RSS Projection

Input: A sparse vector z.

Output: An approximation of ProjRτ
z.

Program:

1) Initialize: r ← z, p ← 0 ∈ RN .

2) Pick the index i∗ = arg max i |ri|.

3) Set pi∗ ← ri∗ , and then ri∗ ← 0.

4) For all j ∈ supp{r}, if ∆i∗j < τ , set rj ← 0.

5) If supp{r} = ∅, return p and stop; else, return to Step 2.

detected points, i.e. with non-zero components in x, are never closer than a minimum spatial

distance related to the minimum surface occupied by a person on the ground1. This is what we

call the concept of Repulsive Spatial Sparsity (RSS).

Mathematically, if j, k ∈ supp{x} = {i : xi 6= 0} with j 6= k, we should have

∆jk , ‖p(j)− p(k)‖2 > τ (6)

where p(k) is the location of the kth cell in the discrete ground plane. We choose a typical

value of 70 cm, i.e. the average width of a standing person, for the minimal spatial distance τ

between two occupied ground points.

We achieve this result by inserting in the iterative algorithm, the non-convex projection

p = ProjRτ
z , arg min

x∈Rτ

‖x− z‖2,

of the current solution z on the Repulsive Spatial Sparsity (RSS) set

Rτ = {x ∈ RN : ∀ j, k ∈ supp{x} s.t. j 6= k, ∆jk > τ }.

Practically, we approximate p = ProjRτ
z by the suboptimal greedy method detailed in Table I.

1Notice this approach applies to other objects detection, e.g. cars or traffic, with non-zero ground-surface.
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This method converges in at most n = ‖z‖0 iterations, i.e. when we have already z ∈ Rτ , and

by construction the output belongs to Rτ . In addition, this greedy method implicitly preserves the

highest non-zero component of z amongst two or more non-zero components within a distance

τ of the highest. This guarantees a sub-optimal minimization of the distance ‖z − p‖2. Notice

that the Step 2 can be efficiently realized by sorting the non-zero elements of z by decreasing

magnitudes, a process that takes at most O(N log N) operations. Indeed, Step 3 in Table I inserts

just some zeros in the sorted z and the selection of the maximum in Step 2 can be realized

sequentially, taking each time the next non-zero element in the sequence.

2) Adaptive Sparsity Level: The Lasso formulation requires the knowledge of the number

of people present in the scene. In order to make the algorithm generic enough, we propose an

adaptive sparsity constraint selection in Equation (5). Since the sparsity constraint, εp, bounds the

potential number of detected people, an iterative approach is proposed to choose the constraint

independently of the number of people present in the scene. First, εp is high enough in order to

have a first approximated solution. Typically, εp is initialized to the dimension of x (see Section

VI). Then, εp is set to the number of non-zeros values obtained after each iteration. Experiments

show that the algorithm converges towards the right number of people present in the scene when

the Repulsive Spatial Sparsity constraint is used.

The final iterative algorithm, including both the Repulsive Spatial Sparsity and the Adaptive

Sparsity level, is summarized in Table II. It is coined the Occupancy Lasso (O-Lasso). We will

see in Section VIII that it outperforms RW-BPDN, RW-Lasso and the state-of-the-art method.

VI. DIMENSIONALITY REDUCTION

If many cameras are used, the dimensions of y and x become an issue in Equations (4) and (5).

These sizes define indeed both the dimensionality of D, which requires a large memory storage,

and the total computational time of the algorithms. There exist however some possibilities of

dimensionality reductions that we detail below.

A. Dimensionality reduction on the observations

The dimension of the observation vector y is by default equal to the sum of each camera

resolution. To reduce the computation cost, all images are first down scaled to a QVGA resolution
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TABLE II: Occupancy Lasso

Inputs:

• The Multi-Silouettes Vector y = (yT
1 , · · · , yT

C)T ∈ RM .

• A set of ground point locations (cell):

{p(j) : 1 ≤ j ≤ N}.

• A stopping tolerance Tol (e.g. Tol = 10−4).

Output: The occupancy vector x ∈ RN .

