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Abstract

In this paper we exploit the continuous wavelet transform (CWT) on the two-dimensional sghareoduced
previously by two of us, to build associated discrete wavelet frames. We first explore half-continuous frames, i.e.,
frames where the position remains a continuous variable, and then move on to a fully discrete theory. We introduce
the notion of controlled frames, which reflects the particular nature of the underlying theory, in particular the
apparent conflict between dilation and the compactness sfthenifold. We also highlight some implementation
issues and provide numerical illustrations.
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1. Introduction

Many situations in physics and medicine require the existence of suitable tools for analyzing data on
spherical manifolds. In that case, as usual, the Fourier transform (FT) is a standard tool, which amounts to
an expansion in spherical harmonics, whose support is the whole sphere. The Fourier sgtisgioms
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global and somewhat cumbersome. It turns out that, as an analysis tool, the continuous wavelet transform
(CWT) has many advantages over the FT. In particular, the spherical CWT is local and is controlled by
two intuitive operations: dilation and transport over the sphere by rotations.

Thus, quite naturally, many authors have tried to design a suitable spherical CWT, for instance, Tor-
résani [28], Rubin [25,26], or Holschneider [16]. However, none of the resulting tools is completely
satisfactory. At last, a rigorous, yet efficient transform was developed by several of us, in two succes-
sive papers [4,5]. The technique is grounded in group theory, more precisely the coherent state approact
based on square integrable group representations [3]. The relevant group here is the conformal group of
the two-spheres?, namely, the Lorentz group SQ,3). The upshot of these two papers is a rigorous
spherical CWT, together with a detailed analysis of its numerical implementation, including a suitable
discretization scheme.

The present paper is a continuation of [4,5] and improves on them in two respects. First, we present
a detailed construction dramesassociated to the spherical CWT. These actually come in various
flavors. Besides the usual discrete frames [11], semi-continuous ffaamesthe continuous frames
familiar in coherent state theory [3], we also introduwmmntrolled and weightedframes, which are a
natural generalization of plain frames. In addition, we also propose an efficient implementation through
a systematic use of the fast spherical convolution introduced by Driscoll and Healy [12]. The resulting
tool is quite efficient, as illustrated by several examples [21,31,32]. It opens interesting perspectives for
practical applications in a number of fields, such as geophysics, astronomy and astrophysics, light field
processing [9], omnidirectional vision [31,32] and medical imaging (e.g., EEG, the sphere being a good
approximation of the skull).

The paper is organized as follows. We begin by reviewing in Section 2 the general theory of the CWT
on the two-sphere and its practical implementation. We basically follow [4,5], with particular emphasis
on the determination of the range of the scale parameter. As a general reference on 2-D wavelets, we
use our recent monograph [7]. Then, in Section 3, we discuss the various notions of abstract frames,
discrete, continuous and half-continuous, as well as a useful generalization of the standard concept,
called a controlled frame. Section 4 is the core of the paper. Here we derive, by two different methods,
a class of half-continuous frames of spherical wavelets. We then turn to the case of fully discrete spherical
frames. Finally, numerical examples are provided to illustrate the potential of these new frames.

2. The continuous wavelet transform on the 2-sphere
2.1. The general theory

The spherical CWT, as its Euclidean counterpart, is based on affine transformations. On the 2-
dimensional spheré?, embedded irR3, the latter consist of rotations, defined by elementsf the
group SO(3), and dilations, parameterized by the seald* [4]. Let L?(S?, du) be the space of finite
energy signals on the sphere, that is, the Hilbert space of square integrable functi@nsith the rota-
tion invariant Lebesgue measurg@, ¢) = sind dd dy. In that space, the basic operations we consider
are represented by the following unitary operators:

2 semi-continuous wavelet frames are also knowbDygadic Wavelet Transfornj49].
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Fig. 1. Visual meaning of the stereographic dilationssn

e rotationR,, wherep € SO(3) may be parametrized in terms of its Euler angles:

(RN @)= f(p~'w), w=(6,9). (2.1)

In this equationp is a 3x 3 rotation matrix acting on a unit vector &®.
e dilation D,, with a € R :

(Do f) (@) = 1(a, ) f (017), (2.2)
wherew, = (6, ¢) with tan%ﬂ = atan%; a>0, 0e[0,r], ¢ €[0,2r); andx is a normalization
factor. Technically, this factor is a cocycle or a Radon—Nikodym derivative, resulting from the fact
that the Lebesgue measuyrds not invariant under dilations. It is given by

4612
[(@? —1)cost + (a2 + 1)]?’

Ma,0) = (2.3)

Intuitively, the action of the dilationD, on a functionf e L?(S?) may be understood as follows:
project f on the plane tangent at the North Pole by a stereographic projection from the South Pole, apply
a Euclidean dilation by to the projection and lift the resulting function back to the sphere by inverse
stereographic projection. Figure 1 illustrates this process by determining the imagg® of a point
A € S? under dilationD,,.

In the language of group theory, these two affine transformations, which do not generate a group nor
commute, belong to the conformal group of the spt#re-the Lorentz group SE@3,1)—each subgroup
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being one component in the lwasawa decomposition (see [4] for details). Using these definitions, a square
integrable function/ on S? is called aradmissible waveldf and only if there is a finite constante R* ,
such that for all € N,

Gy()=

zz+1 W’ m*<c. (2.4)
i<t

wherev, (I, m) = (Y"|¥,) is the Fourier coefficient o, = D,y . Note that the existence of (a dense
set of) admissible vectors expresses the fact that the underlying representatiop(®f15@3 square
integrable [4].

Fortunately, there exists a simpler requirement, nearly equivalent to (2.4) (strictly speaking, the con-
dition is only sufficient), which consists in imposing

w ,9)
/d o, 1+COS€ =0. (2.5)

It has been shown in [4,5] that any admissible 2-D waveleRinyields, by inverse stereographic
projection, a spherical wavelet that satisfies (2.B) particular, for

b0, ) = exp(—tanz(%)), 2.6)

which is the inverse stereographic projection on the sphere of a Gaussian, a simple example of admissible
wavelet is theDifference of Gaussian®OG) spherical wavelet

1
V(0.9) =¢0.9) = —[Dadl©, ¢), a eRY, (2.7)

which obviously satisfies (2.5).
Thus, with the action of rotations and dilations given above, the spherical CWT of a furtton
L?(5?), with respect to an admissible wavelete L2(S5?), is defined as

Wilp,a) = (Vp.al f) =/dM(a>) R,Dor (w) f(w), (2.8)

where(-) denotes the complex conjugation. This last expression is nothing but a spherical correlation,
ie.,

Wi(p,a) = (Ya* f)(p) E/du(w) [Rp¥al(@) f (). (2.9)

The following proposition shows that the family of rotated and translated wavelets constitutes a (con-
tinuous) frame inL?(S?), from which we derive a reconstruction formula.

