invited talk

Learning to Reconstruct Signals From Binary Measurements

Abstract: Recent advances in unsupervised learning have highlighted the possibility of learning to reconstruct signals from noisy and incomplete linear measurements alone. These methods play a key role in medical and scientific imaging and sensing, where ground truth data is often scarce or difficult to obtain.

Asymmetric compressive learning guarantees with applications to quantized sketches

Abstract: The compressive learning framework reduces the computational cost of training on large-scale datasets. In a sketching phase, the data is first compressed to a lightweight sketch vector, obtained by mapping the data samples through a well-chosen feature map, and averaging those contributions.

Interferometric Lensless Endoscopy: Rank-one Projections of Image Frequencies with Speckle Illuminations

Abstract: Lensless endoscopy (LE) with multicore fibers (MCF) enables fluorescent imaging of biological samples at cellular scale. In this talk, we will see that under a common far-field approximation, the corresponding imaging process is tantamount to collecting multiple rank-one projections (ROP) of an Hermitian “interferometric” matrix–a matrix encoding a subsampling of the Fourier transform of the sample image.

The Rare Eclipse Problem on Tiles: Quantized Embeddings of Disjoint Convex Sets

(joint work with V. Cambareri and C. Xu). See also arXiv:1702.04664 for the corresponding preprint.