Program:

1) Initialize: l = 0, x(0) = 0, W (0) = Id, ε(0) = ‖x‖0

2) Solve:

z(l+1) = arg min
u∈RN

+

‖y −Du‖22 s.t. ‖W (l)u‖1 < ε(l),

3) RSS Projection:

x(l+1) = ProjRτ
z(l+1)

4) Re-weight: Define the diagonal matrix W (l+1) by

W
(l+1)
ii =

(|x(l+1)
i |+ η

)−1
, 1 ≤ i ≤ N

5) Dynamic constraint: ε(l+1) = ‖x(l+1)‖0

6) Stop if
‖x(l+1) − x(l)‖2
‖x(l+1)‖2

< Tol ,

else, set l ← l + 1 and return to Step 2.

(320× 240). A background subtraction algorithm extracts foreground silhouettes on the QVGA

resolution. Then the image plane of each camera view is cropped to the region where people

can occur. Finally, all images, yc, are normalized to the same size (107× 80).
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B. Dimensionality reduction in the search space

The complexity cost depends on the number N of ground plane points to locate as occupied

or not. Fleuret et al. in [21] discretize the visible part of the ground into a fixed number of

points regularly spaced. They do not consider the resolution of the cameras and the sparsity

of the people present in the scene to discretize the ground. In this work, we address these

considerations.

Map on Ground

Quantize 

Fig. 6: Overview of the adaptive sampling process

Two different ground plane points can correspond to the same pixel in the image plane of a

camera. A translation of one pixel in the image plane can be equivalent to a translation of a few

meters on the ground plane for far away regions, just as a translation of a few centimeters on

the ground plane can correspond to a shift of several pixels for closer regions, depending on the

resolution of the camera and the distance of the objects to the camera. Therefore, we propose a

non-regularly spaced sampling process to discretize the ground (see Figure 6). Points regularly
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spaced in the image plane of all cameras are mapped to the ground to form the sample points.

The mapped location points are quantized to avoid points spaced with less than few centimeters.

Figure 5 compares a regularly spaced grid with our proposed non-regular grid. Although our

proposed grid has less number of points, regions of interest have higher density of points, i.e.

higher spatial resolution. In order to have the same spatial resolution in the region of interest

with a regular grid, 42777 are needed compared to 5644 with our proposed non-regular grid.

A further reduction in the search space can be achieved by measuring the activity of a sample

point according to three possible assumptions.

Assumption 1 (Foreground pixels only): Sample points are ground plane points belonging to

the foreground pixels of at least one camera.

In this assumption, each foreground pixel represents the potential feet location of the people.

Each image plane is downscaled to reduce the sample points as explained in Section VI-A. Given

the calibration data, each point of each camera is mapped to a ground plane point sampling x. In

order to be certain to not miss a potential ground point, each foreground pixel is also considered

as the upper limit (the head) of a person. Therefore, missing the feet region in the foreground

will not affect the sampling process.

Assumption 2 (Intersecting foreground pixels): Sample points are ground plane points be-

longing to the foreground pixels of all the cameras observing the corresponding points.

Assumption 2 is similar to the work of Khan and Shah in [27]. However, such step may be

affected by degraded foreground silhouettes extraction, e.g. including shadows (see Figure 7).

Missing foreground pixels in some views can lead to missing people whereas high false positive

foreground pixels induce high false positive rates.

Assumption 3 (Least significant silhouette): Sample points are ground plane points corre-

sponding to a significant foreground silhouette in all the cameras observing the corresponding

points.

In this last assumption, the sample points x are kept if

∀c ∈ C :
yT

c Q(Dcx)

‖Dcx‖0

> δ. (7)

Typically, δ is set to 20%. The operator Q is the one bit quantizer defined in Section IV.
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The constraint δ represents the minimum amount of foreground pixels needed to keep a sample

point.

(a)

(b) (c)

(d) (e) (f)

Fig. 7: Illustration of the sample points used given the three strategies. (a) Camera view examples. (b) Corresponding foreground

silhouettes. (c) People exact locations (top view). Sampled points are given in (d) for ”Foreground pixels only” assumption

(top view), in (e) for ”Intersecting foreground pixels” and in (f) for ”Least significant silhouette”.