3 The argument in [4,5] applies either to the necessary admissibility conditions (zero mean) or through the asymptotic rea-
soning corresponding to the Euclidean Limit. For the convenience of the reader, we give in Appendix A a direct proof that the
necessary and sufficient admissibility conditions do indeed correspond to each other, which means that any Euclidean wavelet
will yield a spherical wavelet.
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Proposition 2.1. Let f € L?(S?). If ¥ is an admissible wavelet such th)%%” de v (6, @) # 0, then

dad
r@=[ [ w0k D], (2.10)

R SOG3)

wheredv(p) is the left Haar measure d®O(3)and the coefficients are given (8:8). Theframe operatdr
L, is defined by

[LyhU,m)=Gy(Dh(,m), VheL?(S?), (2.11)
whereG (1) is given in(2.4).

The frame so obtained is probably not tight, in general. As a consequence, the spherical CWT does
not define an isometry. However, one has the following result, which follows immediately from (2.10):

Corollary 2.2. Under the conditions of Propositidh 1, the following Plancherel relation is satisfied

dad ~
1= [ [ T w0 (2.12)
R% SOB)
with
Wy (o, a)=(Wp.al )= (RoLy; D | £). (2.13)

The proof of these results and more details on the spherical CWT and its implementation can be found
in [5] (see also [7] and [17]).

2.2. The axisymmetric case

When working withaxisymmetriqor zonal) functions, i.e., functions invariant under rotations about
the z-axis, the action of rotations is easily understood.

Let us recall that a rotatiop € SO(3) may be parametrized by its Euler angles, o (¢, a € S?,
0 < 6 < ) in the following way

2,.Y..2

p=p(p,0,a)= FoloTa
wherer; denotes a rotation by an angjeabout thex axis. If g is an axisymmetric function, then
R,g = Ri,18, Where[w] = p(g, 6, 0). In this way, if g is localized around the North Polg thenR,g
is localized around = (8, ¢) € S2.
Given[w] = p(p, 0,0) € SO(3), we define the correlation: L2(5%) x L?(S?) — L?(S?) as

(g + @) = [ 6u(@) Rung@h(@). (2.14)
SZ
to distinguish it from the complete correlatiergiven in Eq. (2.9).

Since the stereographic dilation is radial around the North Pole, an axisymmetric wavetes?
remains axisymmetric after dilation. Consequently, the CWT is redefinesd onR? by

4 Also calledresolution operatoin the coherent state literature [3].
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We(w,a) = Yo * f)([@]) = Wa* @), acR%. (2.15)
In that particular case, the reconstruction formula (2.10) becomes
da du (o'
f(w)= f f %3(‘”) Wi (@', @)[Riw Ly  Datr] (@), (2.16)
R% §2

whereL,, is the frame operator defined in (2.11) with, reducing to

47 da - 2
Gw(l)=21—+1/$|1/fa(l,0)| . (2.17)
RY

2.3. Practical implementation

In this section, we focus on the implementation aspects of the spherical wavelet transform associated
to an axisymmetric wavelet. A more general implementation including directional wavelets may be found
in [5] (we may also quote the fast implementation due to McEwen et al. [21]).

Equation (2.15) shows the SCWT as a spherical correlation between fung¢temdy,,. The follow-
ing proposition shows that the correlation has a simple expression in the Fourier domain.

Proposition 2.3. Let f € L?(S?) and letg € L?(S?) be axisymmetric. Then

— [ 4 —— .
(g* f)l,m) = Zl—Hg(l,O)f(l,m), V(,m)eN, (2.18)
whereh denotes the Fourier transform afon S2 and N = {([,m): [ €N, m € Z, |m| <.

A proof of this classical result can be found in [12] or [17].
Equations (2.18) and (2.15) suggest a fast implementation of the SCWT in the Fourier domain, which
we now detail. We recall that a functiofie L2(5?) is band-limited of bandwidtls € N if

feBsg={geL?S?%: §(l,m)=0, ¥(,m) € N such that > g}. (2.19)
We will work with data discretized on thegui-angulargrid G defined by
Gp:=1{0,.9,): p.q € Z[2B]}, (2.20)

with Z[N] = {0, ..., N —1},0, = (2p + 1) ;5 andg, = ¢ %. Actually, {6, } constitutes @seudo-spectral

grid, localized on the zeros of a Chebyshev polynomial of or@gB8212]. The next result, proved in [12],

will be of great importance in what follows. It shows that there is a quadrature formula for calculating
the Fourier coefficients of band-limited functions.

Proposition 2.4. Let g € B with 8 € N°. Then there exisNeightSwﬁ € R such that

aUm) = / du(@. ) 770, 9)g (6. ¢) (2.21)
52

= Y whY0,,0)20, ¢, (2.22)
P.q€Z[2B]
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forall (I,m) e Ny ={(,m) e N: 1 < B}and(b,.,¢,) € Gs . Explicitly

2 1
b —""sin® —— _sin((2k+ 1)6 2.23
W)= (”)kgz[;gﬂkﬂ (2% +1)6,), (2.23)

i B
With 3 21281 2gezizp) Wp =47

Equation (2.22) is in fact @iscrete Fourier transformon the sphere. The inverse discrete Fourier
transform is obtained as

gOp 0= Y &U,mY" 6y 0), p.qeLl2B]. (2.24)
(l,m)eNﬁ

For ! andm fixed, the evaluation of (2.22) need¥(8?) operations. Then fo(/, m) € N3, i.e., B2
elements,0 (8% operations are needed. The same estimate is valid for the computation of the in-
verse Fourier transform. The performance of this evaluation may be greatly improved if we note that
Y/ (0,, ¢g) = nim P"(c0sH,)e'™, with P/" the associated Legendre polynomial of order) andn,,

a normalization constant. Then a discrete Fourier transfori$y anay be applied on the longitudgg in
(2.22), which yields

gumy= Y whe®, 0)Y" 0y, 0,) (2.25)
P.q€L[2p]
= > whmng(0,.m)P/" (COS,), (2.26)
PEL[2B]

with g(6,, m) = qumﬁl g(0,, p,)e~"™#:. The application of a FFTin longitude reduces the complex-

ity to O(B%log B) operations [5]. Moreover, there exists a fast2log? 8) algorithm for the spherical
Fourier transform developed by Driscoll and Healy [12]. It combines a discrete cosine transform (DCT)
over the (co)latituded, and the recurrence rules of Legendre polynomials [33]. A free versibn

this method, calle&pharmonicKit may be found in [24]. These methods are also integrated into the
MATLAB © YAWtb toolbox’

2.3.1. The scale range

The range of the scale parameter in the continuous transform seems arbitrary. However, this is not the
case in practice. For fixing ideas, let us recall the situation for classical wavel&tsomen if the wavelet
transform of a signal is obtained by integration over the whole real line, in practice, data are discretized
and have finite length. Hence the possible values of the scale parameter are constrained on one side b
the sampling frequency (this gives a lower bound: the wavelet cannot oscillate more than permitted by
the Nyquist frequency) and on the other side by the length of the interval where the signal is defined
(upper bound: the wavelet should “live” inside that interval).

