I’m glad to announce here a new work made in collaboration with Valerio Cambareri (UCL, Belgium) on quantized embeddings of low-complexity vectors, such as the set of sparse (or compressible) signals in a certain basis/dictionary, the set of low-rank matrices or vectors living in (a union of) subspaces.

I’m glad to announce here a new work made in collaboration with Valerio Cambareri (UCL, Belgium) on quantized embeddings of low-complexity vectors, such as the set of sparse (or compressible) signals in a certain basis/dictionary, the set of low-rank matrices or vectors living in (a union of) subspaces.

I have always been intrigued by the fact that, in Compressed Sensing (CS), beyond Gaussian random matrices, a couple of other unstructured random matrices respecting, with high probability (whp), the Restricted Isometry Property (RIP) look like “quantized” version of the Gaussian case, i.

It took me a certain time to do it. Here is at least a first attempt to test numerically the validity of some of the results I obtained in “A Quantized Johnson Lindenstrauss Lemma: The Finding of Buffon’s Needle.

Quasi-isometric embeddings of vector sets with quantized sub-Gaussian projections | Le Petit Chercheur Illustré - Apr 2, 2015
[…] explained in my previous post on quantized embedding and the funny connection with Buffon’s needle problem, I have recently noticed that for finite […]

[caption id=“attachment_346” align=“alignnone” width=“640”] (left) Picture of [8, page 147] stating the initial formulation of Buffon’s needle problem (Courtesy of E. Kowalski’s blog) (right) Scheme of Buffon’s needle problem.[/caption](This post is related to a paper entitled “A Quantized Johnson Lindenstrauss Lemma: The Finding of Buffon’s Needle” (arxiv, pdf) that I have recently submitted for publication.

Last July, I read the biography of Paul Erdős written by Paul Hoffman and entitled “The Man Who Loved Only Numbers”. This is really a wonderful book sprinkled with many anecdotes about the particular life of this great mathematician and about his appealing mathematical obsessions (including prime numbers).

Last Thursday after an email discussion with Thomas Arildsen, I was thinking again to the nice embedding properties discovered by Y. Plan and R. Vershynin in the context of 1-bit compressed sensing (CS) [1].

Last Thursday after an email discussion with Thomas Arildsen, I was thinking again to the nice embedding properties discovered by Y. Plan and R. Vershynin in the context of 1-bit compressed sensing (CS) [1].

Recently, for some unrelated reasons, I discovered that it is actually very easy to generate a Gaussian matrix $ \Phi$ that does not respect the restricted isometry property (RIP) [1]. I recall that such a matrix is RIP if there exists a (restricted isometry) constant $ 0<\delta<1$ such that, for any $ K$-sparse vector $ w\in \mathbb R^N$,