Figure 7 presents the three strategies used to reduce the search space. As expected from

their definition, we observe that these assumptions have different impact on the dimensionality

reduction, i.e. we have approximately Assumption 3 ⊂ Assumption 2 ⊂ Assumption 1. When

an assumption further reduces the search space, it may have the counter part of potentially

removing correct locations. However, reducing the search space increases the likelihood to better
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localize people. In the next section, we evaluate the influence of all 3 assumptions on the

performance of the system.

VII. TRACKING PEOPLE

In this Section, we present a simple tracking algorithm that suits the temporal evolution of

the occupancy vectors as computed above. We do not aim at presenting here the best tracking

method. Our objective is simply to prove that the non-empty locations of the occupancy vectors

detected at each time of a video, i.e. the positions of the spatio-temporal occupancy vector, can

be tracked across time according to a simple spatio-temporal connectivity criterion. The output

of this procedure is also a sorting of people trajectories by decreasing tracking-period.

A. Spatio-Temporal Graph

Our tracking method relies on the definition of a directed graph on the spatio-temporal

occupancy vector x(t) ∈ RN , where t is taken in the discrete time interval {t1, · · · , tNt}
composed of Nt instants tj < tj+1.

The graph G = (V , E , dG) of interest corresponds to:

(i) a set of spatio-temporal vertices

V =
{(

q, tj
) ∈ R3 : 1 ≤ j ≤ Nt, q ∈ p

(
x(tj)

) }
,

with p(u) = {p(i) : 1 ≤ i ≤ Nt, ui 6= 0} and p(i) ∈ R2 is as before the location of the ith

cell in the discrete ground plane,

(ii) an edge set E = V × V defining the connectivity between vertices in V ,

(iii) and a distance dG : E → R+ weighting these edges.

In this graph G, the length |P| of a given connected path P = v1v2 · · ·vK of K − 1 “hops”

between K distinct vertices vj ∈ V following K − 1 edges (vj,vj+1) ∈ E is simply defined as

the sum |P| = ∑K−1
j=1 dG(vj,vj+1).

The vertex set V contains at most NNt elements. However, in our case the graph is essentially

empty compared to its potential dimensionality. Indeed, as a result of our methods, for each time

tj the occupancy vector x(tj) is spatially sparse inducing a small coordinate set p
(
x(tj)

)
.

Moreover, as described hereafter, the proposed connectivity follows a particular causal geom-

etry that prevents too long or unrealistic connections. First, we consider a directed connectivity
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Fig. 8: Spatio-temporal graph-based tracking.

where the vertex v = (q, t) is connected to v′ = (q′, t′) only if t′ > t. Second, given a prior

maximal speed Vmax > 0 for the people motion, two vertices v and v′ in V cannot be connected if

‖q−q′‖2 > Vmax (t′−t) > 0. This induces a causality in the connectivity preventing connections

between events that cannot result of a valid people motion. Third, for vertices respecting this

causality, the corresponding edge (v,v′) is weighted by

dG(v,v′) = ‖q− q′‖2 + γ ϕ(t′ − t), (8)

for a certain factor γ > 0 balancing the influence of the spatial and time domains, and given a

particular increasing function ϕ.

The role of this function ϕ is to allow us a certain flexibility in the selection of paths of minimal

length in G, i.e. what will define our tracking procedure described in Section VII-B. For instance,

for ϕ(t) = t, a direct path v1v3 joining v1 = (q, tj) to v3 = (q, tj+2), with both vertices sharing

the same spatial coordinate q, will always have a smaller length, i.e. |v1v3| = γ (tj+2− tj), than

an indirect path v1v2v3 with v2 = (q′, tj+1) of length |v1v2v3| = γ (tj+2 − tj) + 2‖q − q′‖2.

We consider however that the indirect path is valid in our tracking if the causality between v1

and v2 is respected.

It is easy to prove that taking a ϕ that increases quicker than the linear function prevents such

a case. We took ϕ(t) = exp t, a choice that also penalizes temporally too long “1-hop” path.

The factor γ is set in function of Vmax so that the indirect path in the example above is selected

against the direct one as soon as the causality between vertices is respected.