In the case of the spherical continuous wavelet transform, the smallsstlso constrained by the
sampling frequency of the spherical grid. This phenomenon is displayed on Fig. 2, Wi@re) is

5 Fast Fourier transform.
6 Under GPL license (General Public License [15]).
7 Developed by some of us and freefyRLly) available at: http://www.fyma.ucl.ac.be/projects/yawtb.
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Fig. 2. Behavior oﬁ/?a (1,0) as a function of the scale. If « = 0.01, the bandwidth of the dilated wavelet exceeds the limit
fixed by the discretization.

drawn for several values af. On this graph, we discretizg¢, on a 512x 512 spherical grid according
to the previous section, for a maximal permitted bandwjgith 256. One clearly sees thét(/, 0) is not
numerically negligible foi = 255 with the choice: < 0.01. Therefore), ¢ Bg and it cannot be defined
0N Gose.

As a matter of fact, the upper limit of the scales is also constrained by the high frequencies of the
dilated wavelet. Indeed, the nature of the dilation produces an accumulation of points around the South
Pole, so the oscillating tails of the wavelet are compelled to oscillate fasteiraseases, even if the
amplitude is negligible. The discussion below roughly formalizes this behavior. Before entering it, we
emphasize the purely mathematical—and, in fact, irrelevant—aspect of the phenomenon. As we already
stressed in [5], going to large valueswis unphysical, wavelet analysis idacal tool, whose main func-
tion is to detect and characterize (local) discontinuities. Correspondingly, the difergconstruction
formula, be it with the linear or the bilinear formalism, requires the large scale part of the signal to be
treated separately, by projecting it onto a scaling function, instead of a wavelet. Physically, this is to be
expected: when scale is important for a given phenomenon, it i®daéscaling behavior that counts.
Good examples are found in statistical mechanics (critical exponents), conformal field theory, or the
analysis of fractals.

Now we turn to the mathematical analysis of the large scale behavior of our spherical wavelets. We are
going to estimate the highest nonnegligible frequelyay:) reached by the dilated wavelgt,, which
determines its bandwidth. We will see that it increases not only for small values of the scale (as expected
because that corresponds to high frequencies), but also for large ones. Our argument rests upon the
fact that the bandwidth of an oscillatory function may be estimated from the distance between its zero
crossings.
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Given two latitudest andg in [0, ], let us first study the evolution of the (angular) distance between
the dilated angles, andg, as a function of:. We get

tania, —tanip, ( tanio — tan3p

1
Agg(a) :=tan=(a, — B,) = =a
P 2 P 1+ tane, tanip, 1+ a?taniatanip

) = Kap (a)Aot,B(l)

with

1+ taniotang
Kaﬁ(a)=a( 2 18n3p ) (2.27)
1+ a?tansatansp

If « andp are not zero, the function,s has a unique maximum in

1
Jtanjetanip

We also have that,z(0) = lim,_, o ks (a) = 0. In other words, the distanc#,z(a) increases in0, a]
and decreases (@, co).

Now if the bandwidth of the wavelet g, the minimal distance between two of its zeroes is of the
order of” Let us label those points asand = o + 7. From the relatioms(a) = ks (a) Aes(1), we
can see that the bandW|dA}h1(a) of the dilated Wavele#fa is approximately related tiy by

i, B) = (2.28)

an >~ Ky tan——
D@ K@

that is to say,

lM (Cl) =~

2y’

T
2tan (ks (a) tan(Z-)) ’

Knowing the behavior ok.z(a), we can roughly say thdf,(a) decreases in the intervad, a] and
increases itia, o) (see Fig. 3).

Taking into account thaf, (/, 0) has noncompact support, another estimaig af) may be calculated
as

(2.29)

L
Iu(a)=min{ L € N: 0,991 12 < [ (1. O < [y I | (2.30)

For the particular case of the DOG wavelet, this function is represented in Fig. 3, in solid line, with
a € [0.025, 40]. We clearly see on this figure, represented in log-log scale, a minifgus 3 in a
neighborhood of: = 0.8. This means that the DOG wavelet should be discretized on an equi-angular
spherical grid of 8« 8 points at least and for values @fnear 0.8 only. Besides, if we take for example

a 256x 256 grid (8 = 128), the dilated wavelet, will not be correctly discretized fo# outside of

the intervallanm;, = 0.0204 ay = 45.83] becauséy (a) is strictly bigger thari = 127 for those values.
Notice that, in theEuclidean approximationf the stereographic dilation [5], i.e.,

1 /1
Dalﬁ(9,§0)2;¢<;9»§0>, if a1, (2.31)

the support ofjr, follows the rule
D, (1,0) ~ Jap(al). (2.32)
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Fig. 3.Iu (a) as a function of: in solid line (logarithmic representation).

for a particular functiorp : R — R given in [17]. This behavior is confirmed on Fig. 2 where the curves
maxima decrease likg/a. As for wavelets on the line, Eq. (2.32) tells us that the upper bayad of

the support of}, varies likeCa~1, for C € R. The dashed-line of slopel in Fig. 3 shows this evolution

in a logarithmic representation of scales. The consfahas been estimated to 2.51 by linear regression
on scales: < 0.04. The closer the curvig(a) fits this line, the better is the Euclidean approximation.
Finally, we plot in dotted-line the approximation (2.29), for a wavelet with bandwigdth6 and« and

B such that taéoctan%ﬂ = 1. For this value ofy, this approximation gives a good prediction/gfa)

for a < 1 anda > 1. However, it does not model correctly the behaviorjgf in a neighborhood of
a=1.

3. Framesrevisited

In this section, we describe under which conditions the parameters of the spherical continuous wavelet
transform can be discretized without losing the reconstruction property. We start by recalling some basic
facts about frames and then introduce a slight generalization of the standard conceptargtielted
frames.

3.1. Classical frames

Let $) be a Hilbert space with scalar prodydt) and the associated norif || = /(f1f), f € 9.
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Definition 3.1. Let I" be a countable set. A family of vecto¥s = {y,, € $: n € I'} is a discrete frame
in 9 if there exist two constants9 A < B < oo such that

AlFIZ< S Wl P < BIFIZ VF €8 (3.2)

nel’

The frame is calledight if A = B. WhenA = B =1 and||y, || =1,Vn € I', the frame is just an ortho-
normal basis. Given a framg, the associateftame operatorL is defined as

Lf =Y (¥ul )V (3.2)

nel’
This is, of course, a bounded operator. Indeed [29]:

Proposition 3.2. If ¥ is a frame offy, the associated frame operatfiris bounded and verifies
AT <L<BIZ, (3.3)

whereZ denotes the unit operator arl < Q meansig|Pg) < (g|Qg), Vg € 9, for two given operators
P andQ.

It follows that the frame operatak is not only bounded, it also has a bounded inverse, that is, it
belongs to the sdBL($) [2]. We emphasize th&L($) is the natural class of operators in the context of
frame theory. Indeed, (3.1) means that the n@rnfj and the set of coefficien{gy, |-)} define the same
Hilbertian topology onf). And the elements oBL($) are precisely the natural isomorphisms for such
a Hilbertian structure, exactly as unitary operators are the isomorphisms for the Hilbert space structure
defined by a given inner produgt-) (note the difference betweertHilbert space and Hilbertian space:
the former is attached to a given inner product, the latter to an equivalence class of inner products).

