quantization

Quantized Iterative Hard Thresholding: Bridging 1-bit and High-Resolution Quantized Compressed Sensing

Abstract: In this work, we show that reconstructing a sparse signal from quantized compressive measurement can be achieved in an unified formalism whatever the (scalar) quantization resolution, i.e., from 1-bit to high resolution assumption.

Stabilizing Nonuniformly Quantized Compressed Sensing with Scalar Companders

Abstract: This paper studies the problem of reconstructing sparse or compressible signals from compressed sensing measurements that have undergone nonuniform quantization. Previous approaches to this Quantized Compressed Sensing (QCS) problem based on Gaussian models (bounded l2-norm) for the quantization distortion yield results that, while often acceptable, may not be fully consistent: re-measurement and quantization of the reconstructed signal do not necessarily match the initial observations.

Compressed Sensing and Quantization: a Compander Approach

Joint work with D. Hammond (U. Oregon, USA) and J. Fadili (GREYC, Caen, France).

Dequantizing Compressed Sensing: When Oversampling and Non-Gaussian Constraints Combine

Abstract: In this paper, we study the problem of recovering sparse or compressible signals from uniformly quantized measurements. We present a new class of convex optimization programs, or decoders, coined Basis Pursuit DeQuantizer of moment p (BPDQp), that model the quantization distortion more faithfully than the commonly used Basis Pursuit DeNoise (BPDN) program.

Quantized sub-Gaussian random matrices are still RIP!

I have always been intrigued by the fact that, in Compressed Sensing (CS), beyond Gaussian random matrices, a couple of other unstructured random matrices respecting, with high probability (whp), the Restricted Isometry Property (RIP) look like “quantized” version of the Gaussian case, i.