B. Dijkstra Pursuit

Given the directed graph defined above, our tracking method uses iteratively the well known

fast Dijkstra algorithm computing the shortest paths in a graph, or geodesics, between one source
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TABLE III: Dijkstra Pursuit

Input: A graph G = (V, E , dG).

Output: A set of tracks T of decreasing length.

Program:

1) Initialize: R← V , T ← ∅.

2) Pick v∗ = arg max v∈R |P(v)|.

3) Store: T ← T ∪ P(v∗).

4) Update: R← R \ P(v∗), and recompute connectivity.

5) If #R = 0, return T and stop; else, return to Step 2.

v ∈ V and all the other vertices of V [37].

More precisely, let us first define P(v) ⊂ V as the longest geodesic initiated from v ∈ V in

G, i.e. the longest of all the shortest paths between v and any other point v′ ∈ V .

At the first iteration, our method removes from the initial graph G the vertices of the path

P(v∗), with v∗ the vertex providing the longest P , i.e. v∗ = arg max v |P(v)|. The next iterations

are then defined by applying the same process on the residual graphs until reaching an empty

one. This iterative procedure, coined Dijkstra Pursuit, is summarized in Table III and Figure 8.

VIII. PERFORMANCE EVALUATION

A. Experiments

Synthetic and real challenging data are used to evaluate the proposed framework.

Real data have been obtained from the APIDIS dataset2 and from the PETS 2009 Benchmark

dataset3.

The APIDIS dataset consists in seven cameras monitoring a basketball game, including one

omnidirectional camera. The dataset has the following challenges:

2The dataset is publicly available at http://www.apidis.org/Dataset/
3http://winterpets09.net/
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• Basketball players have abrupt changes of behavior, e.g. they run, jump, crouch, change

suddenly their motion path, etc.

• Players on the same team have the same appearance.

• In some camera views, players greatly occlude each other.

• Some cameras have very similar viewpoints, affecting the resolution of the ambiguities

arising with the occlusion problem.

• The reflection of the players on the floor and their strong shadows lead to severely degraded

foreground silhouettes. Many false positives silhouettes are extracted with a standard back-

ground subtraction algorithm (e.g. the work of Stauffer and Grimson [9]).

• Players interact strongly with each other and their spatial distribution on the ground can be

very dense and compact or spatially scattered.

All videos are scaled to a QVGA resolution with approximately 25 fps. Performance over

the left-half of the basketball court is measured since it is the side where the most number of

cameras are monitoring the game, i.e. camera’s id 1, 2, 4, 5, and 7.

The PETS 2009 Benchmark datasets are multisensor sequences containing different crowd

activities filmed from multiple cameras and involve up to approximately forty actors. We evaluate

our algorithm on sparse crowd, as well as medium and high density crowd (Figure 9). Our

detection scheme is able to count people in high density crowds given multiple or even single

camera (Figure 10). Videos are available at the following website: http://lts2www.epfl.ch/∼alahi/

pets.htm.

Synthetic data are constructed given the same scene geometry as the APIDIS dataset. Random

vectors x are created given a spatial sparsity constraint, e.g. location points have a minimum

spatial distance with respect to each other (> 70 cm). Five to fifteen people are randomly

triggered for each frame (a few hundred frames are generated). The synthetic data will allow

us to evaluate the performance of our algorithms with controlled foreground silhouettes, hence

measuring how well the noise or occlusion problem is solved.

The performance of the detection process is quantitatively evaluated by computing the pre-

cision and the recall measures given by the ratios TP/(TP + FP ) and TP/(TP + FN)

respectively, where TP , FP and and FN are the number of True Positive, False Positive and

False Negative. A true A true positive is when a person is correctly located on the ground plane.
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(a) Sparse crowd

(b) Medium crowd

(c) High density crowd

Fig. 9: Detecting and tracking people given the PETS dataset. White contours represents the degraded foreground silhouettes

used.

The foreground silhouettes are extracted using the work of Stauffer and Grimson [9]. The

outcome of the background subtraction algorithm is noisy. The silhouettes are severely degraded.

Only part of the people are extracted, their shadow and reflections are considered, and random

false positives are generated due to lighting conditions, camera noise.