Itis possible to reconstruct a function from its frame coefficients. Let us introduce first a related family
of vectors¥ = {y,: n € I'} defined by

&n = L_lwn- (34)
Then, we have the following result:

Proposition 3.3. The familyd is a frame with bound® < B—* < A~! < oo, called thedual frameof ¥.
Any f € $ can be reconstructed from its frame coefficients through

F=D) Wl V=D (Ful ). (3.5)

nel’ nel’

See [11] for a proof. Note that if the frame is tight thép = %1//,1, and the same vectors are used for
the decomposition and for the reconstruction. In fatt;| f) = A|| f||? for every f € §, soL = AT and
L~ = A~1T. This is the most attractive property of a tight frame.

Finally, whenA >~ B we can have a good approximation of the elemgébly setting

2
Lf = > Wl )V, (3.6)

f_A—i—B A+ B
nel’

since in this casg%L ~T.
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3.2. Continuous and half-continuous frames

Several variations on the original frame concept have been studied. For instance, it is possible to extend
the original definition to the case of continuous decompositions [29], as follow€. heta measurable
space with measureudv). Given a family® = {yr, € 9, v € C}, we define the frame operator

Lif655+—>Lf=/dM(v) Wl ) (3.7)
C

The set¥ is called acontinuoudrame if L is a bounded operator. This guarantees thatGL($)), and
thus also the reconstruction gffrom its wavelet coefficient§(y, | f)}.
It is also possible to have a mixed set of indices where some of them are continuous while the rest are
discrete. If we note by € C the continuous set and laye D the discrete one, then we say that the family
v ={y,, €N vel, neD}isaframe if there exist two constants<0A < B < oo such thaty f € §,

AlfI?< Z/du(v)|(%,n|f>|2<B||f||2- (3.8)

HEDC

In that case, the family is called ahalf-continuoudrame.
3.3. Controlled and weighted frames

We introduce in this section a slight variation on the definition of frames, cafiettolled framesit
helps tuning the frame bounds in order to obtain a better approximatigrogfL f (as in (3.6)).

3.3.1. Controlled frames
Definition 3.4. Let O € GL($)). A frame controlled by the operata@? is a family of vectorsl = {y, €
$: n e I'} such that there exist two constamtsB € R verifying

AIFIZ< Y Wl £)(F10v) < BIFIZ (3.9)

nel’

forall f € 9.

In that case, the frame operator is given by

Lof=0Lf=> (Yulf)On. (3.10)

nel’

Proposition 3.5. The familyw is a frame offy controlled byO € GL($)) iff ¥ is a(classica) frame off).

This result is obtained by projecting, f on f and noting that. , = O L. Therefore, if¢ is controlled
by O, there are two constants, B € R’ such that

AT<L,<BI (3.11)
& A0 '<L<BO™Y (3.12)
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with L the classical frame operator defined in (3.2). Since there are two condtanks < R* such that
A, < 0 < B,, we see that a frame controlled loy with frame boundsA, B € R is a genuine frame
with frame boundsABgl andBAgl. Conversely, ifA’ < L < B'for A’, B’ e R* ,thenA’'O < L, < B'O
andA’A, < L, < B'B,, which proves (3.9).

As a consequence, given a controlled fragneevery functionf € $) may be reconstructed as in (3.5)
without using the operatap. But whenA >~ B in (3.11) is close to the identity and we obtain a
new approximation forf

2

~ — [ =
f A+ B of A+ B

2
a5 Lo

> Wl )0V (3.13)
nel’

Thus, if|B,/A,| < |B/A|, Eq. (3.13) gives a better approximation fa¢han the one obtained using
the frame operatoL. in (3.6). If, in addition, it turns out thaDv, is easily computed, then we have
a simple and good reconstruction ¢f as desired. Thus, while a controlled frame is equivalent to a
classical frame in the mathematical sense, as stated in Proposition 3.5, they can have very different
numerical properties.

3.3.2. Weighted frames

A particular case of controlled frame occurs when the operé@tas diagonal with respect to the
elementsy, of the framev, i.e., if Oy, = w, ¥, for w, € R. Notice that, since) is positive, we have
necessarilyw, > 0. This diagonalization of the operatorleads to the concept @feightedirames.

Definition 3.6. Let¥ = {y,: n € I' C Z} be a family of elements af and{w, € R} : n € I'} a sequence
of strictly positive weights. We say that this family isuaframe of §, if there exist two constants 9
A < B < oo such that, for every € 9,

ANFIP <D wal (Wl )2 < BILFIZ (3.14)

nel’

In fact, if w, > 0 foralln € I", aw-frame{y,} corresponds to the classical frafgw, ¥, }. But it will

be useful to make these weights more explicit later on. It is interesting to note that the notion of weighted
frames was already present in the beginnings of frame theory, as developed by Duffin and Schaeffer [13],
in the context of the reconstruction of band-limited signals. They have shown that if/Aug -7 7l

then it is possible to reconstruct the continuous functfofrom an irregular samplingf (¢,)},cz, by

using the frame

tyyl — by
{ %hr(t—tn): neZ}, (3.15)
wherehr (1) = sina%F). We see that in this case some strictly positive weights= ,/’”“% appear,

which reflect the particular sampling geometry. We will see in the sequel that similar considerations are
needed for an equi-angular spherical sampling.

Even if a weighted frame may also be expressed as a classical frame, we point out that it is possible to
define aw-frame operatoL,, : $ — $ in this context by

Lyf =Y walYul )V, (3.16)

nel’
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for every f € $. This is an invertible operator [17] and the reconstruction formulgffoeads

F=L Ly f =Ly wall £)vn =Y wa (Wl £, (3.17)

nel’ nel’

wherey, = L%,

3.3.3. Half-continuous controlled frames

To conclude this section, let us remark that we can define half continuous frames controlled by an
operator fromGL(%). In that case, taking the same notations than in Section 3.2, a famiy{y, , €
$: v eC, n e D) constitutes such a frame if, for two constadtsB € R* ,

AlfIP<Y. / e () (Yol £) (F10%0) < BIFI2, (3.18)

neD, cc

forall f € $§ and a givenO € GL($). As before, it is easy to see that a half-continuous controlled frame
is equivalent to a classical half-continuous framepii\ particular case arises whe&hcan be factorized
in

OVyn=wy O~Wv,n’ (319)
whereO e GL() andw, are positive weights. Then, (3.18) becomes
AIFIP< Y w, / die V) (Yonl I 1OY0) < BIFI% (3.20)
neD vel

4. Stereographic wavelet frames on the sphere

We come back to the question of the construction of spherical frames starting from the continuous
wavelet transform as presented in Section 2. From now on, all wavelets will be assumed to be axisym-
metric.

Various alternative constructions of spherical wavelets have been proposed. For example, spherical
wavelets based on the lifting scheme were introduced by Schréder and Sweldens [27]. They yield a
multiresolution analysis on the sphere based on a particular parametrization of the latter.

Freeden [14] defines also a transformation $3nusing a special dilation operator defined on the
Fourier domain. Polynomial spherical frames have also been introduced in [22] where the order of the
polynomials plays the role of the dilation. The drawbacks of these methods is that they focus on the
frequential aspect of the transformations. In consequence, the spatial localization of these wavelets is
neither guaranteed, nor precisely controlled.

