“complex signals”

The Importance of Phase in Complex Compressive Sensing

Abstract: We consider the question of estimating a real low-complexity signal (such as a sparse vector or a low-rank matrix) from the phase of complex random measurements. We show that in this phase-only compressive sensing (PO-CS) scenario, we can perfectly recover such a signal with high probability and up to global unknown amplitude if the sensing matrix is a complex Gaussian random matrix and the number of measurements is large compared to the complexity level of the signal space.