B. Results

All three reconstruction methods, i.e. RW-BPDN, RW-Lasso, and O-Lasso are compared with

the state-of-the-art approach proposed by Fleuret et al. in [21]. They propose a detection stage

referred to as the Probability Occupancy Map (POM) to locate people on the ground given

the degraded foreground silhouettes. Their algorithm depends on two parameters: the maximum

number of iterations and a constant σ accounting for the quality of the background subtraction.

We set the maximum number of iterations to 1500, and measure the performance of their
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Fig. 10: Locating people with either 3 cameras (left hand-side) or a single camera (right hand-side) given the PETS dataset.

White contours represents the degraded foreground silhouettes used.

algorithm for various σ.

Figure 11 illustrates all performances given four cameras monitoring the APIDIS dataset

(camera’s id 2, 4, 5, and 7). The proposed Occupancy Lasso (O-Lasso) clearly outperforms

other approaches in term of both recall and precision rate. The Re-Weighted Lasso (RW-Lasso)

with a fixed sparsity bound outperforms the RW-BPDN with various residual error ε. The

performance of the BPDN formulation is affected by the difficulty to estimate the residual

error, i.e. the degradation occurring in the foreground silhouettes. Finally, the state-of-the-art

approach (POM) has a much lower precision rate for a given recall rate than the sparsity driven

methods. Considering the sparsity of the desired solution allow us to reduce the false positive

rate consequently.

Figure 12 presents all performances given four planar cameras on the synthetic data. It is

interesting to notice that both formulation BPDN with ε = 0 and Lasso with εp = ppl, i.e. the

number of people present in the scene, leads to the same performance. Since they are equivalent
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Fig. 11: Precision and recall rate on the APIDIS dataset given four cameras monitoring the scene (camera’s id 2, 4, 7, and 1).

Our proposed approaches (RW-BPDN, RW-Lasso, and O-Lasso) are compared with the state-of-the-art probability of

occupancy (POM) by Fleuret et al. in [21].

problem and the foreground silhouettes are not noisy, it coincides with our expectations to

obtain the same performance. However, relaxing the formulations influences the performances

accordingly. Relaxing the fidelity term with the BPDN increases the precision and reduce its

recall rate. High fidelity constraint allows to miss some people hence reduces the recall rate.

With the Lasso formulation, increasing εp increases the number of false positives hence reduces

the precision rate. Interestingly, the state-of-the-art outperforms the RW-BPDN and RW-Lasso

given the synthetic data. Since noise is not present in the data, better performances are achieved

with POM. However, using our proposed O-Lasso outperforms again other methods. The recall

rate is above 90% with roughly perfect precision rate (> 98%).

The strength of our proposed formulation is emphasized with real data, i.e. when noise is

present on the data. BPDN is useful when we can bound the noise. However, in our application,

the noise can severely degrade the observations. Hence, the Lasso formulation suits best our
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Fig. 12: Precision and recall rate with the synthetic data given four cameras. Our proposed approaches (RW-BPDN, RW-Lasso,

and O-Lasso) are compared with the state-of-the-art probability of occupancy (POM) by Fleuret et al. in [21].

problem. Note that the adaptive formulation (O-Lasso) does not need any prior on the number

of people present in the scene. It correctly updates the constraint to reach the right number of

people.

Interestingly, reducing the search space according to the three assumptions of Section VI-B

not only increases the processing speed since fewer number of points are evaluated, but it also

increases the performance of the detection. Figure 13 shows that for each proposed reduction

step, the recall and precision rate increases with O-Lasso (given camera’s id 2,5, 7 in the APIDIS

dataset).

Finally, to reach a full detection picture, the proposed graph-driven tracking increases the

performance of the system. Table IV illustrates its impact. First, the located points obtained with

the severely degraded foreground silhouettes are used. Then, the located points obtained with

the synthetic foreground silhouettes (i.e. perfect silhouettes) are tested. With both scenarios, the

recall rate is increased without strongly degrading the precision rate.
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Fig. 13: Precision and recall rate of our proposed algorithm (O-Lasso) given four cameras monitoring the scene (camera’s id

2, 4, 5, and 7 in the APIDIS dataset) and various search space reduction assumptions

Located points given No tracking Tracking

Recall Precision Recall Precision

Severely degraded FS 0.82 0.92 0.88 0.91

Synthetic FS 0.93 0.965 0.96 0.967

TABLE IV: Impact of the proposed graph-based tracking

C. Validation

Given the proposed approach based on the O-Lasso, we analyze its performance when (i) the

number of cameras is increased, (ii) when people are occluding each other, and (iii) when the

silhouettes extracted are degraded.