Bilow did succeed in getting good localization properties by using the evolution of a spherical
Gaussian governed by the heat equationSéri9]. Then he gets a set of wavelet filters by differenti-
ation of this Gaussian. However, this approach is restricted to the Gaussian function and thus it not as
general as the one based on a stereographic dilation applied to an arbitrary admissible wasfelet on

In the following sections, we present two different approaches to the construction of semi-continuous
spherical frames. The first one is a straightforward generalization of the classical Euclidean construction.
Quite naturally, however, this method does not lead to a tight frame. Indeed, since the continuous version
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of the wavelet transform is not an isometry, we cannot expect its discretization to yield a tight frame
(discretization usually reduces the quality, i.e., tightness, of frames [6]). We then show that a controlled
frame may be constructed in order to get an easy reconstruction of functions from their decomposition
coefficients. Finally, a fully discrete frame decomposition is also presented.

4.1. Half-continuous spherical frames

4.1.1. First approach
We propose to discretize the scale of the CWT, but we let the position vary continuously. We choose
therefore

weS? aeca={a;eR:: jeZ, a;>aj1}, (4.1)
which generates the half-continuous grid
A@) = {(w,a)): 0 §?, jeZ}. (4.2)

To simplify these notations, we will replace in the sequel each occurreneg by j, V., = Dy,
becoming for instance¢; = D;v, and similarlyW; () = (¥, ;1 f).

In order to have a reconstruction of every functibre L2(5?), a first possible approach would be to
impose

2
ALFIP < Y v; [ dute) W@ < BILAIP, (4.3)
JEZ 52
with A, B € R* independent off, and for some weights; > 0 taking into account the discretization of
the continuous measutk:/a®. In this case, the family

qj:{lﬁ'w’j:R[w]Djlﬂ: a)ESz, _]GZ} (44)

constitutes a half-continuous framefid(5?). The following proposition transposes the last condition in
the Fourier domain (as identified by spherical harmonics).

Proposition 4.1. Lety» be an admissible wavelet. If there are two constant® e R* such that

TT A 2
< — ri(,0)|"< B, forallleN, 4.5
2]+1jezvl|wj( )| € ( )

then(4.3)is satisfied.

Proof. The SCWT of a functiorf € L2(S?) in the Fourier domain is given by

Wiw.ay= 3 o Flmiud, Jal, 0" ().
(I, myeN

Using this expression, we obtain

S @ W@P=Yu ¥ Y o fa b k)

jeZ 52 jezZ  (k)yeN (',k)eN
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X 0,10 (I, O)fdu(w) Y @)Y} (@)

=Y v X grglfableof

jez (lk)N
= ¥ Ifa. mzz, b
(kyeN

where we have used the orthonormality of the spherlcal harmonics. The lower and upper bounds in (4.3)
are well defined if there are two constardtsB € R* such that

4 N 9
<5og vl of < forallleN.  C

JEL

In order to illustrate this result, let us choose a DOG wavelet 1.25) and a discretized dyadic scale
with a certain number of voicek € N° per octave, namely,

aj=a02_j/K, jeZ. (4.6)
For the sake of simplicity, we replace the indiegy j. Moreover we choose weights that take into
account the discretization of the continuous meagure:®, which means
aj; —djy1 _ 21/K -1
3 - 1 2"
a; 2 /Kaj
We have estimated the boundsand B, respectively, by the minimum and the maximum of the
quantity

(4.7)

l)j=

T ~
SO =54 vi [, 0, (4.8)

JEZ
overl € [0,31] andforK =1, 2, 3, 4. The functionS (/) is represented on Fig. 4 f& < 3 and the results
are shown in Table 1. We see that #%r> 2, the ratioB/A converges toward the value81L07. We thus
do not obtain a tight frame, for which we should hase= B. As can be checked on the graph, however,
S(l) quickly tends to a constant fée= 5. The problem mostly comes from a severe “dip” in the graph of
S(l) (Fig. 4) for small values of (I < 3).

4.1.2. Second approach

Trying to converge to a tight frame, we adopt now a second approach for our half-continuous dis-
cretization. We start from the Plancherel relation defined in Corollary 2.2 and determine under which
conditions we can obtain@ontrolledframe. That is, for two frame bounds B € R* , we want

AIFIE < Y ) [ i) W) @) < BILAIP, (4.9)
jEZ S2

wheref e L?(5?) andﬁ?j (w) = (R[w]L,ijxmf). The operatoL;1 controlling the frame is the contin-
uous frame operator defined in the Fourier domain by

LM m) = G0 fd.m),
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Fig. 4. The functionS(?) for € [0, 31) andK =1, 2, 3. First approach.

Table 1

Estimation of the bound4 and B as a function of the extrema
of S(7) for some values oK . First approach

K A B B/A

1 05281 09658 18288
2 0.6817 11203 18107
3 0.6537 11836 18107
4 0.6722 12171 18107

239

whereG, is given in (2.17). It is bounded with bounded inverse, ilg,,e€ GL($), if and only if the

waveletyr is admissible.

Proposition 4.2. If there exist two constants, B € R such that

4
20+1

A<

then(4.9)is satisfied.

Proof. As in the previous proposition, we start from the Fourier coefficients

JEZL

4 A =
W)= Y |5 Fmda. 0y @),

(I,meN

Gy Y v|¥;. 0P < B, forallleN,

(4.10)
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ThenW(w, a) = (R L, Da/| f) reads

Wi(w,a) = Z ,/ZZ—HGw(l) LA m) Y, 0] (),

(I,m)eN
since the frame operator depends only @amd commutes with rotations.

Using these expressions for the coefficients and the fact that spherical harmonics are orthonormal, we
find

> [ dw@ w@W@= 3 |fe0f ZZIHGWU) L1, 02

jeZ 52 (,k)eN

Then, inequalities in (4.9) are verified if there exist two constant8 € R* , such that
47
21 1

Gy w90 < B, forallleN. O

JEZL

Note that, fora; = ag27//X,

. 4 A
Gw(Z)zKlmoz—HZvjwj (4.11)
JEZ
since the weights; discretize the continuous measurg/a® (in other words G, is well approximated
by Riemann sums). Therefore, we obtain a good approximatioh,dfy taking a largeX in the previous
equation. We will seK = 10.
Given this scale discretization and using the same wavelet and the same weigistén the first
approach, the new quantity

A
N T 510w )Y il 0)| (4.12)

JEZL

has been evaluated. It is drawn on Fig. 5 for several valuel.ofhe previous “dip” at small has
disappeared and the oscillations occurringat 1 are almost inexistent fak = 3. This is confirmed
in Table 2, where the values df and B have been estimated by the infimum and the supremusii/of
on/ € [0, 31], respectively. We see that the raBg A tends quickly to 1 aXx increases. A tight frame is
thus reachable using the controlled frame approach.

4.1.3. Reconstruction
A function f € L?(5%) can be reconstructed from its coefficieMs(w) as soon as the family =
{V.j: € §?, j € Z} constitutes a (classical) half-continuous frame.

Proposition 4.3. Leta = {a;: j € Z, a; > a;+1} be a sequence of scalesyifis an axisymmetric wavelet
such that, for two constant$, B € R?,

4
Aégw(1)=ﬁ2v1|w,(l O <B, VieN, (4.13)

]E

then,
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Fig. 5. The functionS(?) for I € [0, 31 andK =1, 2, 3. Second approach.

