compressive sensing

Time for dithering: fast and quantized random embeddings via the restricted isometry property

Abstract: Recently, many works have focused on the characterization of non-linear dimensionality reduction methods obtained by quantizing linear embeddings, e.g., to reach fast processing time, efficient data compression procedures, novel geometry-preserving embeddings or to estimate the information/bits stored in this reduced data representation.

A Non-Convex Approach to Blind Calibration from Linear Sub-Gaussian Random Measurements

Abstract: Blind calibration is a bilinear inverse problem arising in modern sensing strategies, whose solution becomes crucial when traditional calibration aided by multiple, accurately designed training signals is either infeasible or resource-consuming.

Consistent Basis Pursuit for Signal and Matrix Estimates in Quantized Compressed Sensing

Abstract: This paper focuses on the estimation of low-complexity signals when they are observed through \(M\) uniformly quantized compressive observations. Among such signals, we consider 1-D sparse vectors, low-rank matrices, or compressible signals that are well approximated by one of these two models.

Quantized compressed sensing and quasi-isometric embeddings

Abstract: The advent of Compressed Sensing (CS) ten years ago has precipitated a radical re-thinking of signal acquisition, sensing, processing and transmission system design. A significant aspect of such systems is quantization (or digitization) of the acquired data before further processing or for the purpose of transmission and compression.

Compressed sensing, quantization and quasi-isometric embedding

Abstract: The advent of Compressed Sensing (CS) ten years ago has precipitated a radical re-thinking of signal acquisition, sensing, processing and transmission system design. A significant aspect of such systems is quantization (or digitization) of the acquired data before further processing or for the purpose of transmission and compression.