One of the advantages of our framework is that it scales to any number of cameras. Therefore,

the performance of the system with various number of cameras is compared in Figure 14. Note

that a precise temporal window is selected having all players in the field of view of all cameras.

It is interesting to see that even when a single camera is used, we can locate as many people as

using multiple cameras. Nevertheless, adding cameras reduces the number of false positives due

November 6, 2009 DRAFT



28

Fig. 14: Precision and recall rate of camera id = 2 in the APIDIS dataset when a set cameras are monitoring the scene. The

number in each bubble represents the number of cameras used. (The sequence of cameras id 7,2,4,1 is used for planar

cameras, and camera id 5 for the omnidirectional one)

to a degraded foreground silhouettes. Shadows and reflected players on the ground have a strong

impact on the precision rate. In addition, merging an omnidirectional camera with other planar

cameras have the best performance. Surprisingly, if the omnidirectional camera is monitoring

the scene alone, a poor detection is achieved due to the severely degraded foreground silhouette:

R = 0.47 and P = 0.55 (not shown in Figure 14). Most of the time, the people’s shadow is

much bigger than its silhouette affecting considerably the performance. In addition, in some

areas, people are almost missed by the background subtraction algorithm since they occupy only

few pixels (small surface). Finally, due to the small bounding box of the people, a small offset

in the detection considerably affects the performance and leads to a missed person. Figure 17

presents the foreground silhouettes extracted and the detected people given various number of

cameras.

One of the main challenges we want to handle is the mutual occlusions generated by the

people. The proposed relaxation step (Section V-B) wrongly considers the occlusion problem as

a linear operator. Indeed, according to our model, overlapping silhouette are not quantized but

summed (Dx). Hence, whenever people are occluding each other, their silhouettes are overlapped
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Fig. 15: Recall rate with respect to the PO present for the people given the O-Lasso approach

and generate noise in our fidelity term. We evaluate the performance of our algorithm with respect

to the Percentage of Overlap (or PO) present in each MSV:

PO =
Number Of Pixels Overlapping

Number Of Pixels Visible
(9)

We cluster each person present in our synthetic dataset given their PO with other people and

measure how well we have detected them. Figure 15 illustrates the recall rate with respect to

the PO present in the people4. When half of of the MSV is overlapping with other MSVs, the

recall rate is still higher than 90%. Then, it decreases to reach in the worst case (when overlap is

more than roughly 90%) a recall of 65% which is very satisfying. Therefore, we have a generic

measurement about the performance of the algorithm to detect occluded people regardless of the

scene geometry and people’s density.

Finally, we measure the performance of our approach with respect to the percentage of

degradation present in the foreground silhouettes. The degraded foreground silhouette is made of

false positive pixels or false negative ones. Setting to zero a percentage of the MSV is equivalent

to degrading the foreground silhouettes with false negative pixels. Figure 16 illustrates the recall

4Remark that the PO cannot be defined for false-positives. This prevents a plot of the precision in function of the PO.
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Shape Recall Precision

Rectangular 0.64 0.87

Ellipsoid 0.7156 0.85

Half rectangular and half ellipsoid 0.6938 0.9001

TABLE V: Precision and Recall rate using various shape in the Forward Modelgiven the O-Lasso method and 4 planar cameras

rate when we degrade the silhouettes accordingly. Note that it also informs the percentage

of foreground silhouettes needed to trigger a positive detection although the silhouettes are

only made of false positive pixels. The recall rate remains higher than 90% although 30% of

the silhouettes are removed. Then, the performance decreases considerably with respect of the

degradation applying to the silhouettes. Such information informs us about the sensitivity of

our Forward Model generating silhouettes: 30% of the generated silhouette can be discarded.