Table 2
Estimation of the bounda and B as a function of the extrema
of S(1) for some values oK. Second approach

K A B B/A

1 07313 07628 10431
2 0.8747 08766 10021
3 0.9242 09254 10014
4 0.9503 09512 10009

flw)= Z v; / du (") [R[w]qlDa,‘//](w/)Wf(w/, aj)= Z vj[ﬁj * W;l(w),

JeZ ¢ =/

where/,, is the operator defined in the Fourier domain by

L€, h1(, m) = g, (Dh(I, m). (4.14)

and y; = £,y is the dual function ofy;.

The proof is similar to the proof of Proposition 4.2, replaciég by g,. The new operatot, is
nothing but the discretization df,, defined in (2.17). According to this proposition, the famifycan be
interpreted as a tight frame controlled by the oper@.y,dr

We have seen in Section 2.3.1 that there exists a limit scaeR? such that, for increasing <
[a, oo, the support of}, stops contracting toward low frequencies and starts growing again toward high
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frequencies. We will lump together all wavelets having this behavior into a single scaling fugction
defined by

-1
EWm) P =8u0 Y vi|d;0. 0% (4.15)

j=—00

On the example depicted in Fig. 8,~ 0.8. Thus we can safely take= 1, corresponding tg = O.
This justifies the upper bound in the sum (4.15). However, the WehghbSa/_z decrease rapidly for
Jj — —oo (large scales), so that only the last few terms, wjthsmall, will contribute significantly to
the sum, which entails that the functigris mainly concentrated at low frequencies. This behavior can
be seen again on Fig. 3 and can also be checked numerically.

In addition, if the analyzed signdl is band-limited, i.e., there is a bandwigthe N° such thatf € B,
(a frequent situation for signals on the sphere), we may defiasidualfunction with

A m)* = 105 Dm0 Y vi|i;0, 0% (4.16)

j=J+1

whereJ is the maximal resolution such that the supporﬂ?@(l, 0) is contained iHO0, B).
This function will catch the high frequency componentsfadmitted byzﬁj for j € [0, J]. With these
two functions, the reconstruction formula reads

J
f@)=1Z *S1@)+ Y vl i« Wil) + L7 » Hl(®), (4.17)

j=0

with S(w) = (R¢1f), & :%1;, H(w) = (Riwnl f), and n foyln-
4.2. Discrete spherical frames

As a last step, we will now completely discretize the CWT on the sphere. First, the scales are dis-
cretized as previously, namely

aed:={a;eRi:a;>ajn, jel}.
Then we choose the positions on an equi-angular grid of resolytaom of size 8; x 28; (8; € N),
ie.,
2p+Dr qm
weg; = {wmq = Ojp. @jq) € §% Oip = ——72— ¥jqg=—7—» P4 €L[2B;]}. (4.18)
4B, Bj
As explained in Section 2.3, the grif} allows to sample perfectly any function of bandwidth
The complete grid finally reads as follows:

A, B) ={(aj. wjpy): j €L, p,q € Z[2B;}, (4.19)

for a set of bandwidthB = {8; € N: j € Z}. In this case, for an axisymmetric admissible mother wavelet
¥ e 82, the family

{wmq lequlDJW JEZ, p,qeZ|2B)] } (4.20)
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constitutes a weighted frame controlled by the operagﬂr, if there are two constant$, B € R* such
that, for anyf € L?(5?),

ANFIZY. Y vjwpWilp, qIWilp. gl < BIFII2, (4.21)

JE€Z p,q€eZ[2B;]

with W;[p, ql = (Vjpg| ), W [p.ql= (L, w,pq|f) and where the quadrature weights, = wﬁ’ are

defined in (2.23). The produetw, replaces the continuous measuré da d. (9, ¢) of the continuous
framework.

Proposition 4.4. Consider the discretization grid (a, 3) defined in(4.19) Given an axisymmetric ad-
missible waveletr on S2, define the quantities

, 47
() :Z T 1 [Oﬁ)(z)Gw YO, (4.22)
JjeZ

IIXHII
§=|X|= (4.23)

(Hz)leN ”H”

where the infinite matrixXj; ), ycn is given by
2nvic; (1) o n ~

/1211/ — Z +R[ZBj,w)(l +l )Gwl(l)wfj(l» 0)| |Wj(l P 0)| (424)

jeN J
andc;(l,1") = (2( + B;) + HY?2(' + B;) + D¥2. If we have
0<8<Kpg< K1 <00, (4.25)

where Ko = infiey S'(/) and Ky = supy S'(1), then the family(4.20) is a weighted spherical frame
controlled by the operatof %, with frames bound& — 8, Ko + 6.

The proof of this proposition is quite technical and may be found in Appendix B.

The evaluation ofl X'|| could be complex when the size &fis infinite. In practice, however, we work
with band-limited functionsf € L?(5?) of bandwidthgy e N°. In this casdg|X || can be replaced by the
norm of the finite matrix(; ; )o<; / _g,,-

We have estimated the bounds of a spherical DOG wavelet frame in the3gasel28, using a
dyadically discretized scale (witkh = ap = 1 in (4.6)), while the bandwidth associated to the grid size
supporting each resolutiohwas fixed to

B =po2"!, BoeN, (4.26)

wherefy is the minimal bandwidth associatedi#@. The last equation takes into account the particular
nature of the stereographic dilation §f Indeed, for the DOG wavelet, Fig. 3 shows that the (numerical)
support ofy}; increases roughly withl2.

Table 3 presents the results of the evaluatiokgf K1, ands as well as the bounds of the associated
frames. One can see that condition (4.25) is satisfieg@g§or 4. However, a tight frame cannot be ob-
tained by increasing,. Indeed if 8y tends to infinity, the spherical grids at each resolution become finer
and finer and we approach half-continuous frames. But, as seen in the previous section, this single voice
discretization of the scale is not sufficient for producing a tight frame.
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Table 3
Evaluation ofKg, K1, ands on the functionsf € L2(52) at bandwidth 128

Ko K1 8 A=Kg—34 B=K1+56 B/A
fo=2 06691 07644 3442417 _ _ _
Bo=4 0.7313 Q7736 00607 06707 08343 12440
Bo=38 0.7313 Q7736 00014 Q07299 Q7751 10618

4.2.1. Approximate reconstruction
As explained in Section 3.3.1, the franke= {v;,,} controlled byL;1 provides a simple approximate
reconstruction formula if the boundsand B are sufficiently close. In this case, indeed, we have

flo >~—Z > vwipWilp, ql[Ly g (@) (4.27)

JE€Z p,q€eZ[2B;]

Let us assume that is a band-limited function, i.ef € Bg,, for a certaingy € N. Therefore f may
be discretized without loss of information on a géig, whereJ e N° is the maximal resolution of the
grid such thaig; = Bu. As in the half-continuous case, the residual functjatefined in (4.16) can be
used to catch the high frequencies left over by the restrictian/.

