error bounds

INMA Seminar: "Learning to Reconstruct Signals From Binary Measurements"

Abstract: Recent advances in unsupervised learning have highlighted the possibility of learning to reconstruct signals from noisy and incomplete linear measurements alone. These methods play a key role in medical and scientific imaging and sensing, where ground truth data is often scarce or difficult to obtain.

Learning to Reconstruct Signals From Binary Measurements

Abstract: Recent advances in unsupervised learning have highlighted the possibility of learning to reconstruct signals from noisy and incomplete linear measurements alone. These methods play a key role in medical and scientific imaging and sensing, where ground truth data is often scarce or difficult to obtain.

Learning to Reconstruct Signals From Binary Measurements

Abstract: Recent advances in unsupervised learning have highlighted the possibility of learning to reconstruct signals from noisy and incomplete linear measurements alone. These methods play a key role in medical and scientific imaging and sensing, where ground truth data is often scarce or difficult to obtain.

Error Decay of (almost) Consistent Signal Estimations from Quantized Gaussian Random Projections

Abstract: This paper provides new error bounds on “consistent” reconstruction methods for signals observed from quantized random projections. Those signal estimation techniques guarantee a perfect matching between the available quantized data and a new observation of the estimated signal under the same sensing model.