In other words, if our silhouettes are fitting a person with a height of 1m70cm, we can still

detect people in the range of 1m20 till 2m20 with the same performance. Moreover, we can

also say that only 70% of the silhouette model is relevant. Hence, the proposed approximated

shape, i.e. half rectangular and half ellipsoid can handle 30% of a ’shape’ approximation error.

Note that other shapes can be used. Table V illustrates the performance of using other shape.

The rectangular shape is used by Fleuret et al. in [21] to efficiently compare their generative

model with the foreground silhouettes based on integral images. However, in our framework, the

Forward Model is used to create the atoms of the dictionary. Such atoms are computed off-line

hence allow the use of any shape. Therefore, using an ellipsoid shape for instance has the same

computational cost as using a rectangular one.

IX. CONCLUSIONS

We propose a framework to efficiently deal with simple and very noisy features to locate

people in a well defined mathematical formulation. The strength of our approach is quantita-

tively and qualitatively illustrated on challenging real world scenarios as well as on synthetic

data outperforming the state-of-the-art. We show the advantage afforded by the sparsity driven

framework. The approach is generic enough to be used with any calibrated camera. Planar and

omnidirectional cameras are naturally merged. Any number of cameras can be used. The multi-
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Fig. 16: Recall rate with respect to percentage of missing silhouette region extracted for each people given the adaptive O-Lasso

approach

view infrastructure is fully taken into consideration during the detection process and does not

impose any constraint on the scene surface to be monitored. Furthermore, detected people are

perfectly matched across cameras so that their reconstruction from all the views can be performed.

Since the coordinates of the people are computed in the ground floor, each person can have a

flag informing if a clear visualization is available in a view, i.e. other people are not occluding.

Therefore, further processing such as identification can be performed. In that perspective, a simple

tracking module to match people across frames is explained in Section VII. It detects people

tracks by finding the longest geodesics in the graph connecting non-zero occupancy location

across time. In future work, we plan to improve this graph-driven tracking by attaching more

information (e.g. silhouette intensity histograms) on the nodes of the corresponding graph and

by redefining its connectivity in function of these features.

On the theoretical side, the proposed Repulsive Spatial Sparsity can be compared to a recent

trend in the field of sparse representation of signals, and in particular in these new developments

surrounding the recovery of structurally-sparse signals in linear inverse problems. In [38], the

concept of block-sparsity is for instance successfully introduced to improve the recovery of sparse
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Fig. 17: Illustration of the detected people with various number of cameras given the APIDIS dataset. The green contours

represents the degraded foreground silhouettes used

signal from random measurements, i.e. in a Compressed Sensing scenario. Another approach

followed in [39] plays on the sparsity measure replacing the common `1-norm of Lasso or BPDN

programs by other “mixed-norms” on the vector components organized in group and elements.

In the future, we plan to explore the connections between the RSS and these alternative sparsity

variations.

APPENDIX A

PROXIMAL METHODS

In order to solve our different minimization problems, we use a powerful proximal operator-

based iterations and monotone operator splitting theory introduced by Moreau in 1962 [40] and

brought to light in the signal processing community by Combettes [35], [41].

Thanks to this theory, very efficient methods can be designed to solve general convex opti-
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mization problems of the form

arg min
x

f(x) + g(x).

In the case of the Re-Weighted BPDN (4), f = ‖W ·‖1 is convex, and g = ιC = ιB2
ε
◦ A(·)

where ι is the indicator function and A is the affine function such that A = D · −y. The convex

sets B2
ε and C are such that B2

ε = {x ∈ RN : ‖x‖2 ≤ ε} and C = {x ∈ RN : ‖Ax‖2 =

‖y−Dx‖2 ≤ ε}. As f and g are both non-differentiable, the Douglas-Rachford splitting method

[41], [42] is used. The Douglas-Rachford recursion to solve the reweighted `1-BPDN can be

written in the compact form

x(t+1) = x(t) + µt[SW ◦ (2PC − Id)− PC ](x(t)), (10)

where SW is the component-wise soft-thresholding operator with threshold vector W , and PC is

the orthogonal projection onto the closed convex set C. When D is a bounded linear operator with

a bound 0 ≤ c < ∞ such that 0 ≤ DD∗ ≤ c Id, the numerical implementation of this projection

is defined as described in [42]. Let {βt}t∈N be a sequence with 0 < inft βt ≤ supt βt < 2/c, and

define the two sequences {ut}t∈N and {pt}t∈N by

u(t+1) = βt(Id−PB2
ε
)(β−1

t u(t) + D(x−D∗u(t))− y)

p(t+1) = x−D∗u(t+1) (11)