This leads to the approximate reconstruction formula

A+ B
Lf<w>~Z S v Wilp, a1[L7 0] @)

j==J p.q€ZI2p;]
-1
+o Y HIpql[Ly g (@), (4.28)
P-qE€ZI2Bm]

WhereH[p, ql= (qu|f) andnpq(w) = [R[cu/pq]n](w)-

Notice that a scaling function could be defined to gather wavelets in the rarge J. However,
wavelet coefficients at these resolutions are practically negligible since the wejgldsrease with as
2%/ The approximation off by the new frame operator

vjw;,Wilp,qlL, 1//Jpq

J—*J P.q€ZI28;]

2 -1
+ m Z H[p,CI]Lv, Npq > (4-29)
P.q€ZI2Bm]

may be largely improved by using tleenjugate gradient algorithnil9], which computes iteratively,

from L/ , the reconstruction of that we would obtain with the dual wavelets ¢f. Note the latter
cannot be obtained explicitly, because we cannot control the effect in Fourier space of the undersampling
implied by the successive grids.

4.2.2. An example

To conclude, we will now decompose and reconstruct a particular example of spherical data, namely,
the global average elevation map of the Earth. The original dgfaig. 6(a)) represent elevations rela-
tively to the mean level of the oceans (in meters) and are recorded on an equi-angular grick@8BA12
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@
I
©

Fig. 6. Decomposition of the Earth elevation map. (a) Global average elevation data BB®2equi-angular grid). The eleva-
tions are relative to the mean level of the oceans (in meter)¥gp, ¢1. (c) W3 p, q1. (d) Ws[p, ¢].
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points By = 256). Notice this is a purely illustrative example and is hot meant to provide a technique
for modeling real geophysical data.

The mother wavelet used for the frame decomposition is the D®& 1.25). The parameters of
the multi-scale gridA(a, B) areap = 1 and 8y = 4, for scales and bandwidths discretized as in (4.6)
(with K = 1) and (4.26). According to the original spherical grgi(= 256), the maximum resolution
is thusJ = 6. The values¥;[p, g] have been obtained by computifig; (v, a;) on the maximum grid
Gy, and by estimating then the coefficieri®; (w;,,, a;) by bilinear interpolation of the coefficients
Wi(wypq, aj) onthe sub-gridy;. We use this method because this gridasincluded into the maximum
one, i.e..G; ¢ G, for all |j| < J. Figures 6(b), 6(c), and 6(d) show respectively wavelet coefficients
Wolp, g1, Walp, q1, andWs[ p, ¢]1. We clearly see the multiscale decompositioryadn grids adapted to
data resolution. We may remark also that the Himalaya mountains behave like a singularity across scales.
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Fig. 7. (a) Difference between the elevation m@apnd its approximatiord 1. (b) Difference betweerf and its reconstruction
f(3) obtained after three iterations of the conjugate gradient algorithm. For (a) and (b), the values are in percentage of the
maximum value of the original data.

For the approximate reconstruction of the elevation map, the functipi) used in the definition of
the operatot,, has been first estimated with the help of (4.11) takkhe= 10 voices. In addition, the
ratio AiB occurring in (4.27) has been set t@289 from the results shown in Table 3. The difference
f — L, f between original data and the reconstruction is given on Fig. 7(a). As shown by the amplitudes
of this difference (given in percentage of the maximuny®fthe reconstructiod,, f is very close tof.

A better reconstruction yet is obtained with the conjugate gradient algorithm. Figure 7(b) displays
the difference betweerf and the approximatiorf ® computed after only 3 steps. The amplitudes of
f — f® are tiny in comparison with those ¢f — L), f (about 600 times smaller). This effect appears
also in the relative errors:

_ L/
17 =Ly /1 ~1.1%, (4.30)
A
)
7 =770 . 2 x 107 3%, (4.31)
1A
5. Outcome

In this paper, we have designed frames of spherical wavelets. Our construction has two distinguished
features. First, it is based on tpherical continuous wavelet transfoiintroduced in [4,5]. Thus we
use genuine spherical wavelets, whose multiscale localization is precisely controlled. Second, our sam-
pling scheme makes use of the very simple equi-angular grids, which are widespread in spherical data
processing.

We have introduced two variants of spherical frames. The first one, the quasi-continuous frames, fea-
tures a continuous translation variable and discrete scales, very much in the idea of the dyadic wavelet
transform. The second one yields fully discrete frames, where all parameters are sampled. A careful
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analysis of these constructions led us to introduce the idea of controlled frames, which reflect in this case
the particular nature of the spherical theory. Working with equi-angular grids allowed us to introduce fast
algorithms based on the fast spherical Fourier transform. Finally we have tested these frames on a set o
natural data, using successively two particular reconstruction procedures.

Spherical wavelet frames offer a very flexible tool whenever data are inherently bound to spherical
geometry. This is particularly the case in astronomy and astrophysics, where spherical wavelets have
become one of the main tools for analyzing the Cosmic Microwave Background (see [10] or [34] for a
recent survey and further references). But it is also true in fields such as geophysics and remote sensing
for example. Spherical wavelet frames offer a way to model efficiently functions that are deformations
of a spherical base and could thus be of interest in computer graphics [9,23] and in computational chem-
istry, where one wants to represent and study electrical potential surfaces [20]. A similar situation occurs
with certain problems in acoustics [18]. In computational vision, spherical frames seem a strong candi-
date for an efficient study of the plenoptic function. They also share a strong common geometric base
with conformal (projective) vision [1,31,32]. Finally, with the development of image based rendering
and omnidirectional cameras, spherical wavelets clearly provide a natural way toward processing these
new sources of data. More specifically, they allow one to extend efficient multiresolution algorithms to
the omnidirectional case. A concrete example is given in [30], where spherical wavelets are used for
multiresolution motion compensation. Another obvious application would be in compression of omnidi-
rectional images.
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Appendix A. Stereographic construction of spherical wavelets

In this appendix, we prove explicitly that full admissibility of Euclidean wavelets yields full admissi-
bility of spherical wavelets [this proof originates from a discussion with M. Fornasier and H. Rauhut; we
thank them both].

Proposition A.1. Any admissible wavelet ab?(R?) yields an admissible wavelet dif(S?) by inverse
stereographic projection.

Proof. As stated in [4], the stereographic projection (see Fig. 1) is the @aji?(S?, du) —
L?(R?, r dr dg) given by

E:f@, 2 arctarm, ¢). A.l
f( <p)+—>1+r2f( @) (A1)
The mapZ is unitary and satisfies the intertwining relation

ED,=D!E, (A.2)
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whereD, is the stereographic dilation (2.2) 88 and D/ is the usual unitary plane dilation, defined as
Dl f(r,¢) = ailf(aflr, go). (A.3)
The admissibility of a wavelet € L2(S?) can be written as

[ d
1= / dv(p)/a—‘3’|<RpDaw|¢>|2<oo, Vo € L%(S?), (A.4)
SO 0

where d is the invariant (Haar) measure on @PandR,, is the rotation matrix associatedgoe SO(3).
Introducing the unitary mag, we get

[d [d
1= [ 0 [ GUPR e = [ o) [ 551D R e
SO) 0 SOR) 0

OOda e 2
= [ @ [ 510220128, 0) e
SO 0

Definingy? = &+, we obtain finally

[d
I= / dv(p)/a—i}(D(pr‘ER;1¢>L2(R2)|2. (A.5)
SO 0
Consider the inner integral
d
10)= [ S 000712 20) s (A0

0

If 7 is an admissible wavelet ab?(R?), this integral converges, sin@@R;*¢ € L*(R?) for any ¢ €
L?(S?).