Then from [42] we get that u(t) → u and p(t) → PC(x)

In the case of the Re-Weighted Lasso problem (5), f = ‖y−D ·‖2
2 is convex and differentiable

with a β-Lipschitz gradient, and g = ιB1
W,εp

with B1
W,εp

= {x ∈ RN : ‖Wx‖1 ≤ εp}. More

precisely, as the `1-norm is non-differentiable, the Forward-Backward splitting is used [41],

[36]. Forward-backward (FB) splitting is essentially a generalization of the classical gradient

projection method for constrained convex optimization. It can be written in the compact form

x(t+1) = PB1
W,εp

◦ (Id−µt∇f) (x(t)), (12)

where 0 < inft µt ≤ supt µt < 2/β for the iteration to converge (weakly in general), ∇ is

the gradient operator, and PB1
W,εp

is the orthogonal projection onto the convex set B1
W,εp

. This

projection can be efficiently computed thanks to the developments of Appendix B. From [35],

one can show that in the both cases presented above, the sequence (x(t))t∈N converges to some

point x∗, which is the solution of the problem.
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APPENDIX B

PROJECTION ONTO A `1 WEIGHTED BALL

We present in this section an algorithm and its numerical implementation that solves the

problem

y = arg min
u∈Rn

‖u− x‖2
2 s.t. ‖Wu‖1 ≤ ε, (13)

for a non-negative diagonal matrix W ∈ Rn×n. This problem can be seen as the projection of

the point x ∈ Rn on the weighted `1 ball B1
W,ε = {u : ‖Wu‖1 ≤ ε}.

If ‖Wx‖1 ≤ ε, there is nothing to do and y = x. In the other case, the solution is clearly on

the surface of B1
W,ε, so that we must solve

y = arg min
u∈Rn

‖u− x‖2
2 s.t. ‖Wu‖1 = ε. (14)

In addition, since this ball is convex and centered on the origin, it is clear that sign xi = sign yi,

therefore, up to the appropriate flipping of some coordinate axis in Rn, we can assume xi, yi ≥ 0.

The Lagrangian form of problem (14) is

L(u, θ) =
1

2
‖x− u‖2

2 + θ(
n∑

i=1

wiui − ε), (15)

where θ ∈ Rn is a Lagrange multiplier. For a given θ, the minimum of L is reached when

ui = xi − wiθ + ζi = xi − wiθ = wi

(
xi

wi
− θ

)
, (16)

if xi

wi
> θ, and ui = 0 otherwise. In other words,

ui = Swiθ(xi),

where Sλ(v) = sign v (|v| − λ)+, is the soft-thresholding of v ∈ R by the threshold λ > 0,

with (v)+ = v if v ≥ 0 and 0 else. The minimum of L with respect to θ is thus reached when

‖WSwiθ(xi)‖1 = ε, i.e. when ∑
i

w2
i (| xi

wi
| − θ)+ = ε. (17)

This can be computed very efficiently by the following simple method.

Let the vector z ∈ Rn be the vector obtained by sorting the values | xi

wi
| by decreasing order,

a process that can be realized in O(n log n) operations.
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If we set θ = zn−k+1 for some index k, we get
∑n

i=1 w2
i (zi − θ)+ =

∑n−k
i=1 w2

i (zi − zn−k+1).

Let the index i∗ be such that

i∗ = max{1 ≤ k ≤ n :
n−k∑
i=1

w2
i (zi − zn−k+1) ≥ ε

}
.

Therefore, by construction the θ satisfying (17) belongs to the interval I = [zn−i∗+1, zn−i∗ ] ⊂ R.

In that range, (17) becomes
n−i∗∑
i=1

w2
i (zi − θ) = ε,

so that finally,

θ = θ(i∗) =
(
∑n−i∗

i=1 w2
i zi)− ε∑n−i∗

i=1 w2
i

.
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