In addition, for anyy e L?(5?), I(p) is a continuous function gf € SO(3). The latter being compact,
this function is bounded. Therefore,

I= f dv(p) I(p) (A7)
SO(3)

also converges, again by the compactness a35This means thay € L?(5?) is an admissible spher-
ical wavelet. O

Appendix B. Proof of Proposition 4.4

Let us define

S=Z Z Viwjp, We@jpg, aj) We(wjpg, aj).
JE€Z p.q€Z[28;]
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Since

Wiw.a)= \/ Tf b, Jall, 0)Y]" (@)

(,m)eN

and

Wiw.a)= Y ,/21+ Gy (D) f U, myYra (1, 0) Y] (@),

(I,meN
we have

=L LY S ety Cmiem

JeN p,qeZ[2B;]1 , m)eN (', m"YeN

< Vjwp Gy (O, (L OV Yra, (', 0V Y (@) Y1 (@)

FOmfamy o
:Z4nv' Z Z - G, (Do, (1, 00, (I', 0)
JjeN : A,myeN (', m"eN \/(21 + 1)(21 + l)

X Z w;p Y (@)p) Y (a’/pq)

P-q€Z[28;]
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If I +1' < Bj, the producﬁ/,”’}? having ordet 4!’ [33], the weightw ;,, provides the quadrature formula

[8,12]

Y wi Y @) Y (@) = f (@) Y (@) Y (@) = 818
qGZ[Zﬁ] S2

forall |m| <! and alljm’| <!'. Therefore, the sumf splits in two parts

s=Y" 3 >+ Y > ...=C+D.

JeN p.qeZ[2B;] (I,m)eN JeN p.qeZ[2B;] (,k)eN (' ,m"eN
@' mheN I+1'>2B;
I+ <2;
The first termC, where (B.8) is valid, reduces to

C=Z47wj Z

jeN (,myeN
l<ﬂj

Arrv; R
= > [faemf’ Z (2;:”1)ﬂ[o,m(z)G;l(z)m_/(z,0)|2.
(t,myeN

If (4.25) is verified, then

Kol fII?< C < Kall fI2

Let us analyze the paid. SinceY" (w;py) = Y/"(0;,, 0)e™ia, with 6, =
find

(21+1)|f(l m)|°G 10| P, ¢, O

2p+1
4B

£=m andg;, =

(B.8)

(B.9)

ﬁj,we
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m v, m YV (0. i(m—m/)%l
Z Y (@jpg) Y} (@jpg) = Y[" Ojp, 0)Yyrm' (0, 0) Z e /
q€ZI2B;] q€Z[2B;]
=28;Y" 0. OY)" (0,500 > Swmszp,
teZ
m-+21B;|<I'
m m+21p;
=28 Y Y0500 0,008, mizp,
teZ
m+21B5|<I'
m m+2t8;
=26; Y Liry(m + 20B)Y]" 0, 0¥, (6}, 08y m215,
teZ
So,
]l[zﬁ, oo)(l + l/)]l[_l/ 1/](m + Zlﬁj) ~ N
D=Y 8rvip; > > > =L _ fa,myf, m+2p;)
jeN (I,m)eN I'eN teZ «/(21 + l)(ZI + l)
— -~ B / m m+2tB;
X Gwl(l)waj(l,O)z//aj(l ,0) Z w;pY" (0,07, +api 0y, 0.
PEZ[2B}]
Therefore,
Li2g; 000l + 1)Ly iy(m 4 2tB)) | 4 A
IDI< Y 8rvip > Y Y = = Fam| @ m+28))]
jeN (I,m)eN l'eN teZ \/(21 + 1) (21 + 1)
112 0 , m m+2tB;
x Gy () 1|¢a‘/(l,0)||¢/aj(l,0)| Z wjp Y, (‘9/'11’0)||Y/Jr ﬂj(9j17v0)|
PEZI2B;]
< 247'[1)]' Z ZZ‘f(l,m)Hf(l/,m +2t,3j)|1[_1/,1/](m +2t,3])
jeN (I,m)eN I'eN teZ

X Lig;.00 (L +1)G D[V, (. 0)| |97, (', 0) |

where we used the fact that”| < /&t for all (I, m) e NV, and}_ 725, Wip =
The sums omr andr can be bounded since

SO A m||FA m+ 2B Ly (m + 2B))

teZ |m|<I

A 1/2 A~
< Z[ > Ifa. m) |1 (m + Ztﬂj)] [Z | F@ m+208) 1y (m + Ztﬁj):|

teZ =m|<I Im|<I

An
26; "

1/2

1/2

A 172 N
< [Z Z \f(l, m)|211[,1/,1/](m + 2tﬁ]):| |:Z Z |f(l/, m + 2t/3j)|211[,1/,1/](m + 2tﬁ]):|

teZ |m|<l teZ Im|<I
l+2[ﬂj

. o0+ 1 1/2 . 1/2
<[Z|f(l,m>|2[ 2; +1]] [ 3 |f(l/,m')|2]l[—1’,z'](m/)}
J

Im|<1 1E€Z m'=—1+2tB;
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i R Jq20+1 1Y » 2 v
<| L femP|==+1|| |2 D 1f@.m)] ﬂ[_,,mm’—Zrﬁ,-)ﬂ[_p,mm’)]
Ll | 26, 1 Lz wez
_ . o 41 q491/21 I . / 1/2
< X |fam? 5 | |2 Z!f(l’,m>|21[_l,l](m’—Ztﬁ,->]
S m| <! - / - LreZ m'=-r
[ & 2 +1 1MAr 1 12
< Y |fam? L] | fam [ + +1]]
Ll < L 2B; 44 L 2B;
< 1 1/2 , 1/2 N 2 12 A N2 12
<@B) MU+ BN+ ) TTRU+ BN+ D[ fa.m)] S|,
Im| <! [m/| <V

applying the Cauchy—Schwarz inequality first on the sum evand then on the sum overTherefore,

. ) 1/2 ~ 5 172
DI < Z[Zlfaml } [Z [f@.m) } X0

1,l'eN m|<I | <1’
with

, 2nvic;(1,1) o n ~
=Y T s, 00( + DGOy (O 7,1 O,
jeN

andc; (1, 1) = (24 + B;) + D221 + B;) + D3,
IntroducingF? = Dom<t 1 f A m)|?, we obtain with the Cauchy—Schwarz inequality

IDISY Ry xAF <IFIIXFI=fIIXFI,
leN I’'eN

with F = (F)ien, 1FI12 = Yyen 12 = 1£12 X = (x 1)), e @A (XF)y = Yy x L 1) Fy. I
(4.25) is satisfied, we have

IDI<ILF XA =811 £11%,

with the norm

XG
[X] = sup ———.

The proof of the theorem is provided by noting that
0< (Ko=)l fI?<C—IDI<KSKCH+DI<(Ki+d|fI?P<o0. O
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